首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
We investigated the phase-dependent effects of light wavelength on photoperiodic clock in the migratory blackheaded bunting. Two experiments were performed, employing a skeleton paradigm (6 hours light : 6 hours darkness : 1 hour light : 11 hours darkness; 6L : 6D : 1L : 11D) at 37 ± 2 lux intensity. In the experiment 1, both 6 and 1 h light pulses were given at the same wavelength, 500 nm (green) or 650 nm (red). A group exposed to both pulses of white light served as control. In the experi-ment 2, the two light pulses were given at two different wavelengths, 6 h at 500 nm (green) and 1 h at 640 nm (red) in one group or vice-versa in the other. There was almost no photoinduction when both light pulses in experiment 1, or 1 h light pulse in experiment 2, were green. On the other hand, birds fattened and testes recrudesced when both the light pulses in experiment 1, or 1 h light pulse in experiment 2, were red. Birds receiving both pulses of white light in experiment 1 showed an intermediate response. Taken together, these results indicate that the photoperiodic clock in buntings is differentially responsive at its various circadian phases to different light wavelengths.  相似文献   

2.
We investigated the phase-dependent effects of light wavelength on photoperiodic clock in the migratory blackheaded bunting. Two experiments were performed, employing a skeleton paradigm (6 hours light : 6 hours darkness : 1 hour light : 11 hours darkness; 6L : 6D : 1L : 11D) at 37 ± 2 lux intensity. In the experiment 1, both 6 and 1 h light pulses were given at the same wavelength, 500 nm (green) or 650 nm (red). A group exposed to both pulses of white light served as control. In the experi-ment 2, the two light pulses were given at two different wavelengths, 6 h at 500 nm (green) and 1 h at 640 nm (red) in one group or vice-versa in the other. There was almost no photoinduction when both light pulses in experiment 1, or 1 h light pulse in experiment 2, were green. On the other hand, birds fattened and testes recrudesced when both the light pulses in experiment 1, or 1 h light pulse in experiment 2, were red. Birds receiving both pulses of white light in experiment 1 showed an intermediate response. Taken together, these results indicate that the photoperiodic clock in buntings is differentially responsive at its various circadian phases to different light wavelengths.  相似文献   

3.
The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), is a diurnal insect that strongly relies on visual cues to guide its walk. In the present study, we investigated the orientation behavior of non‐diapausing walking CPB in response to emissive colors produced by light emitting diodes (LEDs) in a dual choice arena adapted to a servosphere, where the only illumination available came from the photo‐stimuli. Our results demonstrate that CPB show positive phototactic behavior when stimulated with different wavelengths of light; they preferred to orient towards white (420–775 nm), ultraviolet (UV) (351 nm), blue (472 nm), green (570 nm), yellow (585 nm), orange (590 nm), and red (660 nm) over darkness when both alternatives were offered, but no orientation responses were elicited by infrared (940 nm). Both males and females preferred yellow and green over other colors, but did not show any particular preference between them, thus correlating with their preference for wavelengths reflected by vegetation. Sexual differences were noted in that male CPB preferred white over either red or UV, whereas female CPB did not show any preferences when offered these colors. Female CPB preferred UV and blue over red, whereas males showed no preferences when these colors were offered. Colorado potato beetles turned at higher angles and performed more tortuous walks in complete darkness and when infrared vs. darkness were offered compared with the rest of the colored lights. Both sexes preferred continuous over pulsed yellow light. Colorado potato beetles subjected to pulsed yellow light showed a temporal alteration of their walking performance by walking less, slower, and turning at a higher rate. The results are discussed with regard to the role of color in the CPB attraction to host plants and conspecifics as well as the role of intermittent photic stimuli in their orientation behavior. The information provided here provides a basis for the improvement of trapping devices for detection and survey of incipient or invasive CPB, and development of alternate control strategies for this important pest of potatoes and other solanaceous crops.  相似文献   

