首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activatable cholesterol esterase and triacylglycerol lipase of rat adrenal were 58-69% recovered in the 100 000 X g supernatant fraction. Activatable triacylglycerol lipase activity was differentiated from the activity of acid lipase and lipoprotein lipase also found in this fraction. Cholesterol esterase was activated 39.7 +/- 13.6% (S.D.) and triacylglycerol lipase 11.9 +/- 2.9% in a reaction dependent on ATP, cyclic AMP, and protein kinase. The two activities were shown by differential inhibition by an organophosphate, and by partial separation on salting out, to be largely due to separate enzymes. The two enzymes bound tightly to substrate emulsions with quantitatively similar distribution between competing emulsions, suggesting concerted binding. Coinciding gel filtration patterns reinforced, The hypothesis of a lipase complex. Cholesterol esterase comprised a major component of higher apparent Km for substrate and molecular weight 3-10(5)-6-10(5) by gel filtration and a minor component of lower apparent Km and heterogeneous molecular weight above 1 million, which was found mostly in complex and lipid.  相似文献   

2.
Lipolysis of intracellular triglycerides in the heart has been shown to be regulated by hormones. However, activation of myocardial triglyceride lipase in a cell-free system has not been directly demonstrated. In the present studies, initial attempts to demonstrate cAMP-dependent activation of triglyceride lipase using the 1,000 X g supernatant fraction (S1) of mouse heart homogenate were unsuccessful, presumably due to the masking effects of high levels of lipoprotein lipase activity even when assayed at pH 7.4 and in the absence of apolipoprotein C-II. Myocardial lipoprotein lipase in the 40,000 X g supernatant fraction was then removed by heparin-Sepharose affinity chromatography. The lipoprotein lipase-free fractions were shown to contain neutral triglyceride lipase and neutral cholesterol esterase of about equal activities. The triglyceride lipase and cholesterol esterase activities fell progressively during preincubation in the presence of 5 mM Mg2+. Additions of cAMP and ATP resulted in 40-70% activation of both triglyceride lipase and cholesterol esterase. The activation was blocked by protein kinase inhibitor and was restored by the addition of exogenous cAMP-dependent protein kinase. Since lipoprotein lipase has no activity toward cholesteryl oleate, activation of cholesterol esterase in untreated S1 was readily demonstrable. Both triglyceride lipase and cholesterol esterase activities were present in homogenates prepared from isolated rat heart myocytes. We conclude that the myocardium contains a hormone-sensitive lipase that is regulated in a fashion similar to that of the adipose tissue enzyme.  相似文献   

3.
The cholesterol esterase-catalyzed hydrolysis of the water-soluble substrate p-nitrophenyl butyrate occurs via an acylenzyme mechanism, and is competitively inhibited by boronic acid transition state analog inhibitors. Accordingly, we undertook to dimensionally map the enzyme's active site via synthesis and characterization of a series of n-alkyl boronic acid inhibitors. The most potent of these is n-hexaneboronic acid, with a Ki = 13 +/- 1 microM, since inhibitor potency declines for both longer and shorter boronic acids. No inhibition is observed for methaneboronic acid and n-octaneboronic acid inhibits poorly, with a Ki of 7 mM. These results indicate that the ability of the enzyme to form tight complexes with boron-containing transition state analog inhibitors is sensitive to alkyl chain length. The trend in inhibitor potency is discussed in terms of substrate specificity of and transition state stabilization by cholesterol esterase, and has important implications for the design of optimal reversible inhibitors of the enzyme.  相似文献   

4.
Lipid composition of plasma lipoproteins and erythrocyte ghost membranes has been studied in 16 healthy normolipidaemic subjects and in 16 patients affected by primary lipoprotein lipase deficiency, resulting in severe chylomicronaemia and in cholesterol-depleted low-density lipoproteins and high-density lipoproteins. A significant decrease in membrane cholesterol/phospholipid ratio was observed in lipoprotein lipase deficient patients compared to controls (3.27 +/- 0.33 vs. 3.95 +/- 0.50, mean +/- S.D.; P less than 0.0001). There was also an increase in the erythrocyte membrane phosphatidylcholine/sphingomyelin ratio in lipoprotein lipase deficient patients compared to controls (1.53 +/- 0.10 vs. 1.05 +/- 0.13; P less than 0.0001) due to a concurrent increase in phosphatidylcholine and decrease in sphingomyelin relative concentrations in these patients. Erythrocyte ghost membrane fluidity was determined by fluorescence anisotropy and found to be higher in membranes from lipoprotein lipase deficient patients. This increase in membrane fluidity can be attributed in part to changes in membrane cholesterol and phospholipid concentrations in response to abnormal plasma lipoprotein composition.  相似文献   

