首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The zebrafish is widely used for human related disease studies. Surprisingly, there is no information about the electrical activity of single myocytes freshly isolated from adult zebrafish ventricle. In this study, we present an enzymatic method to isolate ventricular myocytes from zebrafish heart that yield a large number of calcium tolerant cells. Ventricular myocytes from zebrafish were imaged using light and confocal microscopy. Myocytes were mostly rod shaped and responded by vigorous contraction to field electrical stimulation. Whole cell configuration of the patch clamp technique was used to record electrophysiological characteristics of myocytes. Action potentials present a long duration and a plateau phase and action potential duration decreases when increasing stimulation frequency (as observed in larger mammals). Together these results indicate that zebrafish is a species ideally suited for investigation of ion channels related mutation screening of cardiac alteration important in human.  相似文献   

2.
A large scale neural network simulation with realistic cortical architecture has been undertaken to investigate the effects of external electrical stimulation on the propagation and evolution of ongoing seizure activity. This is an effort to explore the parameter space of stimulation variables to uncover promising avenues of research for this therapeutic modality. The model consists of an approximately 800 mum x 800 mum region of simulated cortex, and includes seven neuron classes organized by cortical layer, inhibitory or excitatory properties, and electrophysiological characteristics. The cell dynamics are governed by a modified version of the Hodgkin-Huxley equations in single compartment format. Axonal connections are patterned after histological data and published models of local cortical wiring. Stimulation induced action potentials take place at the axon initial segments, according to threshold requirements on the applied electric field distribution. Stimulation induced action potentials in horizontal axonal branches are also separately simulated. The calculations are performed on a 16 node distributed 32-bit processor system. Clear differences in seizure evolution are presented for stimulated versus the undisturbed rhythmic activity. Data is provided for frequency dependent stimulation effects demonstrating a plateau effect of stimulation efficacy as the applied frequency is increased from 60 to 200 Hz. Timing of the stimulation with respect to the underlying rhythmic activity demonstrates a phase dependent sensitivity. Electrode height and position effects are also presented. Using a dipole stimulation electrode arrangement, clear orientation effects of the dipole with respect to the model connectivity is also demonstrated. A sensitivity analysis of these results as a function of the stimulation threshold is also provided.  相似文献   

3.
Histo- and ultrastructure of myocytes of the lymphatic vessels has been studied in some farm animals. Architectonics, amount and interconnection of myocytes in the lymphangion wall have been investigated. Communicational and gap myo-myocytic contacts revealed give a possibility to suppose that there exists a direct connection between myocytes. This is important for conducting electrical stimulation from one cell to another. For the myocytes abundance of myofilaments, and in some--an essential accumulation of mitochondria are specific; they are morphological manifestation of contractile function of myocytes.  相似文献   

4.
In order to examine whether rat islet cells have a glucose-dependent plateau/silent phase pattern of electrical activity as seen in mouse islets, intracellular recordings were made in cultured whole rat islets. Rat islet cells responded to glucose stimulation with membrane potential alterations between a polarized silent phase and a depolarized plateau phase associated with spikes. Increasing or decreasing glucose stimulation prolonged or shortened the relative duration of plateau phase, respectively. Removal of glucose from the medium caused membrane hyperpolarization with disappearance of electrical activity while reintroduction of glucose caused membrane depolarization and biphasic onset of electrical activity. These results indicate that rat islet cells have a glucose dependent plateau/silent phase electrical mechanism nearly identical to that seen in mouse islets.  相似文献   

5.
Neurons extracted from specific areas of the Central Nervous System (CNS), such as the hippocampus, the cortex and the spinal cord, can be cultured in vitro and coupled with a micro-electrode array (MEA) for months. After a few days, neurons connect each other with functionally active synapses, forming a random network and displaying spontaneous electrophysiological activity. In spite of their simplified level of organization, they represent an useful framework to study general information processing properties and specific basic learning mechanisms in the nervous system. These experimental preparations show patterns of collective rhythmic activity characterized by burst and spike firing. The patterns of electrophysiological activity may change as a consequence of external stimulation (i.e., chemical and/or electrical inputs) and by partly modifying the "randomness" of the network architecture (i.e., confining neuronal sub-populations in clusters with micro-machined barriers). In particular we investigated how the spontaneous rhythmic and synchronous activity can be modulated or drastically changed by focal electrical stimulation, pharmacological manipulation and network segregation. Our results show that burst firing and global synchronization can be enhanced or reduced; and that the degree of synchronous activity in the network can be characterized by simple parameters such as cross-correlation on burst events.  相似文献   