4.
The effect of radiation quality (350 – 740 nm) and darkness (D) on in vitro rooting, and chemical composition of the peach rootstock GF 677 was studied. Shoot explants were exposed for four weeks to cool white (control) (W), red (R), blue (B), green (G) or yellow (Y) radiation from fluorescent tubes. Some of the explants were kept in D during the rooting stage and others were maintained only for the first 2- or 4-d under R, B, G, Y or D, and subsequently were transferred to W. W was the most effective radiation source for adventitious root formation of GF 677 explants. Rooting was inhibited in those plants that remained in continuous D, and R reduced root growth in all treatments. The 2- or 4-d exposure to D, Y or B followed by W helped adventitious root development similarly as did W. G significantly increased Fe concentration in roots.  相似文献   

5.
Light is the most important synchronizer of melatonin rhythms in fish. This paper studies the influence of the characteristics of light on plasma melatonin rhythms in sole. The results revealed that under long-term exposure to constant light conditions (LL or DD), the total 24 h melatonin production was significantly higher than under LD, but LL and DD conditions influenced the rhythms differently. Under LL, melatonin remained at around 224 pg/ml throughout the 24 h, while under DD a significant elevation (363.6 pg/ml) was observed around the subjective evening. Exposure to 1 h light pulses at MD (mid-dark) inhibited melatonin production depending on light intensity (3.3, 5.3, 10.3, and 51.9 microW/cm(2)). The light threshold required to reduce nocturnal plasma melatonin to ML (mid-light) values was 5.3 microW/cm(2). Melatonin inhibition by light also depended on the wavelength of the light pulses: while a deep red light (lambda>600 nm) failed to reduce plasma melatonin significantly, far violet light (lambda(max)=368 nm) decreased indoleamine's concentration to ML values. These results suggest that dim light at night (e.g., moonlight) may be perceived and hence affect melatonin rhythms, encouraging synchronization to the lunar cycle. On the other hand, deep red light does not seem to inhibit nocturnal melatonin production, and so it may be used safely during sampling at night.  相似文献   

6.
Gametophytes of Laminaria saccharina cultivated from zoospores in a light-dark regime (16:8), release eggs exclusively during the dark cycles, 8–10 days after seeding of the zoospores, and mainly during the first 30 min of darkness. The inhibiting effects of light during the light cycle of 16 h per day is also apparent in gametophytes which have experienced only two dark cycles prior to day 8, when egg release begins. Egg release can be shifted to any time during the light cycle by prolonging the irradiation with white fluorescent light and by subsequent darkening for 1 h. In gametophytes cultivated in continuous white fluorescent light eggs are also released from day 8–10, so in this case no inhibiting activity of light is apparent. Egg release is inhibited by blue light and u.v., with peak wavelengths for inhibition at 372, 413, 438 and 481 nm. No inhibition occurs at wavelengths above 513 nm. The light requirement for inhibition is very low. A photon fluence rate of 1·4 μE m-2s-1, given for 45 min at 449 nm, inhibits egg release in 50% of the mature gametophytes. There is some evidence that a circadian rhythm is involved, primarily since in gametophytes which are transferred at the beginning of day 8 from 16:8 to constant conditions (darkness, continuous red or green light) the diel rhythm of egg release persists until day 11.  相似文献   