5.
We have studied the effects of triiodothyronine administration (20-40 micrograms three times daily over one week) in six healthy young men, on the activities of lipoprotein lipase and hepatic lipase and on plasma lipoprotein concentrations. Hepatic lipase activity in post-heparin plasma rose by 46 +/- 25% (p less than 0.025), whereas the activity of lipoprotein lipase did not change significantly. Plasma cholesterol concentrations decreased by about 20% (p less than 0.025), whereas there was no change in plasma triglyceride levels. The fall in plasma cholesterol could be accounted for by a reduction of HDL cholesterol (-11%, p less than 0.025) as well as LDL cholesterol (-27%, p less than 0.025). The data emphasize the role of hepatic lipase in the lipoprotein alterations associated with thyroid dysfunction.  相似文献   

6.
In order to explore the in vivo function of hepatic lipase, rats were injected with goat anti-rat hepatic lipase serum which produced a complete and specific inhibition of heparin-releasable hepatic lipase. In the fasting rats, protein, phospholipid and free cholesterol expressed as either mass or percent weight increased significantly in low-density lipoprotein (LDL) and high-density lipoprotein 2 (HDL-2) fractions. These three constituents were not affected in the VLDL and HDL-3 lipoproteins. In the fat-loaded (1 ml corn oil) rat, 6 h post inhibition of hepatic lipase triacylglycerol, phospholipid and free cholesterol concentrations in the d less than 1.006 fraction were 2.5-fold higher in the inhibited animals than in the control rats. The composition of the d less than 1.006 fraction was also affected. Expressed as percent mass, protein was lower (5.2 +/- 1.2 vs. 10.3 +/- 1.5, P less than 0.001) as was cholesteryl ester (1.7 +/- 0.7 vs. 2.6 +/- 0.4, P less than 0.01); triacylglycerol was elevated (77.2 +/- 4.0 vs. 72.6 +/- 2.4, P less than 0.025), as was free cholesterol (3.0 +/- 0.6 vs. 2.4 +/- 0.2, P less than 0.025). Overall, inhibition lowered the ratio of surface-to-core constituents suggesting a larger mean particle diameter. SDS-polyacrylamide gel electrophoresis showed the intermediate- and low-density lipoprotein from treated rats to be significantly enriched in apolipoprotein B-48. In the LDL fraction, apolipoprotein B-48 accounted for 62 +/- 14% of the total apolipoprotein B in the inhibited rats, vs. 12 +/- 2% in the control rats. The above results support the previously described in vivo function of hepatic lipase as a phospholipase. In addition, the results demonstrate a role of hepatic lipase in the catabolism of chylomicrons. Since removal of apolipoprotein B-48-containing lipoproteins is dependent upon apolipoprotein E, their appearance in the LDL fraction implies a masking of apolipoprotein E-binding determinants.  相似文献   

7.
The effects of esterastin, an acid lipase inhibitor, on the free and esterified cholesterol contents of cultured smooth muscle cells from pig aorta were examined. The post-nuclear supernatant fraction of the cell homogenate showed maximum acid cholesterol esterase activity at pH 4.5, and 50% of this activity was inhibited by 0.31 microM esterastin. During a 48 h incubation with esterastin, the esterified cholesterol content of the cells increased to about 13 times that of control cells in the presence of low density lipoprotein and to 7 times that of control cells in the presence of cholesterol oleate liquid crystals. The ratio of esterified to free cholesterol also increased to about 5 times the control value in both conditions.  相似文献   