6.
The success or failure of the propagation of electrical activity in cardiac tissue is dependent on both cellular membrane characteristics and intercellular coupling properties. This paper considers a linear arrangement of individual bullfrog atrial cells that are resistively coupled end to end to form a cylindrical strand. The strand, in turn, is encased by an endothelial sheath that provides a restricted extracellular space and an ion diffusion barrier to the outer bathing medium. This encased strand serves as an idealized model of an atrial trabeculum. Excitable membrane characteristics of the atrial cell are specified in terms of a Hodgkin-Huxley type of model that is quantitatively based on single-microelectrode voltage clamp data from bullfrog atrial myocytes. This membrane model can simulate the behavior of normal cells as well as of ischemic cells that exhibit depressed electrophysiological behavior (e.g., decreased resting potential, upstroke velocity, peak height, and action potential duration). Depressed activity can be easily simulated with variation of a single model parameter, the gain of the Na+/K+ pump current (INaK). Intercellular coupling properties are specified in terms of a lumped resistive T-type network between adjacent cells. The atrial strand model provides a means for studying the theoretical aspects of slow conduction in a "hybrid" strand that consists of a central region of cells having abnormal membrane or coupling properties, flanked on either side by normal atrial cells. Both uniform and discontinuous conduction are simulated by means of appropriate changes in the coupling resistance between cells. In addition, by varying either the degree of depressed electrical activity or the intercalated disc resistance in the central zone of the strand, slow conduction or complete conduction block in that region is demonstrated. Since the cellular model used in this study is based on experimental data and closely mimics both the atrial action potential and the underlying membrane currents, it has the potential to (1) accurately represent the current and voltage wave-forms occurring in the region of intercalated discs and (2) provide detailed information regarding the mechanisms in intercellular current spread in the region of slow conduction.  相似文献   

7.
Zaehle T  Rach S  Herrmann CS 《PloS one》2010,5(11):e13766
Non-invasive electrical stimulation of the human cortex by means of transcranial direct current stimulation (tDCS) has been instrumental in a number of important discoveries in the field of human cortical function and has become a well-established method for evaluating brain function in healthy human participants. Recently, transcranial alternating current stimulation (tACS) has been introduced to directly modulate the ongoing rhythmic brain activity by the application of oscillatory currents on the human scalp. Until now the efficiency of tACS in modulating rhythmic brain activity has been indicated only by inference from perceptual and behavioural consequences of electrical stimulation. No direct electrophysiological evidence of tACS has been reported. We delivered tACS over the occipital cortex of 10 healthy participants to entrain the neuronal oscillatory activity in their individual alpha frequency range and compared results with those from a separate group of participants receiving sham stimulation. The tACS but not the sham stimulation elevated the endogenous alpha power in parieto-central electrodes of the electroencephalogram. Additionally, in a network of spiking neurons, we simulated how tACS can be affected even after the end of stimulation. The results show that spike-timing-dependent plasticity (STDP) selectively modulates synapses depending on the resonance frequencies of the neural circuits that they belong to. Thus, tACS influences STDP which in turn results in aftereffects upon neural activity.The present findings are the first direct electrophysiological evidence of an interaction of tACS and ongoing oscillatory activity in the human cortex. The data demonstrate the ability of tACS to specifically modulate oscillatory brain activity and show its potential both at fostering knowledge on the functional significance of brain oscillations and for therapeutic application.  相似文献   