7.
Melatonin production by the pineal organ is influenced by light intensity, as has been described in most vertebrate species, in which melatonin is considered a synchronizer of circadian rhythms. In tench, strict nocturnal activity rhythms have been described, although the role of melatonin has not been clarified. In this study we investigated daily activity and melatonin rhythms under 12:12 light-dark (LD) conditions with two different light intensities (58.6 and 1091 microW/cm2), and the effect of I h broad spectrum white light pulses of different intensities (3.3, 5.3, 10.5, 1091.4 microW/cm2) applied at middarkness (MD) on nocturnal circulating melatonin. The results showed that plasma melatonin in tench under LD 12:12 and high light conditions displayed rhythmic variation, where values at MD (255.8 +/- 65.9 pg/ml) were higher than at midlight (ML) (70.7 +/- 31.9 pg/ml). Such a difference between MD and ML values was reduced in animals exposed to LD 12: 12 and low light intensity. The application of 1 h light pulses at MD lowered plasma melatonin to 111.6 +/- 3.2 pg/ml (in the 3.3-10.5 microW/cm2 range) and to 61.8 +/- 18.3 pg/ml (with the 1091.4 microW/cm2 light pulse) and totally suppressed nocturnal locomotor activity. These results show that melatonin rhythms persisted in tench exposed to low light intensity although the amplitude of the rhythm is affected. In addition, it was observed that light pulses applied at MD affected plasma melatonin content and locomotor activity. Such a low threshold suggests that the melatonin system is capable of transducing light even under dim conditions, which may be used by this nocturnal fish to synchronize to weak night light signals (e.g., moonlight cycles).  相似文献   

8.
光质与补光对水稻幼苗生长及光合速率的影响   总被引:3,自引:0,他引:3  
测定水稻成龄离体叶片在波长380~800nm下的透射率,推算其吸收光谱;在培养室内,观测水稻幼苗在蓝(475±5nm)、黄(585±5nm)、红(660±5nm)色的半导体(LED)和普通日光灯下的生长状况,每天照光12h;同时,在大棚中将刚萌发的水稻幼苗白天自然日照,每晚(18:00~24:00)人工补蓝、红、黄、白光各0、2、4、6h,定期观测其生长情况,在补光50d后测成龄叶片的光合曲线。结果发现:水稻叶片在波长400~500nm之间及680nm附近有较强吸收;在不同光质下进行培养,单波蓝光对水稻幼苗的生长最好;补光对水稻幼苗生长均有促进作用,其中补白光4h效果最明显,其次是补黄光2h;补蓝光2、4h和补白光4h提高植株的光合能力。  相似文献   

9.
There are two effects of long day length on reproductive responses in birds, one is the photoinduction of gonadal growth and maturation and the other is the induction of gonadal regression and photorefractoriness. Although it is likely that the same photoreceptors are involved in the photoinduction of gonadal growth and the onset and maintenance of photorefractoriness. and so the influence of wavelength should be similar, this has not been investigated. Therefore, we investigated the influence of light wavelength on reproductive photorefractoriness in the migratory male blackheaded bunting held under long photoperiods. In mid May, when photoperiod was approximately 14L:10D (14 hours light:10 hours darkness), eight groups of sexually mature birds were moved indoors on an artificial photoperiod of 14L:10D (L - 450 lux. D - 0 lux). Then after 3 weeks, for six groups, a 4-h light period in the morning (zt 0-4; zt 0 [zeitgeber time 0] refers to the beginning of lights-on period) or in the evening (zt 10-14) was substituted with green (428 nm), red (654 nm) or white light at 16 +/- 2 lux intensity. Of the remaining two groups, one was maintained on 14L: 10D and the other transferred to 10L:14D: these served as controls. At the end of 4 weeks, all birds were found to have undergone testicular regression, irrespective of LD cycle they were exposed to. When these gonadally regressed birds were subjected to 16L:8D for another 4 weeks, to test their responsiveness to the stimulatory effects of long day lengths, only those exposed to 10L:14D and 14L:10D with a 4-h green light period showed testicular regrowth. On the other hand, birds exposed to 14L:10D with a 4-h white or red light period remained fully regressed, similar to 14L:10D controls. Except for some individual difference, there was no difference in response between the groups that received a 4-h light period in the morning and that received it in the evening. These results suggest that the wavelengths of light influence induction of buntings from the photosensitive state into the photorefractory state. Whereas the short light wavelengths facilitated recovery from the photorefractoriness, the long light wavelengths were more effective in maintaining the photorefractoriness.  相似文献   

