首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the admittance of the membrane of squid giant axon under voltage clamp in the absence of ionic conductances in the range of 0-12 kHz for membrane potentials (V) between --130 and 70 mV. The admittance was measured at various holding potentials (HP) or 155 ms after pulsing from a given holding potential. Standard P/4 procedure was used to study gating currents in the same axons. We found that the membrane capacity Cm (omega) is voltage as well as frequency dependent. For any given V, the voltage-dependent part of the membrane capacitance has a maximum as the frequency approaches zero and requires at least a two-time constant equivalent circuit to be described. When the holding potential is varied, the voltage-dependent capacitance follows a bell- shaped curve with a maximum change of 0.15 muF/cm2 at about --60 mV. With the pulse method, the maximum is at --40 mV for HP = --70 and it shifts to --70 mV for HP = 0. The shift in the maximum of the voltage- dependent capacitance is consistent with the shift in the charge (Q) vs. V curve observed in our experiments with regular P/4 procedure when the HP is varied. Our data can be explained qualitatively by a four- state model for the sodium channel gating, where a charged particle can move within the field and interact with another particle not affected by the field.  相似文献   

2.
Membrane currents in retinal bipolar cells of the axolotl   总被引:4,自引:1,他引:4       下载免费PDF全文
By whole-cell patch-clamping bipolar cells isolated from enzymatically dissociated retinae, we have studied the nonsynaptic ionic currents that may play a role in shaping the bipolar cell light response and in determining the level of voltage noise in these cells. Between -30 and -70 mV, the membrane current of isolated bipolar cells is time independent, and the input resistance is 1-2 G omega. Depolarization past -30 mV activates an outward current (in less than 100 ms), which then inactivates slowly (approximately 1 s). Inactivation of this current is removed by hyperpolarization over the range -20 to -80 mV. This current is carried largely by K ions. It is not activated by internal Ca2+. The membrane current of isolated bipolar cells is noisy, and the variance of this noise has a minimum between -40 and -60 mV. At its minimum, the standard deviation of the voltage noise produced by nonsynaptic membrane currents is at least 100 microV. The membrane currents of depolarizing bipolar cells in slices of retina were investigated by whole-cell patch-clamping. Their membrane properties were similar to those of isolated bipolar cells, but with a larger membrane capacitance and a smaller input resistance. Their membrane current noise also showed a minimum near -40 to -60 mV. The time-dependent potassium current in axolotl bipolar cells is not significantly activated in the physiological potential range and can therefore play little role in shaping the bipolar cells' voltage response to light. Differences in the waveform of the light response of bipolar cells and photoreceptors must be ascribed to shaping by the synapses between these cells. The noise minimum in the bipolar membrane current is near the dark potential of these cells, and this may be advantageous for the detection of weak signals by the bipolar cells.  相似文献   

3.
Using the tight-seal voltage-clamp method, the ionic currents in the enzymatically dispersed single smooth muscle cells of the guinea pig taenia coli have been studied. In a physiological medium containing 3 mM Ca2+, the cells are gently tapering spindles, averaging 201 (length) x 8 microns (largest diameter in center of cell), with a volume of 5 pl. The average cell capacitance is 50 pF, and the specific membrane capacitance 1.15 microF/cm2. The input impedance of the resting cell is 1-2 G omega. Spatially uniform voltage-control prevails after the first 400 microseconds. There is much overlap of the inward and outward currents, but the inward current can be isolated by applying Cs+ internally to block all potassium currents. The inward current is carried by Ca2+. Activation begins at approximately -30 mV, maximum ICa occurs at +10-+20 mV, and the reversal potential is approximately +75 mV. The Ca2+ channel is permeable to Sr2+ and Ba2+, and to Cs+ moving outwards, but not to Na+ moving inwards. Activation and deactivation are very rapid at approximately 33 degrees C, with time-constants of less than 1 ms. Inactivation has a complex time course, resolvable into three exponential components, with average time constants (at 0 mV) of 7, 45, and 400 ms, which are affected differently by voltage. Steady-state inactivation is half-maximal at -30 mV for all components combined, but -36 mV for the fast component and -26 and -23 mV for the other two components. The presence of multiple forms of Ca2+ channel is inferred from the inactivation characteristics, not from activation properties. Recovery of the fast channel occurs with a time-constant of 72 ms (at +10 mV). Ca2+ influx during an action potential can transfer approximately 9 pC of charge, which could elevate intracellular Ca2+ concentration adequately for various physiological functions.  相似文献   

