首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vitamin A was used as adjuvant, comparatively with Al(OH)3, in pertussis, tetanus and diphtheria vaccines. Both groups induced a primary immune response in mice, and one single booster dose elevated the antibodies titers in average 554 times to vitamin A groups and 104 times to Al(OH)3. These antibodies titers correlate with sera IL-4 in immunized animals, suggesting a Th2 response. Other cytokines detected in the sera and/or lymphocytes culture supernatants (IL-2 and IFN-) indicated that vitamin A could also modulate a Th1 response in DPT and acellular pertussis vaccines.  相似文献   

2.
3.
Toxicity of Al to Desulfovibrio desulfuricans   总被引:1,自引:0,他引:1       下载免费PDF全文
The toxicity of Al to Desulfovibrio desulfuricans G20 was assessed over a period of 8 weeks in a modified lactate C medium buffered at four initial pHs (5.0, 6.5, 7.2, and 8.3) and treated with five levels of added Al (0, 0.01, 0.1, 1.0, and 10 mM). At pH 5, cell population densities decreased significantly and any effect of Al was negligible compared to that of the pH. At pHs 6.5 and 7.2, the cell population densities increased by 30-fold during the first few days and then remained stable for soluble-Al concentrations of <5 × 10−5 M. In treatments having total-Al concentrations of ≥1 mM, soluble-Al concentrations exceeded 5 × 10−5 M and limited cell population growth substantially and proportionally. At pH 8.3, soluble-Al concentrations were below the 5 × 10−5 M toxicity threshold and cell population density increases of 20- to 40-fold were observed. An apparent cell population response to added Al at pH 8.3 was attributed to the presence of large, spirilloidal bacteria (accounting for as much as 80% of the cells at the 10 mM added Al level). Calculations of soluble-Al speciation for the pH 6.5 and 7.2 treatments that showed Al toxicity suggested the possible presence of the Al13O4(OH)24(H2O)127+ “tridecamer” cation and an inverse correlation of the tridecamer concentration and the cell population density. Analysis by 27Al nuclear magnetic resonance spectroscopy, however, yielded no evidence of this species in freshly prepared samples or those taken 800 days after inoculation. Exclusion of the tridecamer species from the aqueous speciation calculations at pHs 6.5 and 7.2 yielded inverse correlations of the neutral Al(OH)3 and anionic Al(OH)4 monomeric species with cell population density, suggesting that one or both of these ions bear primary responsibility for the toxicity observed.  相似文献   

4.
Two batches each of diphtheria-tetanus-acellular pertussis vaccine (DTaP) and that combined with inactivated polio vaccine purchased from foreign markets were tested by mouse body weight decreasing (BWD) toxicity test and Limulus amaebocyte lysate (LAL) test. Three out of the four imported vaccine batches showed the levels of BWD toxicity even comparable to that of DT-whole cell pertussis vaccine. BWD toxicity test is based on endotoxin dose-dependent weight loss of mice and has been used for controlling endotoxin in DTaP. Although of the strong BWD toxicity of the imported vaccines, there was no marked difference in LAL test results between the imported vaccines and Japanese DTaP. However, one imported DTaP batch showed very strong interference with LAL activity of spiked lipopolysaccharide (LPS). The batch interfered not only with LAL activity but also with pyrogenicity and prostaglandin E2 induction activity. However, the pyrogenicity of the spiked LPS could be recovered from the precipitated fraction of the batch by treating with phosphate buffer to suggest the possibility of recovering in vivo toxicity. As an adequate in vitro test method could not be identified for controlling the safety of the interfering batch, an appropriate in vivo test would be required for testing such vaccines.  相似文献   

5.
Children were immunized with plain pertussis vaccine made by three manufacturers in 1967. After a primary course of three injections at monthly intervals, starting at 3-4 months of age, the agglutinin response was poor. Even after a “booster” dose, given five months later, not all of the vaccines had stimulated a response to all three pertussis agglutinogens. A further investigation with current vaccines of different kinds administered according to more than one schedule is recommended.  相似文献   