10.
目的研究不同波长光照对草履虫增殖的影响,克隆草履虫感光蛋白基因.方法以双小核草履虫 Paramecium aureli为研究对象,分别置于黄色光(578~592 nm)、蓝色光(446~464 nm)、红色光(620~760 nm)、白光和自然光下,每隔1 h随机抽样法显微观察并计数;RT-PCR克隆草履虫感光蛋白基因.结果不同波长光的照射下,与自然光比较,第1天黄光组草履虫增殖显著上升(P<0.01),蓝光组和红光组草履虫增殖受到不同程度的抑制(P<0.01, P<0.05),白光组无明显差异(P>0.05);第2天,蓝光组、红光组和白光组草履虫增殖仍受到抑制(P<0.01),黄光组作用不显著(P>0.05).黄光组和白光组草履虫总RNA作为模板,克隆出大小约500 bp的rhodopsin-like基因cDNA片段, 5个不同光照组均克隆出大小约195 bp的Long wave sensitive opsin-like 基因cDNA片段.结论黄色光显著地促进草履虫增殖,蓝色光和红色光抑制其增殖;黄光和白光能诱导草履虫rhodopsin-like基因表达;Long wave sensitive opsin-like 基因在草履虫有表达.  相似文献   

11.
We investigated the spectral sensitivity and response to light intensity of Aphidius gifuensis (Hymenoptera: Braconidae), a key natural enemy of the green peach aphid, Myzus persicae (Hemiptera: Aphididae). We used 15 monochromatic lights (emitting various specific wavelengths from 340 to 689 nm) and white light. Monochromatic light of different wavelengths and white light elicited photopositive behaviour from A. gifuensis. The strongest response was stimulated by blue light (492 nm), which induced a movement of 43.5 cm, a response that differed from all other groups. This was followed by green light (568 nm) and UV-light (380 nm). There was no significant response to orange light (601 nm) or red light (649, 668 and 689 nm) from A. gifuensis. The response intensity curve for A. gifuensis to monochromatic light (492 nm) decreased as light intensity increased. At 568 nm, the phototactic response showed an ‘S’ shaped curve. But at 628 nm, the phototactic response rose continuously with increasing intensity. We report here that the visual system of A. gifuensis is composed of three spectrum receptors, attuned to UV, blue and green light. While light intensity is a key factor in determining the photopositive response of A. gifuensis, the effect of intensity varies by wavelength.  相似文献   

12.
A. Lecharny  R. Jacques 《Planta》1980,149(4):384-388
The clongation of the first internode of fully greenVigna sinensis L. is inhibited by white light (W). This inhibition is fluence-rate dependent between 0 and 70 Wm–2. The kinetics of elongation rate in the light after darkness were investigated with linear displacement transducers. The internode elongation rate does not exhibit any endogenous rhythm. A rapid inhibition occurs during the first 2 or 3 h after the onset of light, and a second type of inhibition (slow reaction) increases from the beginning to the 8th hour of light. The rapid inhibition is not fluence-rate dependent between 20 and 70 Wm–2, but the slow reaction is. There is no rapid inhibition in a low fluence rate white light to high fluence rate white light transition, only the slow reaction is observed. The responses to different wavebands, i.e., blue light (B), yellow and green light (YG), and red light (R), are the same for the two inhibition reactions. Each waveband used separately does not reproduce the full effect observed in W. Results show a stimulation with B, a greater inhibition activity with YG than with R, and a synergistic action of B and R which when given together lead to an inhibition similar to that obtained in W. Plants returned from the light to darkness progressively recover a high elongation rate without any latent period. The W light regulating internode elongation rate is mainly perceived by the growing internode itself.Abbreviations B blue light - D darkness - F far-red light - HW high fluence rate white light - LW low fluence rate white light - R red light - W white light - YG yellow and green light  相似文献   