4.
Electrophysiological properties of isolated rat liver cells   总被引:2,自引:0,他引:2  
The electrophysiological properties of isolated rat liver cells were studied using the patch clamp method in whole-cell configuration. The membrane potential in isolated hepatocytes was -42 +/- 7 mV (n = 20). The input resistance (Rin) and the time constant (tau m) were 51 +/- 17 M (the range of 34 to 180 M omega) (n = 20) and 4.2 +/- 1.0 msec (the range of 3 to 16.5 ms) (n = 20). Assuming that the specific membrane capacitance is 1 microF/cm2, the membrane resistance and membrane capacitance were 42. +/- 9.0 K omega cm2 and 87 +/- 27 pF. These values indicate that isolated rat hepatocytes are not abnormally permeable or leaky. The current-voltage relationship was linear with no rectification. The depolarizing pulse from the resting potential did not induce fast or slow inward currents even when norepinephrine or high Ca2 (3.6 mM) were applied. This indicates that there is no voltage-sensitive Ca2+ channel in the isolated hepatocytes.  相似文献   

5.
Batrachotoxin (BTX)-modified Na+ currents were characterized in GH3 cells with a reversed Na+ gradient under whole-cell voltage clamp conditions. BTX shifts the threshold of Na+ channel activation by approximately 40 mV in the hyperpolarizing direction and nearly eliminates the declining phase of Na+ currents at all voltages, suggesting that Na+ channel inactivation is removed. Paradoxically, the steady-state inactivation (h infinity) of BTX-modified Na+ channels as determined by a two-pulse protocol shows that inactivation is still present and occurs maximally near -70 mV. About 45% of BTX-modified Na+ channels are inactivated at this voltage. The development of inactivation follows a sum of two exponential functions with tau d(fast) = 10 ms and tau d(slow) = 125 ms at -70 mV. Recovery from inactivation can be achieved after hyperpolarizing the membrane to voltages more negative than -120 mV. The time course of recovery is best described by a sum of two exponentials with tau r(fast) = 6.0 ms and tau r(slow) = 240 ms at -170 mV. After reaching a minimum at -70 mV, the h infinity curve of BTX-modified Na+ channels turns upward to reach a constant plateau value of approximately 0.9 at voltages above 0 mV. Evidently, the inactivated, BTX-modified Na+ channels can be forced open at more positive potentials. The reopening kinetics of the inactivated channels follows a single exponential with a time constant of 160 ms at +50 mV. Both chloramine-T (at 0.5 mM) and alpha-scorpion toxin (at 200 nM) diminish the inactivation of BTX-modified Na+ channels. In contrast, benzocaine at 1 mM drastically enhances the inactivation of BTX-modified Na+ channels. The h infinity curve reaches minimum of less than 0.1 at -70 mV, indicating that benzocaine binds preferentially with inactivated, BTX-modified Na+ channels. Together, these results imply that BTX-modified Na+ channels are governed by an inactivation process.  相似文献   

6.
A small area (10(-4) to 10(-5) cm2 patch) of the external surface of a squid (Loligo pealei) axon was "isolated" electrically by means of a pair of concentric glass pipettes and sucrose solution to achieve a low extraneous noise measurement of spontaneous fluctuations in membrane potential and current. The measured "small-signal" impedance function of the isolated patch in seawater was constant at low frequencies and declined monotonically at frequencies beyond 100Hz. It is shown that the power-density spectrum (PDS) of voltage noise, which generally reflects the current-noise spectrum filtered by the membrane impedance function, is equivalent to the power spectrum of current-noise up to frequencies where the impedance decline is significant (Fishman, 1973a, Proc. Nat. Acad. Sci. USA 70:876). This result is in contrast to an impedance resonance measured under uniform constant-current (internal axial wire) conditions, for which the voltage-noise PDS reflects the impedance resonance. The overdamped resonance in the patch technique is a consequence of the relatively low resistance (1 Momega) pathways through the sucrose solution in the interstitial Schwann cell space which surround and shunt the high resistance (10-100 Momega) membrane patch. Current-noise measurements during patch voltage clamp extend observation of patch ion-conductance fluctuations to 1 kHz. Various tests are presented to demonstrate the temporal and spatial adequacey of patch potential control during current-noise measurements.  相似文献   