8.
Functional intercellular coupling has been demonstrated among networks of cardiac fibroblasts, as well as between fibroblasts and atrial or ventricular myocytes. In this study, the consequences of these interactions were examined by implementing the ten Tusscher model of the human ventricular action potential, and coupling it to our electrophysiological models for mammalian ventricular fibroblasts. Our simulations reveal significant electrophysiological consequences of coupling between 1 and 4 fibroblasts to a single ventricular myocyte. These include alterations in plateau height and/or action potential duration (APD) and changes in underlying ionic currents. Two series of simulations were carried out. First, fibroblasts were modeled as a spherical cell with a capacitance of 6.3 pF and an ohmic membrane resistance of 10.7 G Omega. When these "passive" fibroblasts were coupled to a myocyte, they caused slight prolongation of APD with no changes in the plateau, threshold for firing, or rate of initial depolarization. In contrast, when the same myocyte-fibroblast complexes were modeled after addition of the time- and voltage-gated K(+) currents that are expressed in fibroblasts, much more pronounced effects were observed: the plateau height of the action potential was reduced and the APD shortened significantly. In addition, each fibroblast exhibited significant electrotonic depolarizations in response to each myocyte action potential and the resting potential of the fibroblasts closely approximated the resting potential of the coupled ventricular myocyte.  相似文献   

9.
The membrane potential and membrane currents of single canine ventricular myocytes were studied using either single microelectrodes or suction pipettes. The myocytes displayed passive membrane properties and an action potential configuration similar to those described for multicellular dog ventricular tissue. As for other cardiac cells, in canine ventricular myocytes: (a) an inward rectifier current plays an important role in determining the resting membrane potential and repolarization rate; (b) a tetrodotoxin-sensitive Na current helps maintain the action potential plateau; and (c) the Ca current has fast kinetics and a large amplitude. Unexpected findings were the following: (a) in approximately half of the myocytes, there is a transient outward current composed of two components, one blocked by 4-aminopyridine and the other by Mn or caffeine; (b) there is clearly a time-dependent outward current (delayed rectifier current) that contributes to repolarization; and (c) the relationship of maximum upstroke velocity of phase 0 to membrane potential is more positive and steeper than that observed in cardiac tissues from Purkinje fibers.  相似文献   

10.
The dorsal hippocampus was electrically stimulated in unanaesthetized, unrestrained rats with a cobalt-gelatin rod in their cortex. The significance of the hippocampus in the elicitation of both physiological spontaneous rhythmic activity (episodic activity of 8--9/sec frequency bound, in rats, to a state of quiet wakefulness, and "sleep spindles") and pathological rhythmic activity of the self-sustained after-discharge (SSAD) type was determined from the aspect of the EEG and behavioural characteristics. 1. Single electrical pulses (0.1 msec, 1--10 V, 0.3/sec) elicited an evoked potential bilaterally in the somatosensory cortex. Elicitation of rhythmic after-activity (of the type of episodes or sleep spindles) was observed only in some cases in which an adequately strong stimulus was used. 2. Repeated series of rhythmic electrical stimuli following each other at short intervals (2--3 min) led to the formation of SSAD in about one third of the cases and at all stimulation frequencies (3-15/sec), although low frequencies (3--4/sec) were the least effective. The character of the SSAD and simultaneous behavioural phenomena differed fundamentally from those evoked by electrical stimulation of the thalamus (Chocholová et al. 1977). The development of paroxysmal after-activity was signalled by responses of a more or less distinct "recruiting" character during stimulation. On the basis of a comparison of electrographic and behavioural manifestations after electrical stimulation of the thalamus and hippocampus, the possibility of both thalamic and extrathalamic projection from the hippocampus to the cortical region is considered.  相似文献   

