首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invertebrate gap junctions are composed of Innexin channel proteins that are structurally and functionally analogous to the connexins in vertebrates. In situ hybridization experiments have shown that most of the eight known innexin genes in Drosophila are expressed in a complex and overlapping temporal and spatial profile, with several members showing high levels of expression in developing epithelia of the embryo. To further study the cellular roles of Innexins, we have generated antibodies against Innexins 1 and 2 and studied their protein distribution in the developing embryo. We find that both Innexins are co-expressed in a number of epithelial tissues including the epidermis, the gut and the salivary glands. On the cellular level, we find both proteins localized to the membranes of epithelial cells. Immunohistochemical analysis using cell polarity markers indicates that Innexin 1 is predominantly localized to the baso-lateral domain of epithelial cells, basal to septate junctions. In contrast, we find a variable positioning of Innexin 2 along the apico-basal axis of epithelial cells depending on the type of tissue and organ. Our findings suggest that the distribution of Innexin channel proteins to specific membrane domains of epithelial cells is regulated by tissue specific factors during the development of epithelia in the fly embryo.  相似文献   

2.
Invertebrate gap junctions are composed of Innexin channel proteins that are structurally and functionally analogous to the connexins in vertebrates. In situhybridization experiments have shown that most of the eight known innexingenes in Drosophilaare expressed in a complex and overlapping temporal and spatial profile, with several members showing high levels of expression in developing epithelia of the embryo. To further study the cellular roles of Innexins, we have generated antibodies against Innexins 1 and 2 and studied their protein distribution in the developing embryo. We find that both Innexins are co-expressed in a number of epithelial tissues including the epidermis, the gut and the salivary glands. On the cellular level, we find both proteins localized to the membranes of epithelial cells. Immunohistochemical analysis using cell polarity markers indicates that Innexin 1 is predominantly localized to the baso-lateral domain of epithelial cells, basal to septate junctions. In contrast, we find a variable positioning of Innexin 2 along the apico-basal axis of epithelial cells depending on the type of tissue and organ. Our findings suggest that the distribution of Innexin channel proteins to specific membrane domains of epithelial cells is regulated by tissue specific factors during the development of epithelia in the fly embryo.  相似文献   

3.
Invertebrate gap junctions are composed of Innexin channel proteins that are structurally and functionally analogous to the connexins in vertebrates. In situ hybridization experiments have shown that most of the eight known innexin genes in Drosophila are expressed in a complex and overlapping temporal and spatial profile, with several members showing high levels of expression in developing epithelia of the embryo. To further study the cellular roles of Innexins, we have generated antibodies against Innexins 1 and 2 and studied their protein distribution in the developing embryo. We find that both Innexins are co-expressed in a number of epithelial tissues including the epidermis, the gut and the salivary glands. On the cellular level, we find both proteins localized to the membranes of epithelial cells. Immunohistochemical analysis using cell polarity markers indicates that Innexin 1 is predominantly localized to the baso-lateral domain of epithelial cells, basal to septate junctions. In contrast, we find a variable positioning of Innexin 2 along the apico-basal axis of epithelial cells depending on the type of tissue and organ. Our findings suggest that the distribution of Innexin channel proteins to specific membrane domains of epithelial cells is regulated by tissue specific factors during the development of epithelia in the fly embryo.  相似文献   

4.
The Drosophila innexin multigene family of gap junction encoding proteins consists of eight family members whose function in epithelial morphogenesis is mostly unknown. We have recently shown that innexin2 plays a crucial role in the organization of embryonic epithelia. Innexin2 protein accumulates in the epidermis in the apico-lateral membrane domain and colocalizes with core proteins of adherens junctions, such as DE-cadherin and Armadillo, the ss -catenin homolog. Innexin2 localization is altered in both armadillo and DE-cadherin mutants Biochemical interaction studies point to a direct interaction of DE-cadherin and Armadillo with innexin2 suggesting a close link between gap junction and adherens junction biogenesis. We have used the Drosophila Schneider cell tissue culture system to further study the interaction of innexin2 with DE-cadherin. Our results provide evidence that DE-cadherin may be a key component to control trafficking, and localization of Innexin2 to the plasma membrane.  相似文献   