7.
新生大鼠离体脊髓薄片侧角中间外侧核细胞的电生理特性   总被引:1,自引:0,他引:1  
祝延  马如纯 《生理学报》1989,41(1):63-69
在新生大鼠离体脊髓薄片的中间外侧核作细胞内记录,研究细胞膜的静态与动态电生理特性。细胞的静息电位(RP)变动于-46—-70mV,膜的输入阻抗为108.3±67.9MΩ(X±SD,下同),时间常数9.9±5.6ms,膜电容138.6±124.2pF。用去极化电流进行细胞内刺激时,大部份细胞(85.4%)能产生高频率连续发放,其余细胞(15.6%)仅产生初始单个发放。胞内直接刺激引起的动作电位(AP)幅度为63.4±9.0mV,时程2.4±0.6ms,阈电位水平在RP基础上去极18.7±6.2mV。大部份细胞的锋电位后存在明显的超极化后电位,其幅度为5.1±2.7mV、持续90±31.8ms。刺激背根可在记录细胞引起EPSP或顺向AP,少数细胞尚出现IPSP。而刺激腹根则可引起逆向AP。  相似文献   

8.
Intracellular recording of white adipocytes was performed in an in vitro preparation. Resting potential, input resistance and membrane time constant averaged: -34 +/- 9 mV, 295 +/- 161 M omega, and 58 +/- 19 ms respectively (mean +/- SD, n = 32). Intracellular injection of positive and negative square current pulses elicited membrane voltage responses, characterized by a rectification of the voltage change evoked by positive pulses, and a slow return to baseline at the offset of hyperpolarizing pulses. The amplitude and duration of the slow return to resting potential was dependent on membrane potential, pulse duration, and extracellular K+ concentration. This response was depressed when external Ca2+ was replaced by Co2+, and by external application of 4-aminopyridine. These results indicate that white adipocytes can generate membrane voltage responses which may mostly be a consequence of the activity of ionic channels. The properties of the slow return to baseline suggest that it may be due to a transient K+ current.  相似文献   

9.
The present study investigated the spatial organization of electrical activity in the canine rectoanal region and its relationship to motility patterns. Contraction and resting membrane potential (E(m)) were measured from strips of circular muscle isolated 0.5-8 cm from the anal verge. Rapid frequency [25 cycles/min (cpm)] E(m) oscillations (MPOs, 12 mV amplitude) were present across the thickness of the internal anal sphincter (IAS; 0.5 cm) and E(m) was constant (-52 mV). Between the IAS and the proximal rectum an 18 mV gradient in E(m) developed across the muscle thickness with the submucosal edge at -70 mV and MPOs were replaced with slow waves (20 mV amplitude, 6 cpm). Slow waves were of greatest amplitude at the submucosal edge. Nifedipine (1 micro M) abolished MPOs but not slow waves. Contractile frequency changes were commensurate with the changes in pacemaker frequency. Our results suggest that changing motility patterns in the rectoanal region are associated with differences in the characteristics of pacemaker potentials as well as differences in the sites from which these potentials emanate.  相似文献   