6.
OBJECTIVE: To estimate the contribution of whole-cell pertussis vaccine to severe local reactions after the preschool (fifth) dose of adsorbed diphtheria toxoid-pertussis vaccine-tetanus toxoid (DPT) vaccine. DESIGN: Double-blind randomized controlled trial. SETTING: Urban community. PARTICIPANTS: Volunteer sample of 200 healthy children 4 to 6 years old who were eligible for the fifth dose of DPT vaccine. INTERVENTIONS: Children received, in both arms, either diphtheria toxoid-tetanus toxoid (DT) and monovalent pertussis vaccines (group A, 99 children) or DPT and meningococcal vaccines (group B, 101 children). All were licensed products from single lots. The children were assessed 24 hours later by a trained observer. Serum samples obtained before vaccination were tested for antibodies to tetanus and diphtheria toxins and five pertussis antigens by means of enzyme-linked immunosorbent assay. MAIN OUTCOME MEASURES: Rates of severe local reactions (an area of redness or swelling or both of 50 mm or greater) 24 hours after vaccination. Relation between serum antibody levels before vaccination and rates of severe local reactions to corresponding vaccines. RESULTS: All of the subjects were followed up 24 hours after vaccination. Severe redness was present in 38% given DPT vaccine, 29% given intramuscular pertussis vaccine and 9% given DT vaccine (p < or = 0.002, three-way comparison). Severe swelling was common after vaccination with all three products. After intramuscular pertussis vaccination a relation was evident between the prevaccination levels of antibody to whole-cell pertussis bacteria and the rates of redness (p < 0.02) but not between the prevaccination subcellular antibody levels and the rates of redness. CONCLUSION: That pertussis vaccine resembled the DPT vaccine in causing severe redness suggests that it is the principal cause of such reactions after DPT vaccination. The DT vaccine was also reactogenic; thus, cumulative sensitization to one or more of its constituents may be a factor.  相似文献   

7.
The results of the weight gain test on mice have shown that acellular pertussis vaccine is less toxic than the pertussis component of adsorbed diphtheria-pertussis-tetanus (DPT) vaccine due to a lower content of endotoxin in the acellular vaccine; but the leukocytosis-promoting and histamine-sensitizing activities of JNIH-6 and adsorbed DPT vaccines are indicative of incomplete inactivation of Bordetella pertussis toxin. The content of incompletely inactivated B. pertussis toxin is practically the same in both preparations, constituting 1/100-1/200 of the calculated initial activity. For this reason, the use of the new pertussis vaccine also involves a risk of development of serious postvaccinal reactions and/or complications caused by this toxin. Search for the optimum method of inactivation of B. pertussis main toxin should be continued. As shown by the enzyme immunoassay, acellular pertussis vaccine used in the same immunizing dose as adsorbed DPT vaccine induces a more intensive immune response to hemagglutinin and B. pertussis toxin. This is due to higher residual toxicity of the corpuscular component of adsorbed DPT vaccine. Induction of antibodies to B. pertussis toxin has been shown to decrease in response to injection of acellular pertussis vaccine containing a certain residual amount of incompletely inactivated B. pertussis toxin.  相似文献   