8.
With the advent of nocturnal intragastric feeding which protects against acute metabolic complications and promotes growth, patients with glycogen storage disease type I are attracting less attention. However, several biochemical alterations persist and suggest that the long-term risk of atherosclerotic heart disease remains high. Persisting hypertriglyceridemia and hypercholesterolemia were found in seven glycogen storage disease type I subjects, six of them following 5-6 yr of nocturnal intragastric feeding. When compared to ten age-matched controls, the patients showed significantly (P less than 0.001) higher low density lipoprotein cholesterol (LDL-C) (247.7 +/- 46.8 vs. 115.3 +/- 5.0 mg/dl) and lower high density lipoprotein cholesterol (HDL-C) (26.4 +/- 3.4 vs. 55.8 +/- 2.9 mg/dl). Triglyceride (TG) enrichment with cholesteryl ester depletion characterized the lipoprotein classes. The diameters of very low density lipoproteins (VLDL) and LDL were larger, while that of HDL was smaller and consistent with the predominance of the HDL3 subclass and a lower apoA-I/apoA-II ratio. The raised levels of TG appeared attributable not only to the well-described lipogenesis, but also to impaired catabolism of fat, as evidenced by the significantly (P less than 0.001) decreased activity of both peripheral lipoprotein lipase (3.17 +/- 0.43 vs. 14.15 +/- 0.50 mumol FFA.ml-1.hr-1) and hepatic lipase (1.88 +/- 0.30 vs. 4.83 +/- 0.90). This may well explain the high concentration of intermediate density lipoprotein (IDL) and the impaired conversion of HDL3 to HDL2. Low apoC-II/apoC-III1 could be related to defective lipoprotein lipase activity. These data suggest that glycogen storage disease type I patients on nocturnal intragastric feeding remain at risk for atherosclerosis and its complications.  相似文献   

9.
The fate and mechanism of removal of apolipoproteins and lipids of human very-low-density lipoproteins were determined in the perfused rat heart. Approx. 50% of the VLDL triacylglycerol was hydrolyzed during a 2 h perfusion. Phospholipid phosphorus, apolipoproteins C-II, C-III and E were quantitatively recovered in the medium. However, there was a loss of unesterified (17 +/- 6%) and esterified (19 +/- 8%) cholesterol from the perfusion medium. Apolipoprotein B was retained by the heart, as determined by the loss of immunoassayable apolipoprotein B (30 +/- 5%) or the uptake of 125I-labelled apolipoprotein of VLDL (9 +/- 2%) from the perfusion medium. The discrepancy in the two methods for estimating apolipoprotein removal was shown to be due to the modification of apolipoprotein B-containing lipoproteins, which was such that they were no longer precipitated with antibodies to apolipoprotein B. The labelled apolipoprotein B, retained by the heart, could be partially released by perfusion of the heart with buffer containing heparin (14 +/- 2%) or trypsin (50 +/- 2%). Labelled apolipoprotein uptake by the heart was reduced by 90% when lipoprotein lipase was first released by heparin or when VLDL was treated with 1,2-cyclohexanedione to modify arginine residues of apolipoproteins. Very little extensive degradation of the apoprotein to low molecular weight material occurred during the 2 h perfusion, since 95% of the tissue label was precipitated by trichloroacetic acid. It is concluded that there is retention of apolipoprotein B, cholesteryl ester and cholesterol by the perfused heart during catabolism of VLDL. The data are consistent with the concept that the retention of apolipoprotein B requires membrane-bound lipoprotein lipase or an interaction with the cell surfaces that is modified by heparin. The overall process also involves arginine residues of apolipoproteins. At least 50% of the labelled apolipoprotein retained in the tissue is associated with lipoprotein lipase and other cell surface sites, while the remainder may be taken up by the cells.  相似文献   