10.
We have examined the kinetics of whole-cell T-current in HEK 293 cells stably expressing the alpha1G channel, with symmetrical Na(+)(i) and Na(+)(o) and 2 mM Ca(2+)(o). After brief strong depolarization to activate the channels (2 ms at +60 mV; holding potential -100 mV), currents relaxed exponentially at all voltages. The time constant of the relaxation was exponentially voltage dependent from -120 to -70 mV (e-fold for 31 mV; tau = 2.5 ms at -100 mV), but tau = 12-17 ms from-40 to +60 mV. This suggests a mixture of voltage-dependent deactivation (dominating at very negative voltages) and nearly voltage-independent inactivation. Inactivation measured by test pulses following that protocol was consistent with open-state inactivation. During depolarizations lasting 100-300 ms, inactivation was strong but incomplete (approximately 98%). Inactivation was also produced by long, weak depolarizations (tau = 220 ms at -80 mV; V(1/2) = -82 mV), which could not be explained by voltage-independent inactivation exclusively from the open state. Recovery from inactivation was exponential and fast (tau = 85 ms at -100 mV), but weakly voltage dependent. Recovery was similar after 60-ms steps to -20 mV or 600-ms steps to -70 mV, suggesting rapid equilibration of open- and closed-state inactivation. There was little current at -100 mV during recovery from inactivation, consistent with 相似文献   

11.
Calcium currents in crayfish muscle fibres were studied by means of the vaseline gap voltage clamp technique. Overlapping potassium currents were fully suppressed using fibre fragments equilibrated in K+-free intracellular solution. The design of the recording chamber tailored to crayfish muscle fibres is described in detail. Ca currents recorded has a two-component time course. The transient (ICa, T) component (peaking in about 10 ms) attained, on average, maximal overall density of 26.4 microA/cm2 at depolarization to -4.6 mV from a holding potential of -80 mV. The steady (ICa, S) component attained 16.7 microA/cm2 (evaluated at the end of a 70 ms pulse) at +13.8 mV. The average overall surface area of the clamped membrane surface (including invaginated parts) was about 0.07 cm2. The ICa, S component could be separated from ICa, T using short inactivating prepulses. Voltage and time dependence of the transient component inactivation, as well as its recovery from inactivation, were in agreement with a Ca-dependent mechanism. Independent behaviour of the two Ca current components and differences in their properties support the hypothesis concerning the existence of two populations of Ca channels in the surface membrane of the crayfish muscle.  相似文献   

12.
Enzymatically isolated myocytes from ferret right ventricles (12-16 wk, male) were studied using the whole cell patch clamp technique. The macroscopic properties of a transient outward K+ current I(to) were quantified. I(to) is selective for K+, with a PNa/PK of 0.082. Activation of I(to) is a voltage-dependent process, with both activation and inactivation being independent of Na+ or Ca2+ influx. Steady-state inactivation is well described by a single Boltzmann relationship (V1/2 = -13.5 mV; k = 5.6 mV). Substantial inactivation can occur during a subthreshold depolarization without any measurable macroscopic current. Both development of and recovery from inactivation are well described by single exponential processes. Ensemble averages of single I(to) channel currents recorded in cell-attached patches reproduce macroscopic I(to) and indicate that inactivation is complete at depolarized potentials. The overall inactivation/recovery time constant curve has a bell-shaped potential dependence that peaks between -10 and -20 mV, with time constants (22 degrees C) ranging from 23 ms (-90 mV) to 304 ms (-10 mV). Steady-state activation displays a sigmoidal dependence on membrane potential, with a net aggregate half- activation potential of +22.5 mV. Activation kinetics (0 to +70 mV, 22 degrees C) are rapid, with I(to) peaking in approximately 5-15 ms at +50 mV. Experiments conducted at reduced temperatures (12 degrees C) demonstrate that activation occurs with a time delay. A nonlinear least- squares analysis indicates that three closed kinetic states are necessary and sufficient to model activation. Derived time constants of activation (22 degrees C) ranged from 10 ms (+10 mV) to 2 ms (+70 mV). Within the framework of Hodgkin-Huxley formalism, Ito gating can be described using an a3i formulation.  相似文献   