5.
The Drosophila innexin multigene family of gap junction encoding proteins consists of eight family members whose function in epithelial morphogenesis is mostly unknown. We have recently shown that innexin2 plays a crucial role in the organization of embryonic epithelia. Innexin2 protein accumulates in the epidermis in the apico-lateral membrane domain and colocalizes with core proteins of adherens junctions, such as DE-cadherin and Armadillo, the β -catenin homolog. Innexin2 localization is altered in both armadillo and DE-cadherin mutants Biochemical interaction studies point to a direct interaction of DE-cadherin and Armadillo with innexin2 suggesting a close link between gap junction and adherens junction biogenesis. We have used the Drosophila Schneider cell tissue culture system to further study the interaction of innexin2 with DE-cadherin. Our results provide evidence that DE-cadherin may be a key component to control trafficking, and localization of Innexin2 to the plasma membrane.  相似文献   

6.
Innexins are a family of transmembrane proteins involved in the formation of gap junctions, specific intercellular channels, in invertebrates. Analyses of the entire innexin family during Drosophila melanogaster embryonic development shows the occurrence of complex and specific patterns of expression of the different genes. Innexins inx-2 and inx-7, in general, do not appear to exhibit extensive co-expression in different D. melanogaster cellular compartments. We propose here a new and robust mechanism, based on our analysis of the genomic organization of inx-2 and inx-7, that structurally justifies the reciprocal expression of genes.  相似文献   

7.

Background

Dorsal closure is a morphogenetic event that occurs during mid-embryogenesis in many insects including Drosophila, during which the ectoderm migrates on the extraembryonic amnioserosa to seal the embryo dorsally. The contribution of the ectoderm in this event has been known for a long time. However, amnioserosa tension and contractibility have recently been shown also to be instrumental to the closure. A critical pre-requisite for dorsal closure is integrity of these tissues that in part is mediated by cell-cell junctions and cell adhesion. In this regard, mutations impairing junction formation and/or adhesion lead to dorsal closure. However, no role for the gap junction proteins Innexins has so far been described.

Results and Discussion

Here, we show that Innexin 1, 2 and 3, are present in the ectoderm but also in the amnioserosa in plaques consistent with gap junctions. However, only the loss of Inx3 leads to dorsal closure defects that are completely rescued by overexpression of inx3::GFP in the whole embryo. Loss of Inx3 leads to the destabilisation of Inx1, Inx2 and DE-cadherin at the plasma membrane, suggesting that these four proteins form a complex. Accordingly, in addition to the known interaction of Inx2 with DE-cadherin, we show that Inx3 can bind to DE-cadherin. Furthermore, Inx3-GFP overexpression recruits DE-cadherin from its wildtype plasma membrane domain to typical Innexin plaques, strengthening the notion that they form a complex. Finally, we show that Inx3 stability is directly dependent on tissue tension. Taken together, we propose that Inx3 is a critical factor for dorsal closure and that it mediates the stability of Inx1, 2 and DE-cadherin by forming a complex.  相似文献   

8.
Polydnaviruses are double-stranded DNA viruses associated with some subfamilies of ichneumonoid parasitoid wasps. Polydnavirus virions are delivered during wasp parasitization of a host, and virus gene expression in the host induces alterations of host physiology. Infection of susceptible host caterpillars by the polydnavirus Campoletis sonorensis ichnovirus (CsIV) leads to expression of virus genes, resulting in immune and developmental disruptions. CsIV carries four homologues of insect gap junction genes (innexins) termed vinnexins, which are expressed in multiple tissues of infected caterpillars. Previously, we demonstrated that two of these, VinnexinD and VinnexinG, form functional gap junctions in paired Xenopus oocytes. Here we show that VinnexinQ1 and VinnexinQ2, likewise, form junctions in this heterologous system. Moreover, we demonstrate that the vinnexins interact differentially with the Innexin2 orthologue of an ichnovirus host, Spodoptera frugiperda. Cell pairs coexpressing a vinnexin and Innexin2 or pairs in which one cell expresses a vinnexin and the neighboring cell Innexin2 assemble functional junctions with properties that differ from those of junctions composed of Innexin2 alone. These data suggest that altered gap junctional intercellular communication may underlie certain cellular pathologies associated with ichnovirus infection of caterpillar hosts.  相似文献   

9.
Drosophila has several genes for gap junction proteins.   总被引:1,自引:0,他引:1  
K D Curtin  Z Zhang  R J Wyman 《Gene》1999,232(2):191-201
  相似文献   