10.
Short-term studies have suggested that analogs of prostaglandin E may have favorable effects on the carbohydrate and lipid metabolism in patients with type II diabetes mellitus. The present study was undertaken to investigate the long-term effects of a prostaglandin E1 analog on the regulation of glycemic control and plasma lipids. Twenty patients with type II diabetes received enisoprost, 300 mcg/day, for three months. Fasting serum glucose, glycosylated hemoglobin, insulin and C-peptide levels as well as triglyceride, total cholesterol, high density lipoprotein cholesterol and its subfractions, apolipoproteins B and AI and post-heparin lipoprotein lipase and hepatic triglyceride lipase activities were determined. During the first month, enisoprost treatment caused significant decreases in plasma glucose (baseline = 8.72 +/- 0.39 mmol/L, 4 week = 7.78 +/- 0.5 mmol/L, change = -0.94 +/- 0.28 mmol/L, p less than 0.01) and total cholesterol (baseline = 5.30 +/- 0.23 mmol/L, 4 week = 5.01 +/- 0.26 mmol/L, change = -0.28 +/- 0.06 mmol/L, p less than 0.05). The decrease in cholesterol level was due to a reduction in high density lipoprotein, specifically in high density lipoprotein2 fraction (baseline = 1.29 +/- 0.1 mmol/L, 4 week = 1.12 +/- 0.08 mmol/L, change = -0.018 +/- 0.04 mmol/L, p less than 0.05 for the former and baseline = 0.40 +/- 0.06 mmol/L, 4 week = 0.27 +/- 0.03 mmol/L, change = -0.12 +/- 0.03 mmol/L, p less than 0.05 for the latter): All of these values returned to the pretreatment levels despite continuation of enisoprost.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
(1) Parenchymal and non-parenchymal cells were isolated from rat liver. The characteristics of acid lipase activity with 4-methylumbelliferyl oleate as substrate and acid cholesteryl esterase activity with cholesteryl[1-14C]oleate as substrate were investigated. The substrates were incorporated in egg yolk lecithin vesicles and assays for total cell homogenates were developed, which were linear with the amount of protein and time. With 4-methylumbelliferyl oleate as substrate, both parenchymal and non-parechymal cells show maximal activities at acid pH and the maximal activity for non-parenchymal cells is 2.5 times higher than for parenchymal cells. It is concluded that 4-methylumbelliferyl oleate hydrolysis is catalyzed by similar enzyme(s) in both cell types. (2) With cholesteryl[1-14C]oleate as substrate both parenchymal and non-parenchymal cells show maximal activities at acid pH and the maximal activity for non-parenchymal cells is 11.4 times higher than for parenchymal cells. It is further shown that the cholesteryl ester hydrolysis in both cell types show different properties. (3) The high activity and high affinity of acid cholesteryl esterase from non-parenchymal cells for cholesterol oleate hydrolysis as compared to parenchymal cells indicate a relative specialization of non-parenchymal cells in cholesterol ester hydrolysis. It is concluded that non-parenchymal liver cells in cholesterol ester hydrolysis. It is concluded that non-parenchymal liver cells possess the enzymic equipment to hydrolyze very efficiently internalized cholesterol esters, which supports the suggestion that these cell types are an important site for lipoprotein catabolism in liver.  相似文献   

12.
Plasma lipids, lipoproteins, and lipoprotein cholesterol levels were studied in a group (n = 8) of prepubertal growth hormone-deficient patients before and after growth hormone (GH) administration. Determination of plasma lipoproteins by a sensitive agarose gel electrophoretic technique demonstrated: (a) in the patients with two prebeta bands an intensification of the fast prebeta lipoprotein fraction after growth hormone administration; and (b) in the patients with one prebeta band the appearance of a second prebeta band after growth hormone administration. The mean (+/- SD) plasma triglyceride level before GH was 86 +/- 60 mg/dl and 158 +/- 95 mg/dl after GH (P less than 0.01). Mean (+/- SD) plasma cholesterol level before GH was 196 +/- 25 mg/dl and 174 +/- 28 mg/dl after GH (P less than 0.05). High-density lipoprotein cholesterol concentrations decreased significantly (P less than 0.001) from mean (+/- SD) 55 +/- 12 mg/dl before GH to 37 +/- 10 mg/dl after GH. Very-low-density lipoprotein cholesterol concentrations increased significantly (P less than 0.05) from mean (+/- SD) 13 +/- 12 mg/dl before GH to 23 +/- 15 mg/dl after GH. Low-density lipoprotein cholesterol concentrations decreased (N.S.) from mean (+/- SD) 123 +/- 15 mg/dl before GH to 114 +/- 15 mg/dl after GH. These lipid and lipoprotein changes could be mediated through the insulin antagonism, hyperinsulinemia, and a decrease in lipoprotein lipase activity caused by growth hormone.  相似文献   