13.
Patch-clamp studies were carried out in villus enterocytes isolated from the guinea pig proximal small intestine. In the whole-cell mode, outward K+ currents were found to be activated by depolarizing command pulses to -45 mV. The activation followed fourth order kinetics. The time constant of K+ current activation was voltage-dependent, decreasing from approximately 3 ms at -10 mV to 1 ms at +50 mV. The K+ current inactivated during maintained depolarizations by a voltage- independent, monoexponential process with a time constant of approximately 470 ms. If the interpulse interval was shorter than 30 s, cumulative inactivation was observed upon repeated stimulations. The steady state inactivation was voltage-dependent over the voltage range from -70 to -30 mV with a half inactivation voltage of -46 mV. The steady state activation was also voltage-dependent with a half- activation voltage of -22 mV. The K+ current profiles were not affected by chelation of cytosolic Ca2+. The K+ current induced by a depolarizing pulse was suppressed by extracellular application of TEA+, Ba2+, 4-aminopyridine or quinine with half-maximal inhibitory concentrations of 8.9 mM, 4.6 mM, 86 microM and 26 microM, respectively. The inactivation time course was accelerated by quinine but decelerated by TEA+, when applied to the extracellular (but not the intracellular) solution. Extracellular (but not intracellular) applications of verapamil and nifedipine also quickened the inactivation time course with 50% effective concentrations of 3 and 17 microM, respectively. Quinine, verapamil and nifedipine shifted the steady state inactivation curve towards more negative potentials. Outward single K+ channel events with a unitary conductance of approximately 8.4 pS were observed in excised inside-out patches of the basolateral membrane, when the patch was depolarized to -40 mV. The ensemble current rapidly activated and thereafter slowly inactivated with similar time constants to those of whole-cell K+ currents. It is concluded that the basolateral membrane of guinea pig villus enterocytes has a voltage-gated, time-dependent, Ca(2+)-insensitive, small-conductance K+ channel. Quinine, verapamil, and nifedipine accelerate the inactivation time course by affecting the inactivation gate from the external side of the cell membrane.  相似文献   

14.
Conductive properties of the proximal tubule in Necturus kidney   总被引:1,自引:0,他引:1       下载免费PDF全文
The electrical properties of the proximal tubule of the in vivo Necturus kidney were investigated by injecting current (as rectangular waves) into the lumen or into the epithelium of single tubules and by studying the resulting changes of transepithelial (VL) and/or cell membrane potential (VC) at various distances from the source. In some experiments paired measurements of VL and VC were performed at two abscissas x and x'. The luminal length constant of about 1,030 micrometer was shown to provide a good estimate of the transepithelial resistance, specific resistance (RTE = 420 omega.cm2) and/or per unit length (rTE = 1.3 x 10(4) omega.cm). The apparent intraepithelial length constant was subject to distortions arising from concomitant current spread in the lumen. The resistances of luminal membrane (rL), basolateral membrane (rB), and shunt pathway (rS) were estimated by two independent methods at 3.5 x 10(4), 1.2 x 10(4), and 1.7 x 10(4) omega.cm, respectively. The corresponding specific resistances were close to 1,200, 600, and 600 omega.cm2. There are two main conclusions of this study. (a) The resistances of cell membranes and shunt pathway are of the same order of magnitude. The figure of the shunt resistance is at variance with the notion that the proximal tubule of Necturus is a leaky epithelium. (b) A rigorous assessment of the conductive properties of concentric cylindrical double cables (such as renal tubules) requires that electrical interactions arising from one cable to another be taken into account. Appropriate equations were developed to deal with this problem.  相似文献   