13.
Light wavelength and intensity are physical factors that can affect arthropod development and reproduction. The present study examined the development, reproduction and locomotor activity of the predatory flower bug, Orius sauteri (Poppius) (Hemiptera: Anthocoridae), under five light intensities (1000, 2000, 3000, 4000 and 5000 lux) and five wavelengths [red (678.5 nm), green (620.0 nm), yellow (581.7 nm), blue (478. 1 nm) and white (all wavelengths)] at constant temperature (25 °C) and RH (70 %). The duration of nymphal development was extended at lower light intensities, primarily due to effects on the first three instars. Under white, yellow and green light, O. sauteri completed development in 18.0 days, but blue light extended development by 3.2 days and red light extended it by 7.4 days. Although lower light intensities extended the preoviposition period and reduced fecundity, they improved egg fertility. Both red and blue light negatively affected preoviposition period, fecundity and egg fertility. Whereas adult female mean walking speed over a five min period was reduced at lower light intensities, longer wavelengths (yellow and red) increased it, ostensibly reflecting an avoidance response. The respiration quotient of adult O. sauteri females was also elevated under red light conditions. These findings are informative for optimizing O. sauteri mass-rearing procedures and maximizing its efficacy as a biological control agent in greenhouse cultures.  相似文献   

14.
The spectral sensitivity of the fish and the suitable light wavelength range for survival and growth performance of juvenile Pacific bluefin tuna (PBT) were investigated. The spectral sensitivity peak of PBT under photopic condition was observed between 449 and 503 nm, which corresponded to their natural habitat. The fish were reared in tanks irradiated continuously with 4 kinds of light emitting diodes (LEDs). The maximum wavelength of LEDs used for the rearing experiment were 460 nm (blue), 520 nm (green), 630 nm (red), and 450–680 nm (white). There was no notable difference in survival rate among fish in the four LED groups. However, the growth of juvenile PBT was lesser under red light compared to the green and white light wavelengths. These results suggest that PBT juveniles have low sensitivity to red light because the fish are rarely exposed to the red light wavelengths under natural ocean conditions. Thus, low sensitivity to red light negatively influenced the feeding behavior and growth of PBT juveniles.  相似文献   

15.
The plasma membrane-associated NADH oxidase (NOX) of spinach leaf disks is characterized by oscillations in activity with a regular period length of ca. 24 min. Within a single population of plants exposed to light at the same time, NOX activities of all plants function synchronously. Exposure of plants transferred from darkness to blue light (495 nm, 2 min, 50 micromoles m-2 s-1) resulted in a complex response pattern but with a new maximum in the rate of NOX activity 36 (24+12) min after illumination and then with maxima in the rate of NOX activity every 24 min thereafter. Transient maxima in NOX activity were observed as well after 9.3 + /- 1.4 and 20.7 +/- 2.1 min. The blue light response differed from the response to red (650 nm, 10 min, 50 micromoles m-2 s-1) or white light where activity maxima were initiated 12 min after the light exposure followed by maxima every 24 min thereafter. Green or yellow light was ineffective. The light response was independent of the time in the 24-min NOX cycle when the light was given. The net effects of blue and red light were ultimately the same with a new maximum in the rate of NOX activity at 12+24=36 min (and every 24 min thereafter), but the mechanisms appear to be distinct.  相似文献   

16.
Verticillium agaricinum (Link) Corda, grown in a yeast extract-sucrose medium, conidiated abundantly in darkness after irradiation with near ultraviolet (290–400 nm) for 15 min or blue light (400–550 nm) for 60 min. Few conidia were formed in total darkness. Exposure to 30 min of near ultraviolet light suppressed conidiation. Conidiation was also suppressed by phosphate in excess of 10−4 M irrespective of light condition. After irradiation with near ultraviolet light for more than 30 min, there was a cessation of growth and a change in colony color from yellow to reddish. The color does not appear to be due to a carotenoid because the colonies turned from red to yellow when covered with acid. At pH lower than 6.0 the pigment has an absorption maximum around 390 nm, whereas at higher pH it is around 540 nm. Thus, it appears that irradiation of V. agaricinum with near ultraviolet may cause an increase in pH, which in turn produces the change of colony color from yellow to reddish.  相似文献   