13.
Hypothyroidism is a major cause of secondary hypercholesterolemia. Amiodarone treatment alters both the levels of serum lipids and thyroid hormones. We investigated whether the amiodarone-induced changes in lipid metabolism are related to the changes in thyroid hormone levels. Eighteen patients received amiodarone (31 +/- 3 g cumulative dose) for six weeks. Serum triglyceride, total-cholesterol, high density lipoprotein-cholesterol and its subfractions, apolipoproteins B and AI, and plasma post-heparin lipoprotein lipase and hepatic triglyceride lipase activities were determined. Amiodarone treatment caused significant increases in serum total-cholesterol (baseline 4.4 +/- 0.21 (SE), 6 weeks 5.12 +/- 0.26 mmol/l, P less than 0.01), in low density lipoprotein cholesterol (baseline 2.61 +/- 0.26, 6 weeks 3.36 +/- 0.21 mmol/l, P less than 0.05) and in apolipoprotein B (baseline 1.95 +/- 0.15, 6 weeks 2.26 +/- 0.13 mmol/l, P less than 0.01) concentrations. Serum high density lipoprotein and its subfractions, or apolipoprotein AI levels did not change. Plasma post-heparin lipoprotein lipase activity increased (baseline 137 +/- 21, 6 weeks 168 +/- 21 U/ml, P less than 0.01) while hepatic triglyceride lipase did not change. Amiodarone also caused an increase in serum thyroxine (baseline 110 +/- 8, 6 weeks 136 +/- 6 mmol/l, P less than 0.05), although values remained in euthyroid range. In summary, amiodarone therapy increased the concentrations of atherogenic lipoproteins in the serum similar to that seen in hypothyroidism. On the other hand the effect of amiodarone on lipoprotein lipase was opposite to that seen in hypothyroidism. Therefore, amiodarone-induced changes in lipid metabolism cannot be explained solely on the basis of the changes in circulating thyroid hormone levels.  相似文献   

14.
An enzyme with lipase and esterase activity was purified from bovine pancreas. Furthermore, a non-radioactive lipase assay was developed which is 100 times more sensitive than the conventional methods and allowed the characterization of the lipase activity of the enzyme. The lipase activity increased 42 times in the presence of 10 mM sodium taurocholate, which for the first time provides direct evidence that a bile salt-activated lipase (bp-BAL) was isolated from bovine pancreas. This conclusion is further supported by the fact that the N-terminal amino acid sequence of this lipase/esterase is 88% homologous to human milk BAL and human pancreatic BAL. Staining with various lectins showed that bp-BAL is a glycoprotein which contains fucose residues. Previously from bovine pancreas a lysophospholipase has been purified and a gene was cloned and sequenced encoding an enzyme with cholesterol esterase/lysophospholipase activity. Comparison of the N-terminal amino acid sequence of bp-BAL with the deduced amino acid sequence of the latter revealed that they are identical. Furthermore, the molecular weight of the purified bp-BAL of 63,000, as estimated by SDS-PAGE, is very similar to that of the purified lysophospholipase (65,000) and to the theoretical molecular weight of 65,147 of the cholesterol esterase/lysophospholipase. These data suggest that these three enzymes are one and the same.  相似文献   

15.
Testosterone serum levels may influence the lipoprotein metabolism and possibly atherogenic risk. Our aim was to investigate the effects of long-term testosterone supplementation in hypogonadal men on multiple lipoprotein markers. 18 Hypogonadal men were studied before and after 3, 6, and 18 (n = 7) months of treatment with testosterone enanthate. During treatment, serum testosterone and estradiol increased, reaching normal levels (p < 0.0001 and 0.003, respectively). This was associated with a decrease in HDL cholesterol (from 1.40 +/- 0.10 mmol/l to 1.22 +/- 0.08 mmol/l, p < 0.001) after six months at the expense of HDL2 cholesterol (p < 0.01), as well as apoprotein A1 (from 139 +/- 3.4 mg/dl to 126 +/- 3.0 mg/dl, p < 0.005). Hepatic lipase activity increased (p < 0.05) and correlated positively with testosterone (r = 0.56, p < 0.02) and negatively with HDL cholesterol (r = - 0.58, p < 0.02). Total and LDL cholesterol, triglycerides, and apoprotein B did not increase. Among the seven patients who completed 18 months of treatment, triglycerides, total cholesterol, LDL and HDL cholesterol, as well as total cholesterol/HDL cholesterol ratio values did not differ from baseline while apoprotein A1 (p < 0.03) and HDL cholesterol (p < 0.015) remained decreased and hepatic lipase unchanged. Restoration of testosterone levels in hypogonadal men in this study did not reveal unfavorable changes based on total cholesterol/HDL cholesterol and LDL cholesterol/apoprotein B ratios, which are both atherogenic risk markers. Whether the changes in light of lipoprotein metabolism will adversely influence cardiovascular risk over time remains to be determined.  相似文献   