15.
Sodium and calcium currents in dispersed mammalian septal neurons   总被引:2,自引:0,他引:2       下载免费PDF全文
Voltage-gated Na+ and Ca2+ conductances of freshly dissociated septal neurons were studied in the whole-cell configuration of the patch-clamp technique. All cells exhibited a large Na+ current with characteristic fast activation and inactivation time courses. Half-time to peak current at -20 mV was 0.44 +/- 0.18 ms and maximal activation of Na+ conductance occurred at 0 mV or more positive membrane potentials. The average value was 91 +/- 32 nS (approximately 11 mS cm-2). At all membrane voltages inactivation was well fitted by a single exponential that had a time constant of 0.44 +/- 0.09 ms at 0 mV. Recovery from inactivation was complete in approximately 900 ms at -80 mV but in only 50 ms at -120 mV. The decay of Na+ tail currents had a single time constant that at -80 mV was faster than 100 microseconds. Depolarization of septal neurons also elicited a Ca2+ current that peaked in approximately 6-8 ms. Maximal peak Ca2+ current was obtained at 20 mV, and with 10 mM external Ca2+ the amplitude was 0.35 +/- 0.22 nA. During a maintained depolarization this current partially inactivated in the course of 200-300 ms. The Ca2+ current was due to the activity of two types of conductances with different deactivation kinetics. At -80 mV the closing time constants of slow (SD) and fast (FD) deactivating channels were, respectively, 1.99 +/- 0.2 and 0.11 +/- 0.03 ms (25 degrees C). The two kinds of channels also differed in their activation voltage, inactivation time course, slope of the conductance-voltage curve, and resistance to intracellular dialysis. The proportion of SD and FD channels varied from cell to cell, which may explain the differential electrophysiological responses of intracellularly recorded septal neurons.  相似文献   

16.
The exumbrellar epithelium of the hydromedusa, Euphysa japonica, is composed of a single layer of broad (70 micrometers), thin (1--2 micrometers) cells which are joined by gap junctions and simple appositions. Although the epithelium lacks nerves, it is excitable; electrically stimulating the epithelium initiates a propagated action potential. The average resting potential of the epithelial cells is -46 mV. The action potential, recorded with an intracellular electrode, is an all-or-nothing, positive, overshooting spike. The epithelial cells are electrically coupled. The passive electrical properties of the epithelium were determined from the decrement in membrane hyperpolarization with distance from an intracellular, positive current source. The two-dimensional space constant of the epithelium is 1.3 mm, the internal longitudinal resistivity of the cytoplasm and intercellular junctions is 196 omega cm, and the resistivity of both apical and basal cell membranes is greater than 23 k omega cm2. Although the membrane resistivity is high, the transverse resistivity of the epithelium is quite low (7.5 omega cm2), indicating that the epithelium is leaky with a large, transverse, paracellular shunt.  相似文献   

17.
Intramembrane charge movement was recorded in guinea pig ventricular myocytes at 19-22 degrees C using the whole-cell patch clamp technique. From a holding potential of -110 mV, the dependence of intramembrane charge moved on test voltage (Q(V)) followed the sum of two Boltzmann components. One component had a transition voltage (V) of -48 mV and a total charge (Qmax) of congruent to 3 nC/microF. The other had a V of -18 mV and a Qmax of 11 nC/microF. Ba2+ currents through Ca channels began to activate at -45 mV and peaked at congruent to -15 mV. Na+ current peaked at -35 to -30 mV. Availability of charge (in pulses from -70 to +10 mV) depended on the voltage of conditioning depolarizations as two Boltzmann terms plus a constant. One term had a V of -88 mV and a Qmax of 2.5 nC/microF; the other had a V of -29 mV and a Qmax of 6.3 nC/microF. From the Q(V) dependence, the voltage dependence of the ionic currents, and the voltage dependence of the availability of charge, the low voltage term of Q(V) and availability was identified as Na gating charge, at a total of 3.5 nC/microF. The remainder, 11 nC/microF, was attributed to Ca channels. After pulses to -40 mV and above, the OFF charge movement had a slow exponentially decaying component. Its time constant had a bell-shaped dependence on OFF voltage peaking at 11 ms near -100 mV. Conditioning depolarizations above -40 mV increased the slow component exponentially with the conditioning duration (tau approximately equal to 480 ms). Its magnitude was reduced as the separation between conditioning and test pulses increased (tau approximately equal to 160 ms). The voltage distribution of the slow component of charge was measured after long (5 s) depolarizations. Its V was -100 mV, a shift of -80 mV from the value in normally polarized cells. This voltage was the same at which the time constant of the slow component peaked. Qmax and the steepness of the voltage distribution were unchanged by depolarization. This indicates that the same molecules that produce the charge movement in normally polarized cells also produce the slow component in depolarized cells. 100 microns D600 increased by 77% the slow charge movement after a 500-ms conditioning pulse. These results demonstrate two classes of charge movement associated with L-type Ca channels, with kinetics and voltage dependence similar to charge 1 and charge 2 of skeletal muscle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The role of I(K) (delayed rectifier current) and I(f) (hyperpolarization-activated current) in dominant and subsidiary pacemaker ranges was studied in single myocytes isolated from the guinea pig sino-atrial node by means of a perforated patch-clamp technique. In the dominant pacemaker range (approx. -55 to -40 mV), I(K) tails are present whereas I(f) is not activated. In the subsidiary pacemaker range (approx. -80 to -70 mV), I(f) is large whereas I(K) is minimal and reversing. The threshold for I(f) activation is more negative at short time intervals. Larger or longer depolarizations to -40 mV and +20 mV deactivate I(f) more and are followed by faster reactivation of I(f). Steps of 200-300 ms duration to +20 mV completely deactivate I(f). The slope conductance decreases during depolarizations at -40 and +20 mV and quickly re-increases after the steps. The I(f) deactivation range is between -70 and +10 mV, with a V(1/2) of -35 mV. Depolarizations from -80 to +20 mV at a rate of 120/min limit the subsequent I(f) reactivation owing to the short diastole. We conclude that I(K) plays a predominant role in the dominant pacemaker range and I(f) does so in the subsidiary pacemaker range. Either pacemaker mechanism is used by sino-atrial node cells depending on the diastolic potential range. A previous depolarization markedly increases the amplitude and rate of I(f) reactivation.  相似文献   