11.
Using fluorescent Ca2+ indicator fura-2 and whole-cell patch-clamp techniques, we examined the effect of 2-nicotinamidoethyl nitrate (nicorandil) on the intracellular free Ca2+ concentration ([Ca2+]i) and electrical properties in single guinea pig ventricular myocytes. Nicorandil (10 nM approximately 1 mM) reduced the resting level [Ca2+]i monitored as fura-2 fluorescence ratio in a concentration-dependent manner. Dibutyryl guanosine 3':5'-cyclic monophosphate (cyclic GMP), a membrane permeable cyclic GMP analogue, mimicked the nicorandil action. Neither application of caffeine (10 mM) nor deprivation of extracellular Na+ ions could prevent the nicorandil action on [Ca2+]i. In contrast, the nicorandil effect was virtually blocked by sodium orthovanadate (40 microM), a Ca2+ pumping ATPase inhibitor. During electrophysiological experiments, nicorandil shortened action potential durations (205 +/- 80 ms to 153 +/- 76 ms) by increasing a glibenclamide-sensitive outward K+ conductance. However, the drug produced little hyperpolarization (approximately 2 mV) because the resting potential of ventricular myocytes was close to the K+ equilibrium potential. The involvement of voltage-dependent Ca-channel current and Na-Ca exchanger was considered to be minimal under physiological conditions. It is thus concluded that nicorandil decreases basal [Ca2+]i via cyclic GMP-mediated activation of the plasma membrane Ca2+ pump in guinea pig ventricular myocytes.  相似文献   

12.
Summary Two intracellular microelectrodes were used to study electrotonic interaction between cultured embryonic (16- to 20-day-old) chick myocardial cells reaggregated into small spheresin vitro. Under different culture conditions, reaggregates with two types of functional membrane properties were produced: (i) highly differentiated reaggregates, and (ii) reverted reaggregates. In the highly differentiated state, the cells had high stable resting potentials and produced rapidly-rising tetrodotoxin (TTX)-sensitive action potentials in response to electric field stimulation. In the reverted state, the cells exhibited slowrising spontaneous action potentials having prominent pacemaker potentials and TTX-insensitive upstrokes. These states resemble electrophysiological properties of the highly differentiated (18 daysin ovo) and less fully differentiated (3 daysin ovo) intact embryonic chick heart, respectively. Both types of reaggregates had similar ultrastructural appearance, with many elongated cells and intercalated disc-like structures; gap-like junctions were not seen. The highly differentiated cells had input resistances of about 5 M, and exhibited only little electrotonic interaction in response to intracellular current injection either when the cells were at rest or during the action potential plateau. Intracellular stimulation produced propagating action potentials which triggered contraction of the entire reaggregate. Large hyperpolarizing current pulses applied during the action potential plateau caused premature repolarization which also propagated to the other impaled cell. In the reverted reaggregates, electrotonic interaction was weak or absent in about 52% of the impaled cell pairs, moderate in 30%, and strong in 18% (encountered only at interelectrode distances of less than 100 m). The difference in degree of electrotonic interaction may be due to the state of differentiation with respect to the membrane electrical properties.  相似文献   

13.
Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na(+) current (I(NaL)) is relevant and is currently under investigation. In this study we examined the role of I(NaL) in the electrophysiological phenotype of ventricular myocytes, and its proarrhythmic effects in the failing heart. A model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of I(NaL). A sensitivity analysis of the model was performed and simulations of the pathological electrical activity of the cell were conducted. The proposed model for the human I(NaL) and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. The sensitivity analysis of the modulation of electrophysiological parameters of myocytes from failing hearts due to ion channels remodeling, revealed a role for I(NaL) in the prolongation of action potential duration (APD), triangulation of the shape of the AP, and changes in Ca(2+) transient. A mechanistic investigation of intracellular Na(+) accumulation and APD shortening with increasing frequency of stimulation of failing myocytes revealed a role for the Na(+)/K(+) pump, the Na(+)/Ca(2+) exchanger and I(NaL). The results of the simulations also showed that in failing myocytes, the enhancement of I(NaL) increased the reverse rate-dependent APD prolongation and the probability of initiating early afterdepolarizations. The electrophysiological remodeling of failing hearts and especially the enhancement of the I(NaL) prolong APD and alter Ca(2+) transient facilitating the development of early afterdepolarizations. An enhanced I(NaL) appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of [Ca(2+)](i) homeostasis of failing myocytes.  相似文献   