8.
As part of influenza pandemic preparedness, policy decisions need to be made about how best to utilize vaccines once they are manufactured. Since H5N1 avian influenza virus has the potential to initiate the next human pandemic, isolates of this subtype have been used for the production and testing of prepandemic vaccines. Clinical trials of such vaccines indicate that two injections of preparations containing adjuvant will be required to induce protective immunity. However, this is a working assumption based on classical serological measures only. Examined here are the dose of viral hemagglutinin (HA) and the number of inoculations required for two different H5N1 vaccines to achieve protection in ferrets after lethal H5N1 challenge. Ferrets inoculated twice with 30 μg of A/Vietnam/1194/2004 HA vaccine with AlPO4, or with doses as low as 3.8 μg of HA with Iscomatrix (ISCOMATRIX, referred to as Iscomatrix herein, is a registered trademark of CSL Limited) adjuvant, were completely protected against death and disease after H5N1 challenge, and the protection lasted at least 15 months. Cross-clade protection was also observed with both vaccines. Significantly, complete protection against death could be achieved with only a single inoculation of H5N1 vaccine containing as little as 15 μg of HA with AlPO4 or 3.8 μg of HA with Iscomatrix adjuvant. Ferrets vaccinated with the single-injection Iscomatrix vaccines showed fewer clinical manifestations of infection than those given AlPO4 vaccines and remained highly active. Our data provide the first indication that in the event of a future influenza pandemic, effective mass vaccination may be achievable with a low-dose “single-shot” vaccine and provide not only increased survival but also significant reduction in disease severity.The emergence in 2004 and continued persistence of highly pathogenic H5N1 influenza A virus in bird populations is justifiably considered a potential pandemic threat (19). The virus has become endemic in many areas of the world and has demonstrated an ability to infect humans through transmission from poultry, thus far with limited human-to-human spread (26). Of great concern is that the case fatality rate for H5N1 infection of humans is reported to be >60%, compared to 0.1% for the 1957 and 1968 pandemics and 2 to 3% for the 1918 pandemic, which together resulted in at least 50 million deaths (14, 20). For these reasons, the development of strategies to minimize the impact if the virus mutates to acquire efficient human-to-human spread is essential.Vaccination is considered the best method to ultimately control an influenza pandemic and should be implemented as soon as the pandemic strain is identified and vaccines produced (9, 23). To maximize coverage, pandemic vaccines will need to be available rapidly and will have to include the minimal dose of antigen to achieve solid immunity. This poses several major problems. One is that the human population is predominantly immunologically naive to the emerging subtype of virus, and so very large numbers of people will need to be protected as quickly as possible, which will place a huge demand on vaccine supply. The use of an adjuvant to lower the dose of antigen required (8) may ameliorate this problem to some degree, but there are few adjuvants that are suitable for human use, particularly those in ready supply in the event of a pandemic. In addition, we have little understanding of what levels and what type of immunity will provide protection from death or severe disease due to H5N1 infection (19).Clinical trials with candidate H5N1 vaccines have been initiated with traditional virus preparations (egg-grown whole or detergent-disrupted “split” virions) and alternative vaccine strategies (recombinant protein, live-attenuated, and adjuvant-containing vaccines) (24). Using split virus alone, high amounts of antigen, containing 90 μg of hemagglutinin (HA), given twice, were required to elicit what is considered to be a protective antibody response in ca. 50% of subjects (25). Adjuvants, such as those based on aluminum salts (3) or the oil-in-water adjuvants MF59 (2, 17, 22) and ASO3 (13, 21), have provided considerable antigen dose reduction, but in all clinical trials and preclinical animal evaluation to date, two doses of vaccine have been required to achieve what is considered to be adequate anti-HA antibody levels or protection, respectively (8, 24).One aim of the present study was to determine how suitable the ferret model is for making assumptions about human responsiveness to influenza vaccination. To do this, we evaluated in ferrets the same H5N1 pandemic vaccines, formulated with or without AlPO4 adjuvant, that had been examined in phase 1 and II randomized trials in healthy adults (18). We then sought to compare whether the responses to these vaccines were protective against lethal H5N1 challenge and whether the protective effects could be achieved with less antigen by using the more potent saponin-based Iscomatrix (ISCOMATRIX, referred to as Iscomatrix herein, is a registered trademark of CSL Limited) adjuvant. The Iscomatrix adjuvant has been shown to be safe and well tolerated in humans and to induce strong and long-lived antibody and cytotoxic T-cell responses in both humans and animal studies (7). Finally, the encouraging results with these adjuvants led us to examine whether protection from severe disease and death could be achieved after only a single injection of the H5N1 vaccines.  相似文献   

9.
The test for the evaluation of the toxicity of different types of pertussis preparations as manifested by their in vitro influence on mouse thymic cells (T test) has been finally worked out. The use of the T test has made it possible to reveal the nonstandard character of the production lots of adsorbed diphtheria-pertussis-tetanus vaccines, both whole-cell vaccine and Japanese acellular vaccine. The degree of the in vitro damaging action of pertussis preparations on mouse thymic cells greatly depends on the residual content of Bordetella pertussis nontoxoidized toxin which, in contrast to B. pertussis lipopolysaccharide and filamentous hemagglutinin, produces pronounced cytotoxic action on mouse thymic cells.  相似文献   

10.
The development of the pertussis vaccine production in the National Institute of Public Health in the Netherlands since 1953, and the results with the consecutive lots of vaccine in the mouse protection test and the U.S.A. toxicity test are described. The results in the latter test are compared with the results of a locally developed guinea pig toxicity test. Special attention is given to the difficulties encountered when the U.S.A. toxicity test is used for adsorbed DPT vaccines. The potency data of all lots of DPT vaccines produced since 1958 fall within the limits of the potency test as prescribed in the U.S.A. Minimum Requirements. There are indications that the increased potency of the vaccine may have led to a lower mortality rate of pertussis.  相似文献   