16.
(1) In lymphoid cell lines established by Epstein-Barr virus transformation of B-lymphocytes from normal subjects there exist two lipases hydrolysing triolein (the first one with acid optimum pH and the other one with alkaline optimum pH) and one cholesterol esterase (with acidic optimum pH). The acid triolein lipase (optimum pH 3.75-4.0) and the acid cholesterol esterase are activated by taurocholate (optimal concentration between 1 and 2.5 g/l) whereas alkaline triolein-lipase is inhibited by crude taurocholate. (2) Acid lipase deficiency is demonstrated in lymphoid cell lines from a Wolman's patient, using natural substrates, triolein and cholesteryl oleate (residual activity 5 and 8%, respectively). Thus, this similar deficiency demonstrates that, in lymphoid cell lines, triolein and cholesteryl esters are hydrolysed (under the conditions used here) by a single enzyme, i.e., lysosomal acid lipase muted in Wolman's disease. (3) pH profiles of synthetic substrate hydrolysis show marked differences between methylumbelliferyl oleate and methylumbelliferyl palmitate, and are greatly dependent on the assay conditions used. In the presence of optimal concentrations of taurocholate (1-2.5 g/l), nonspecific carboxylesterases are inhibited and acid lipase is activated: in this case, methylumbelliferyl oleate can be used to demonstrate the acid lipase deficiency in Wolman's lines (15-20% of residual activity). Methylumbelliferyl palmitate hydrolysis is less dependent on assay conditions and thus can be more accurately used for the diagnosis of Wolman's disease, with lower residual activity (10-15%) than using methylumbelliferyl oleate. Thus, Epstein-Barr virus-transformed lymphoid cell lines represent an accurate model system in culture for experimental studies of Wolman's disease.  相似文献   

17.
Structural models have been generated for rat and human cholesterol esterases by molecular modeling. For rat cholesterol esterase, three separate models were generated according to the following procedure: (1) the cholesterol esterase sequence was aligned with those of three template enzymes: Torpedo californica acetylcholinesterase, Geotrichum candidum lipase and Candida rugosa lipase; (2) the X-ray structure coordinates of the three template enzymes were used to construct cholesterol esterase models by amino acid replacements of matched sequence positions and by making sequence insertions and deletions as required; (3) bad contracts in each of the cholesterol esterase models were relaxed by molecular dynamics and mechanics; (4) the three cholesterol esterase models were merged into one by arithmetic averaging of atomic coordinates; (5) Ramachandran analysis indicated that the model generated from the AChE template possessed the best set of phi/psi angles. Therefore, this model was subjected to molecular dynamics, with harmonic constraints imposed on the C(alpha) coordinates to drive them toward the coordinates of the averaged model. (6) Subsequent relaxation by molecular mechanics produced the final rat cholesterol esterase model. A model for human cholesterol esterase was produced by repeating steps 1-3 above, albeit with the rat cholesterol esterase model as the template. Hydrophobic and electrostatic analyses of the rat and human cholesterol esterase models suggest the structural origins of molecular recognition of hydrophobic substrates and interfaces, of charged interfaces, and of bile salt activators.  相似文献   