14.
Platelet-activating factor (PAF), an inflammatory phospholipid, induces ventricular arrhythmia via an unknown ionic mechanism. We can now link PAF-mediated cardiac electrophysiological effects to inhibition of a two-pore domain K(+) channel [TWIK-related acid-sensitive K(+) background channel (TASK-1)]. Superfusion of carbamyl-PAF (C-PAF), a stable analog of PAF, over murine ventricular myocytes causes abnormal automaticity, plateau phase arrest of the action potential, and early afterdepolarizations in paced and quiescent cells from wild-type but not PAF receptor knockout mice. C-PAF-dependent currents are insensitive to Cs(+) and are outwardly rectifying with biophysical properties consistent with a K(+)-selective channel. The current is blocked by TASK-1 inhibitors, including protons, Ba(2+), Zn(2+), and methanandamide, a stable analog of the endogenous lipid ligand of cannabinoid receptors. In addition, when TASK-1 is expressed in CHO cells that express an endogenous PAF receptor, superfusion of C-PAF decreases the expressed current. Like C-PAF, methanandamide evoked spontaneous activity in quiescent myocytes. C-PAF- and methanandamide-sensitive currents are blocked by a specific protein kinase C (PKC) inhibitor, implying overlapping signaling pathways. In conclusion, C-PAF blocks TASK-1 or a closely related channel, the effect is PKC dependent, and the inhibition alters the electrical activity of myocytes in ways that would be arrhythmogenic in the intact heart.  相似文献   

15.
Mechanism of anode break stimulation in the heart.   总被引:3,自引:0,他引:3       下载免费PDF全文
Anodal stimulation is routinely observed in cardiac tissue, but only recently has a mechanism been proposed. The bidomain cardiac tissue model proposes that virtual cathodes induced at sites distant from the electrode initiate the depolarization. In contrast, none of the existing cardiac action potential models (Luo-Rudy phase I and II, or Oxsoft) predict anodal stimulation at the single-cell level. To determine whether anodal stimulation has a cellular basis, we measured membrane potential and membrane current in mammalian ventricular myocytes by using whole-cell patch clamp. Anode break responses can be readily elicited in single ventricular cells. The basis of this anodal stimulation in single cells is recruitment of the hyperpolarization-activated inward current I(f). The threshold of activation for I(f) is -80 mV in rat cells and -120 mV in guinea pig or canine cells. Persistent I(f) "tail" current upon release of the hyperpolarization drives the transmembrane potential toward the threshold of sodium channels, initiating an action potential. Time-dependent block of the inward rectifier, I(K1), at hyperpolarized potentials decreases membrane conductance and thereby potentiates the ability of I(f) to depolarize the cell on the break of an anodal pulse. Inclusion of I(f), as well as the block and unblock kinetics of I(K1), in the existing Luo-Rudy action potential model faithfully reproduces anode break stimulation. Thus active cellular properties suffice to explain anode break stimulation in cardiac tissue.  相似文献   

16.
Na(+)-K+ ATPase activity of the canine tracheal smooth muscle membrane is responsible for the electrogenic pumping of Na+ and K+ ions. It has been shown that this activity results in muscle relaxation. Based on the results of the current study, we suggest that prolonged electrical stimulation induces increased Na(+)-K+ ATPase activity in isolated tracheal smooth muscle. Tracheal smooth muscle pretreated with prolonged electrical stimulation developed graded mechanical activity when subsequently treated with histamine, serotonin, acetylcholine, or 80 mM K+. This increased isometric tension was interrupted by rhythmic activity, which was elicited by histamine or serotonin but not by acetylcholine or 80 mM K+ stimulation. The spontaneous phasic activity was not inhibited by atropine or propranolol but was totally inhibited by 10(-6) M ouabain. These results suggested that the relaxation phase of rhythmic contraction in response to histamine and serotonin stimulation could be the result of stimulated Na(+)-K+ ATPase activity.  相似文献   