19.
Plateau and pacemaker currents from tissue cultured clusters of embryonic chick heart cells were studied in the time domain, using voltage-clamp steps, and in the frequency domain, using a wide-band noise input superimposed on a steady holding voltage. In the presence of tetrodotoxin to block the sodium channel, a depolarizing voltage step into the plateau range elicited: (a) a rapid (approximately equal to 2 ms) activation of the slow inward current; (b) a subsequent slower (approximately equal to 25 ms) decline in the slow inward current; and (c) activation of a very slow (5 to 10 s) outward current. Impedance studies in this voltage range could clearly resolve two voltage-dependent processes, which appeared to correspond to points b and c above because of their voltage dependence, pharmacology, and time constants. A correlate of point a was also probably present but difficult to resolve owing to the fast time constant of activation for the slow inward channel. At voltages negative to -50 mV a new voltage-dependent process could be resolved, which, because of its voltage dependence and time constant, appeared to represent the pacemaker channel (also termed If or IK2). In the Appendix, linear models of voltage-dependent channels and ion accumulation/depletion are derived and these are compared with our data. Most of the above-mentioned processes could be attributed to voltage-dependent channels with kinetics similar to those observed in time domain, voltage-clamp studies. However, the frequency domain correlate of the decline of the slow inward current was incompatible with channel gating, rather, it appears accumulation/depletion of calcium may dominate the decline in this preparation.  相似文献   

20.
The whole-cell patch electrode voltage clamp technique was used to study the inactivation properties of the delayed rectifying potassium current of single cultured embryonic chick hepatocytes at 20 degrees C. The potassium current activates maximally within 250-500 ms of membrane depolarization, after which it decays with a monoexponential time course. Both steady-state activation and inactivation are voltage dependent. Steady-state inactivation declines from 100% at -5 mV to 0 near -70 mV. with half inactivation at -41 mV. At the resting potential (EM) of these cells (-21.5 +/- 6.0 mV, n = 36) 6-18% of the IK channels are not inactivated and less than 5% are open. Development and removal of inactivation follow single exponential time courses. The inactivation time constant attains a maximum of around 30 s at -35 mV and is sharply voltage dependent at the EM of these cells. Measurement of EM under current clamp shows random oscillations of 5-10 mV amplitude. We suggest that the voltage- and time-dependent properties of IK, in tandem with a time- and voltage-independent, non-selective current also seen here, would provide the mechanism for a fluctuating EM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号