18.
The substrate specificities of the phospholipase and triglyceridase activities of purified rat liver hepatic lipase were compared using lipid monolayers so that the substrates were presented to the enzyme in a controlled physical state. The rate of hydrolysis of 14C-labeled lipid at constant surface pressure in the presence of hepatic lipase and fatty acid-free bovine serum albumin at 33 degrees C was determined by monitoring the decrease of surface radioactivity. In monolayers of sphingomyelin/cholesterol (2:1, mol/mol) containing either 1 mol% triacylglycerol, 1 mol% phosphatidylethanolamine, or 10 and 20 mol% phosphatidylcholine, hepatic lipase clearly showed a preference for unsaturated over saturated lipids. In addition, with a sphingomyelin/cholesterol (2:1) monolayer containing 1 mol% of lipid substrate, hepatic lipase showed the following preference: triolein = dioleoylphosphatidylethanolamine much greater than dioleoylphosphatidylcholine; the respective rates of hydrolysis were 15.3 +/- 1.2, 14.9 +/- 0.8, and 0.5 +/- 0.1 mumol fatty acid produced/h per mg hepatic lipase. Overall, it appears that when comparing rates of hydrolysis of molecules within a given lipid class, hydrocarbon chain interactions are important. However, when comparing different lipid classes such as phosphatidylcholines and phosphatidylethanolamines, it is apparent that the polar group has a significant influence on the rate of hydrolysis. The rate of [14C]triolein hydrolysis, when mixed at surface concentrations of up to 2 mol% in a sphingomyelin/cholesterol (2:1) monolayer, was significantly faster than when triolein was present in a 1-oleyl-2-palmitylphosphatidylcholine monolayer; the rates of hydrolysis were 47.7 +/- 5.4 and 8.9 +/- 0.8 mumol fatty acid produced/h per mg hepatic lipase, respectively. The monolayer physical state and the miscibility of the substrate in the inert matrix influence the presentation of the substrate to the enzyme, thereby affecting the hydrolysis rate.  相似文献   

19.
The characteristics of acid esterase from the patient with Wolman's disease, a rare familial lipidosis, were studied. Enzymatic analysis as well as mineral analysis were performed on the patient's liver, spleen, and adrenal glands. Acid esterase was low in the patient's leucocytes and other affected tissues. Further enzymatic study with subcellular fractions of the liver in both patient and control subject revealed that acid esterase was mostly localized in the membrane of lysosomes. The lysosomal esterase was unaffected by Ca2+, Mg2+, EDTA, E600 (microsomal esterase inhibitor), and it was less inhibited by NaCl than other fractions. Studies with those inhibitors showed that acid esterase has different properties compared to other lipases, such as lipoprotein lipase, adipose tissue lipase, and hepatic microsomal lipase. Studies with inhibitors also gave a negative view on a possible suppressive interaction of the high content of calcium in the target organs with acid esterase in Wolman's disease.  相似文献   

20.
Inhibitors of 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase have been approved for treatment of hypercholesterolemia in humans. This class of therapeutic agents, in addition to lowering plasma cholesterol, reduces plasma triglyceride levels. We have investigated the mechanism of triglyceride-lowering effect of lovastatin in the hypertriglyceridemic state by using a rodent model of hypertriglyceridemia and obesity, the Zucker obese (fa/fa) rat. Lovastatin treatment (4 mg/kg), as compared to placebo, caused a 338% reduction in plasma triglyceride (146 +/- 5 vs. 494 +/- 76 mg/dl), a 58% decrease in total cholesterol (99 +/- 13 vs. 156 +/- 18 mg/dl), and a 67% reduction in high density lipoprotein (HDL)-cholesterol (69 +/- 8 vs. 115 +/- 15 mg/dl). The fall seen in plasma triglyceride was due to a decrease in hepatic secretion of very low density lipoproteins (VLDL), determined after blocking the clearance of triglyceride-rich lipoproteins with Triton WR-1339. Lovastatin treatment did not affect either the activities of hepatic lipogenic enzymes, glucose-6-phosphate dehydrogenase, or malic enzyme, or the activities of the lipolytic enzymes of adipose tissue, lipoprotein lipase, or liver, hepatic triglyceride lipase. Supplementation of mevalonolactone in the diet partially reversed the changes in plasma triglyceride (265 +/- 37 vs. 146 +/- 5 mg/dl), but not in total or HDL-cholesterol. These data demonstrate that, in the hypertriglyceridemic Zucker rat model, HMG-CoA reductase inhibitors reduce the rate of secretion of VLDL and this effect can be partially reversed by administration of mevalonolactone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号