10.
Gap junctions consist of clusters of intercellular channels, which enable direct cell-to-cell communication and adhesion in animals. Whereas deuterostomes, including all vertebrates, use members of the connexin and pannexin multiprotein families to assemble gap junction channels, protostomes such as Drosophila and Caenorhabditis elegans use members of the innexin protein family. The molecular composition of innexin-containing gap junctions and the functional significance of innexin oligomerization for development are largely unknown. Here, we report that heteromerization of Drosophila innexins 2 and 3 is crucial for epithelial organization and polarity of the embryonic epidermis. Both innexins colocalize in epithelial cell membranes. Innexin3 is mislocalized to the cytoplasm in innexin2 mutants and is recruited into ectopic expression domains defined by innexin2 misexpression. Conversely, RNA interference (RNAi) knockdown of innexin3 causes mislocalization of innexin2 and of DE-cadherin, causing cell polarity defects in the epidermis. Biochemical interaction studies, surface plasmon resonance analysis, transgenesis, and biochemical fractionation experiments demonstrate that both innexins interact via their C-terminal cytoplasmic domains during the assembly of heteromeric channels. Our data provide the first molecular and functional demonstration that innexin heteromerization occurs in vivo and reveal insight into a molecular mechanism by which innexins may oligomerize into heteromeric gap junction channels.  相似文献   

11.
The Drosophila genome encodes eight members of the innexin family of gap junction proteins. Most of the family members are expressed in complex and overlapping expression patterns during Drosophila development. Functional studies and mutant analysis have been performed for only few of the innexin genes. The authors generated an antibody against Innexin7 and studied its expression and functional role in embryonic development by using transgenic RNA interference (RNAi) lines. The authors found Innexin7 protein expression in all embryonic epithelia from early to late stages of development, including in the developing epidermis and the gastrointestinal tract. In early embryonic stages, the authors observed a nuclear localization of Innexin7, whereas Innexin7 was found in a punctuate pattern in the cytoplasm and at the membrane of most epithelial tissues at later stages of development. During central nervous system (CNS) development, Innexin7 was expressed in cells of the neuroectoderm and the mesectoderm and at later stages of embryogenesis, its expression was largely restricted to a segmental pattern of few glia and neuronal cells derived from the midline precursors. Coimmunostaining experiments showed that Innexin7 is expressed in midline glia, and in two different neuronal cells, the pCC and MP2 neurons, which are pioneer cells for axon guidance. RNAi-mediated knock down was used to gain insight into the embryonic function of innexin7. Down-regulation of innexin7 expression resulted in a severe disruption of embryonic nervous system development. Longitudinal, posterior, and anterior commissures were disrupted and the outgrowth of axon fibers of the ventral nerve cord was aberrant, causing peripheral nervous system defects. The results suggest an essential role for innexin7 for axon guidance and embryonic nervous system development in Drosophila.  相似文献   

12.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

13.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

14.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

15.
Gap junctions are clusters of intercellular channels that provide cells, in all metazoan organisms, with a means of communicating directly with their neighbours. Surprisingly, two gene families have evolved to fulfil this fundamental, and highly conserved, function. In vertebrates, gap junctions are assembled from a large family of connexin proteins. Innexins were originally characterized as the structural components of gap junctions in Drosophila, an arthropod, and the nematode Caenorhabditis elegans. Since then, innexin homologues have been identified in representatives of the other major invertebrate phyla and in insect-associated viruses. Intriguingly, functional innexin homologues have also been found in vertebrate genomes. These studies have informed our understanding of the molecular evolution of gap junctions and have greatly expanded the numbers of model systems available for functional studies. Genetic manipulation of innexin function in relatively simple cellular systems should speed progress not only in defining the importance of gap junctions in a variety of biological processes but also in elucidating the mechanisms by which they act.  相似文献   

16.
Vertebrate claudin proteins are integral components of tight junctions, which function as paracellular diffusion barriers in epithelia. We identified Megatrachea (Mega), a Drosophila transmembrane protein homologous to claudins, and show that it acts in septate junctions, the corresponding structure of invertebrates. Our analysis revealed that Mega has transepithelial barrier function similar to the claudins. Also, Mega is necessary for normal tracheal cell morphogenesis but not for apicobasal polarity or epithelial integrity. In addition, we present evidence that Mega is essential for localization of the septate junction protein complex Coracle/Neurexin. The results indicate that claudin-like proteins are functionally conserved between vertebrates and Drosophila.  相似文献   

17.
J D Young  Z A Cohn  N B Gilula 《Cell》1987,48(5):733-743
Gap junctions isolated from rat liver were incorporated into planar lipid bilayers. A channel activity that was directly dependent on voltage was recorded. Changes of pH and (Ca2+) had no direct effect on channel activity; however, they modulated the voltage-dependent gating of the gap junction channels differently. Single-channel fluctuations showed large scatter with peak amplitudes of 140 and 280 picoSiemmens in 0.1 M NaCl. The major protein of gap junctions (Mr of 27 kd) was also reconstituted into bilayers, giving channel properties similar to those of intact gap junctions. Polyclonal antibodies specific for this protein caused inhibition of the junctional conductance in bilayers. These data provide direct evidence that the 27 kd protein is the molecular species responsible for gap junction communication between cells.  相似文献   