11.
Although Al toxicity is believed to be a problem in acid sulfate soils cropped to rice (Oryza, sativa L.), little is known about the behavior of other trace metals such as B and Mo in these soils. The objectives of this study were to measure the availability of Al, B, and Mo in these soils, to determine what governs the availability of these metals and to investigate the relationships between metal availability and uptake by rice. Metal availability and uptake by rice were evaluated in 134 flooded acid sulfate soils in the Central Plains region of Thailand and in a growth chamber study using 50 of the same soils. Soil and plant metal analyses were conducted at the panicle differentiation stage of growth in both studies and in the soil prior to transplanting in the growth chamber study. Metal activities were determined with GEOCHEM. The mineral phases believed to be governing Al3+ activities were jurbanite under low pH conditions and amorphous Al(OH)3 at high pH. The Al chemistry is believed to be intimately linked to the redox-pH cycle, which is driven by the monsoonal climate. Mortality of rice associated with Al toxicity was observed under field and growth chamber conditions. Interference in P uptake and/or assimilation was believed to be the mechanism of Al toxicity. Activities of B(OH) 4 and B(OH) 3 0 were found to be highly correlated to pH and ionic strength, respectively, with the latter being the dominant B ion found in these soils. Activities of MoO 4 2– were positively correlated to pH and appeared to be controlled by wulfenite. Leaf Mo contents were found to be positively correlated with MoO 4 2– activity.  相似文献   

12.
Wheat (Triticum aestivum L.) seedlings were grown for 4 days in an acid soil horizon treated with 10 levels each of Ca(OH)2, CaSO4 and CaCl2. The treatments resulted in a wide range of Al levels and Al speciation in soil solution. Seedling root length in the Ca(OH)2 treatments was significantly related (p<0.01) to calculated Al3+ activity in soil solution. The Al–SO4 complex in soil solution had a negligible effect on the root growth of Hart wheat, thus confirming the previously reached conclusion concerning the nonphytotoxicity of Al–SO4. The short-term seedling root growth technique used in this investigation allowed for separation of Al effects on root elongation from those on plant nutrition and should be useful for studying Al toxicity relationships in soil.  相似文献   

13.
The evaluation of the immunogenic activity and residual toxicity of the National Standard of pertussis vaccine (OCO-3) was carried out. As shown by observations lasting for a period of 25 years, the preparation possesses stable immunogenicity and its toxicity remained unchanged, which makes it possible to use OCO-3 for the routine control of the pertussis component of commercial lots of adsorbed DPT vaccine.  相似文献   

14.
Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 107 TCID50/mL 10 days after infection when using an MOI of 10−4. The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system.  相似文献   

15.
Bovine botulism is a fatal disease that is caused by botulinum neurotoxins (BoNTs) produced by Clostridium botulinum serotypes C and D and that causes great economic losses, with nearly 100% lethality during outbreaks. It has also been considered a potential source of human food-borne illness in many countries. Vaccination has been reported to be the most effective way to control bovine botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. Neutralizing antibodies targeted against the C-terminal fragment of the BoNT heavy chain (HC) are known to confer efficient protection against lethal doses of BoNTs. In this study, a novel recombinant chimera, consisting of Escherichia coli heat-labile enterotoxin B subunit (LTB), a strong adjuvant of the humoral immune response, fused to the HC of BoNT serotypes C and D, was produced in E. coli. Mice vaccinated with the chimera containing LTB and an equivalent molar ratio of the chimera without LTB plus aluminum hydroxide (Al(OH)3) developed 2 IU/mL of antitoxins for both serotypes. Guinea pigs immunized with the recombinant chimera with LTB plus Al(OH)3 developed a protective immune response against both BoNT/C (5 IU/mL) and BoNT/D (10 IU/mL), as determined by a mouse neutralization bioassay with pooled sera. The results achieved with guinea pig sera fulfilled the requirements of commercial vaccines for prevention of botulism, as determined by the Brazilian Ministry of Agriculture, Livestock and Food, Supply. The presence of LTB was essential for the development of a strong humoral immune response, as it acted in synergism with Al(OH)3. Thus, the vaccine described in this study is a strong candidate for the control of botulism in cattle.  相似文献   

16.