17.
The electrical properties of Aplysia brasiliana myogenic heart were evaluated. Two distinct types of action potentials (APs) were recorded from intact hearts, an AP with a slow rising phase followed by a slow repolarizing phase and an AP with a 'fast' depolarizing phase followed by a plateau. Although these two APs differ in their rates of depolarization (2.2 x 0.3 V/s), both APs were abolished by the addition of Co2+, Mn2+ and nifedipine or by omitting Ca2+ from the external solution. These data suggest that a Ca2+ inward current is responsible for the generation of both types of APs. Two outward currents activated at -40 mV membrane potential were prominent in isolated cardiac myocytes: a fast activating, fast inactivating outward current similar to the A-type K+ current and a slow activating outward current with kinetics similar to the delayed rectifier K+ current were recorded under voltage clamp conditions. Based on the effects of 4-AP and TEA on the electrical properties of ventricular myocytes, we suggest that the fast kinetic outward current substantially attenuates the peak values of the APs and that the slow activating outward current is involved on membrane repolarization.  相似文献   

18.
Isolated stretch receptors of crayfish were investigated by intracellular recording of the electrical activity from the body of the fast or slowly adapting neuron and extracellular recording from the nerve trunk. An increase of activity of one neuron during the plateau of the prolonged action potential (PAP) of another was observed both in the fast and slowly adapting neurons regardless of whether the PAP was formed under the effect of strychnine, novocain, or as a result of the body membrane, or was evoked by orthodromic or antidromic stimulation. In the case of relative equalization of the frequency of the rhythmic activity of the slowly and fast adapting neurons there is a transition from an increase in the firing rate of the fast adapting neuron during the plateau of the PAP of the slowly adapting neuron to complete synchronization of their activity; not only the PAP of one neuron and one or several impulses of another, but also the PAP of both neurons can be synchronized. It is suggested that the relation of the activity of two neurons is due to the effect of the electrical field produced during the PAP. The role of the similarity of the functional state of neurons of an epileptogenic focus in the possible synchronizing action of the electrical field produced by them is examined.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 321–328, May–June, 1970.  相似文献   

19.
This paper analyzes a new semiphysiological ionic model, used recently to study reexitations and reentry in cardiac tissue [I.R. Cantalapiedra et al, PRE 82 011907 (2010)]. The aim of the model is to reproduce action potencial morphologies and restitution curves obtained, either from experimental data, or from more complex electrophysiological models. The model divides all ion currents into four groups according to their function, thus resulting into fast-slow and inward-outward currents. We show that this simplified model is flexible enough as to accurately capture the electrical properties of cardiac myocytes, having the advantage of being less computational demanding than detailed electrophysiological models. Under some conditions, it has been shown to be amenable to mathematical analysis. The model reproduces the action potential (AP) change with stimulation rate observed both experimentally and in realistic models of healthy human and guinea pig myocytes (TNNP and LRd models, respectively). When simulated in a cable it also gives the right dependence of the conduction velocity (CV) with stimulation rate. Besides reproducing correctly these restitution properties, it also gives a good fit for the morphology of the AP, including the notch typical of phase 1. Finally, we perform simulations in a realistic geometric model of the rabbit’s ventricles, finding a good qualitative agreement in AP propagation and the ECG. Thus, this simplified model represents an alternative to more complex models when studying instabilities in wave propagation.  相似文献   

20.
The effect of intracellular iontophoretic injection of cyclic AMP on electrical activity of neurons RPa1, RPa3, LPa2, LPa3, and LPl1 in the corresponding ganglia ofHelix pomatia was investigated. Injection of cyclic AMP into neuron LPl1 was found to cause the appearance of rhythmic activity (if the neuron was originally "silent"), an increase in the frequency of spike generation (if the neuron had rhythmic activity), and a decrease in amplitude of waves of membrane potential, in the duration of the interval between bursts, and in the number of action potentials in the burst (if the neuron demonstrated bursting activity). In the remaining "silent" neurons injection of cyclic AMP led to membrane depolarization. Injection of cyclic AMP into neurons whose membrane potential was clamped at the resting potential level evoked the development of an inward transmembrane current (cyclic AMP current), the rate of rise and duration of which increased proportionally to the size and duration of the injection. Theophylline in a concentration of 1 mM led to an increase in the amplitude and duration of the cyclic AMP current by about 50%. It is concluded that a change in the cyclic AMP concentration within the nerve cell may modify the ionic permeability of its membrane and, correspondingly, its electrical activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 517–525, September–October, 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号