18.
Morphological and biochemical analyses have identified a set of proteins which together form a structure known as the adherens junction. Elegant experiments in tissue culture support the idea that adherens junctions play a key role in cell-cell adhesion and in organizing cells into epithelia. During normal embryonic development, cells quickly organize epithelia; these epithelial cells participate in many of the key morphogenetic movements of gastrulation. This prompted the hypothesis that adherens junctions ought to be critical for normal embryonic development. Drosophila Armadillo, the homologue of vertebrate beta-catenin, is a core component of the adherens junction protein complex and has been hypothesized to be essential for adherens junction function in vivo. We have used an intermediate mutant allele of armadillo, armadilloXP33, to test these hypotheses in Drosophila embryos. Adherens junctions cannot assemble in the absence of Armadillo, leading to dramatic defects in cell-cell adhesion. The epithelial cells of the embryo lose adhesion to each other, round up, and apparently become mesenchymal. Mutant cells also lose their normal cell polarity. These disruptions in the integrity of epithelia block the appropriate morphogenetic movements of gastrulation. These results provide the first demonstration of the effect of loss of adherens junctions on Drosophila embryonic development.  相似文献   

19.
The correct assembly of junction components, such as E-cadherin and beta-catenin, into the zonula adherens is fundamental for the function of epithelia, both in flies and in vertebrates. In C. elegans, however, the cadherin-catenin system is not essential for general adhesion, raising the question as to the genetic basis controlling junction morphogenesis in nematodes. Here we show that dlg-1, the C. elegans homologue of the Drosophila tumour-suppressor gene discs-large, plays a crucial role in epithelial development. DLG-1 is restricted to adherens junctions of all embryonic epithelia, which contrasts with the localisation of the Drosophila and vertebrate homologues in septate and tight junctions, respectively. Proper localisation of DLG-1 requires the basolateral LET-413 protein, but is independent of the cadherin-catenin system. Embryos in which dlg-1 activity was eliminated by RNA-mediated interference fail to form a continuous belt of junction-associated antigens and arrest development. Loss of dlg-1 activity differentially affects localisation of proteins normally enriched apically to the zonula adherens. While the distribution of an atypical protein kinase C (PKC-3) and other cytoplasmic proteins (PAR-3, PAR-6) is not affected in dlg-1 (RNAi) embryos, the transmembrane protein encoded by crb-1, the C. elegans homologue of Drosophila crumbs, is no longer concentrated in this domain. In contrast to Drosophila, however, crb-1 and a second crb-like gene are not essential for epithelial development in C. elegans. Together the data indicate that several aspects of the spatial organisation of epithelial cells and its genetic control differ between flies, worms, and vertebrates, while others are conserved. The molecular nature of DLG-1 makes it a likely candidate to participate in the organisation of a protein scaffold that controls the assembly of junction components into the zonula adherens.  相似文献   

20.

Background

In cardiac muscle, the intercalated disk (ID) at the longitudinal cell-edges of cardiomyocytes provides as a macromolecular infrastructure that integrates mechanical and electrical coupling within the heart. Pathophysiological disturbance in composition of this complex is well known to trigger cardiac arrhythmias and pump failure. The mechanisms underlying assembly of this important cellular domain in human heart is currently unknown.

Methods

We collected 18 specimens from individuals that died from non-cardiovascular causes. Age of the specimens ranged from a gestational age of 15 weeks through 11 years postnatal. Immunohistochemical labeling was performed against proteins comprising desmosomes, adherens junctions, the cardiac sodium channel and gap junctions to visualize spatiotemporal alterations in subcellular location of the proteins.

Results

Changes in spatiotemporal localization of the adherens junction proteins (N-cadherin and ZO-1) and desmosomal proteins (plakoglobin, desmoplakin and plakophilin-2) were identical in all subsequent ages studied. After an initial period of diffuse and lateral labelling, all proteins were fully localized in the ID at approximately 1 year after birth. Nav1.5 that composes the cardiac sodium channel and the gap junction protein Cx43 follow a similar pattern but their arrival in the ID is detected at (much) later stages (two years for Nav1.5 and seven years for Cx43, respectively).

Conclusion

Our data on developmental maturation of the ID in human heart indicate that generation of the mechanical junctions at the ID precedes that of the electrical junctions with a significant difference in time. In addition arrival of the electrical junctions (Nav1.5 and Cx43) is not uniform since sodium channels localize much earlier than gap junction channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号