Background

Despite the extensive use of efficacious vaccines, pertussis still ranks among the major causes of childhood mortality worldwide. Two types of pertussis vaccines are currently available, whole-cell, and the more recent acellular vaccines. Because of reduced reactogenicity and comparable efficacy acellular vaccines progressively replace whole-cell vaccines. However, both types require repeated administrations for optimal efficacy. We have recently developed a live attenuated vaccine candidate, named BPZE1, able to protect infant mice after a single nasal administration.

Methodology/Principal Findings

We determined the protective mechanism of BPZE1-mediated immunity by using passive transfer of T cells and antibodies from BPZE1-immunized mice to SCID mice. Clearance of Bordetella pertussis from the lungs was mediated by both BPZE1-induced antibodies and CD4+, but not by CD8+ T cells. The protective CD4+ T cells comprised IFN-γ-producing and IL-17-producing subsets, indicating that BPZE1 induces both Th1 and Th17 CD4+ T cells. In addition, and in contrast to acellular pertussis vaccines, BPZE1 also cross-protected against Bordetella parapertussis infection, but in this case only the transfer of CD4+ T cells conferred protection. Serum from BPZE1-immunized mice was not able to kill B. parapertussis and did not protect SCID mice against B. parapertussis infection.

Conclusions/Significance

The novel live attenuated pertussis vaccine BPZE1 protects in a pre-clinical mouse model against B. pertussis challenge by both BPZE1-induced antibodies and CD4+ T cell responses. It also protects against B. parapertussis infection. However, in this case protection is only T cell mediated.  相似文献   

17.
Human Papillomavirus 16 (HPV-16) has been identified as the causative agent of 50% of cervical cancers and many other HPV-associated tumors. The transforming potential/tumor maintenance capacity of this high risk HPV is mediated by two viral oncoproteins, E6 and E7, making them attractive targets for therapeutic vaccines. Of 21 E6 and E7 peptides computed to bind HLA-A*0201, 10 were confirmed through TAP-deficient T2 cell HLA stabilization assay. Those scoring positive were investigated to ascertain which were naturally processed and presented by surface HLA molecules for CTL recognition. Because IFNγ ELISpot frequencies from healthy HPV-exposed blood donors against HLA-A*0201-binding peptides were unable to identify specificities for tumor targeting, their physical presence among peptides eluted from HPV-16-transformed epithelial tumor HLA-A*0201 immunoprecipitates was analyzed by MS3 Poisson detection mass spectrometry. Only one epitope (E711–19) highly conserved among HPV-16 strains was detected. This 9-mer serves to direct cytolysis by T cell lines, whereas a related 10-mer (E711–20), previously used as a vaccine candidate, was neither detected by MS3 on HPV-transformed tumor cells nor effectively recognized by 9-mer specific CTL. These data underscore the importance of precisely defining CTL epitopes on tumor cells and offer a paradigm for T cell-based vaccine design.  相似文献   

18.

Background

Vaccines against HPV16/18 are approved for use in females and males but most countries currently have female-only programs. Cultural and geographic factors associated with HPV vaccine uptake might also influence sexual partner choice; this might impact post-vaccination outcomes. Our aims were to examine the population-level impact of adding males to HPV vaccination programs if factors influencing vaccine uptake also influence partner choice, and additionally to quantify how this changes the post-vaccination distribution of disease between subgroups, using incident infections as the outcome measure.

Methods

A dynamic model simulated vaccination of pre-adolescents in two scenarios: 1) vaccine uptake was correlated with factors which also affect sexual partner choice (“correlated”); 2) vaccine uptake was unrelated to these factors (“unrelated”). Coverage and degree of heterogeneity in uptake were informed by observed data from Australia and the USA. Population impact was examined via the effect on incident HPV16 infections. The rate ratio for post-vaccination incident HPV16 in the lowest compared to the highest coverage subgroup (RRL) was calculated to quantify between-group differences in outcomes.

Results

The population-level incremental impact of adding males was lower if vaccine uptake was “correlated”, however the difference in population-level impact was extremely small (<1%) in the Australia and USA scenarios, even under the conservative and extreme assumption that subgroups according to coverage did not mix at all sexually. At the subgroup level, “correlated” female-only vaccination resulted in RRL = 1.9 (Australia) and 1.5 (USA) in females, and RRL = 1.5 and 1.3 in males. “Correlated” both-sex vaccination increased RRL to 4.2 and 2.1 in females and 3.9 and 2.0 in males in the Australia and USA scenarios respectively.

Conclusions

The population-level incremental impact of male vaccination is unlikely to be substantially impacted by feasible levels of heterogeneity in uptake. However, these findings emphasize the continuing importance of prioritizing high coverage across all groups in HPV vaccination programs in terms of achieving equality of outcomes.  相似文献   

19.
The simultaneous administration of B.C.G. vaccine, diphtheria-tetanus toxoid aluminium hydroxide adsorbed vaccine, and oral poliovaccine was studied in 628 children aged 13-14 years between 1966 and 1969 in Newham, London. The efficacy of these vaccines was unaffected by administering them at the same time; routine simultaneous administration is considered justified when organizational difficulties prevent the attainment of high immunization rates with the vaccines given separately. No adverse reactions to B.C.G. or oral poliomyelitis vaccines took place, but 8% of children had moderately severe local reactions after diphtheria-tetanus aluminium hydroxide adsorbed vaccine, which were attributed to diphtheria toxoid.Serological studies showed the need for immunization against diphtheria, tetanus, and poliomyelitis at 13-14 years of age. Because of the adverse reactions to diphtheria toxoid, however, simultaneous administration of tetanus toxoid aluminium hydroxide adsorbed, oral poliomyelitis, and B.C.G. vaccines only is recommended at present.An “adult type” diphtheria-tetanus toxoid might overcome the problem of reactions, though in two to three years'' time most children aged 13-14 years will have received diphtheria-tetanus-pertussis vaccine in infancy and reinforcement might then be accomplished by a small intradermal dose of the currently available fluid diphtheria-tetanus vaccine.Continued serological studies of diphtheria and tetanus antitoxins and polio antibody are necessary to determine the future need for reinforcement of immunity; such studies should become an essential part of the surveillance of the community immunization programme.  相似文献   

20.

Background

The meningococcal serogroup A (MenA) polysaccharide conjugate vaccine used in Sub-Saharan Africa does not prevent disease caused by MenW or MenX strains, which also cause epidemics in the region. We investigated the vaccine-potential of native outer membrane vesicles with over-expressed factor H-binding protein (NOMV-fHbp), which targeted antigens in African meningococcal strains, and was combined with a MenA polysaccharide conjugate vaccine.

Methodology/Principal Findings

The NOMV-fHbp vaccine was prepared from a mutant African MenW strain with PorA P1.5,2, attenuated endotoxin (ΔLpxL1), deleted capsular genes, and over-expressed fHbp in variant group 1. The NOMV-fHbp was adsorbed with Al(OH)3 and used to reconstitute a lyophilized MenA conjugate vaccine, which normally is reconstituted with liquid MenC, Y and W conjugates in a meningococcal quadrivalent conjugate vaccine (MCV4-CRM, Novartis). Mice immunized with the NOMV-fHbp vaccine alone developed serum bactericidal (human complement) activity against 13 of 15 African MenA strains tested; 10 of 10 African MenX strains, 7 of 7 African MenW strains, and 6 of 6 genetically diverse MenB strains with fHbp variant group 1 (including 1 strain from The Gambia). The combination NOMV-fHbp/MenA conjugate vaccine elicited high serum bactericidal titers against the two MenA strains tested that were resistant to bactericidal antibodies elicited by the NOMV-fHbp alone; the combination elicited higher titers against the MenA and MenW strains than those elicited by a control MCV4-CRM vaccine (P<0.05); and high titers against MenX and MenB strains. For most strains, the titers elicited by a control NOMV-fHbp knock out vaccine were <1∶10 except when the strain PorA matched the vaccine (titers >1∶000).

Conclusion/Significance

The NOMV-fHbp/MenA conjugate vaccine provided similar or higher coverage against MenA and MenW strains than a quadrivalent meningococcal conjugate vaccine, and extended protection against MenX strains responsible for epidemics in Africa, and MenB strains with fHbp in variant group 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号