17.
The effects of light wavelength on photoperiodic clock were determined in the migratory male blackheaded bunting (Emberiza melanocephala). We constructed an action spectrum for photoperiodic induction (body fattening, gain in body mass, and gonadal recrudescence) by exposing birds for 4.5 weeks to 13 h light per day (L:D = 13:11 h) of white (control), blue (450 nm), or red (640 nm) color at irradiances ranging from 0.028 to 1.4Wm(-2). The threshold light irradiance for photoinduction was about 10-fold higher for blue, compared to red and white light. Phase-dependent effects of light wavelength on the photoperiodic clock were further examined in the next two sets of skeleton photoperiods (SKPs). In the first set of SKPs, birds were exposed for four weeks to asymmetrical light periods (L:D:L:D= 6:6:1:11 h) at 0.25+/-0.01 W m(-2); two light periods applied were of the same (450nm: blue:blue, B:B; 640nm, red:red, R:R) or different (blue:red, B:R or red:blue, R:B) wavelengths, or of white:white (W:W, controls). Photoperiodic induction occurred under R:R and B:R, but not under B:B and R:B light conditions; the W:W condition induced an intermediate response. The second set of SKPs used symmetrical light periods (L:D:L:D = 1:11:1:11 h), and measured effects also on the activity rhythm. Birds were first exposed to one of the four SKPs (R:R, B:B, R:B, or B:R) for three weeks, subsequently were released into dim constant light (LLdim; approximately 0.01 Wm(-2), the night light used in an L:D cycle) for two weeks, and then were returned to respective SKPs for another three weeks. Activity was greater in the R:R compared to B:B, and in B:R compared to R:B light condition. Zugunruhe (intense nighttime activity, indicating migratory restlessness in a caged situation) developed under the R:R and B:R, but not the B:B and R:B, light condition. Under LLdim, all birds free-ran with a period >24h, the Zugunruhe had a circadian period longer than the daytime activity, and the re-entrainment to SKPs was influenced by the position of light periods relative to circadian phase of the activity rhythm. Photoperiodic induction at the end of 8 weeks was found in the R:R and B:R, but not in B:B, light conditions; in the R:B condition only one bird had initiated testes. Taken together, these results suggest that in the blackheaded bunting, the circadian photoperiodic clock is differentially responsive to light wavelengths; this responsiveness is phase-dependent, and the development of Zugunruhe reflects a true circadian function. Wavelength-dependent response of the photoperiodic clock could be part of an adaptive strategy in evolution of the seasonality in reproduction and migration among photoperiodic species under wild conditions.  相似文献   

18.
Summary In growing as well as in resting cells of a chlorophyll-free yellow mutant of Chlorella vulgaris (211-11h/20) synthesis of carotenoids is enhanced by blue light. Permanent irradiation is necessary to maintain the effect (Fig. 2). At wavelengths around 454 nm the additional carotenoid production is half-saturated at about 1000 erg cm-2s-1 and saturated at about 4000 erg cm-2s-1 (Fig. 3). An action spectrum exhibits highest efficiency of wavelengths around 465 and 370 nm, a minimum near 400 nm and inefficacy of yellow, red and far-red light (Fig. 4). This wavelength dependence resembles those of light enhanced O2-uptake, carbohydrate consumption and gain of organically bound nitrogen by the organism.  相似文献   

19.
The retinohypothalamic tract (RHT), a monosynaptic retinal projection to the SCN, is the major path by which light entrains the circadian system to the external photoperiod. The circadian system of rodents effectively integrates or counts photons, and the magnitude of the rhythm phase response is proportional to the total energy of the photic stimulus. In the present studies, responsiveness to light and integrative capacity of the circadian system were tested in hamsters after reduction of retinal photoreceptor input by 50%. At CT 19, animals in constant darkness with or without unilateral retinal occlusion were exposed to 1 of 6 irradiances of 5-min white-light pulses ranging from 0.0011 to 70 microW/cm(2) or 5 white-light pulses of 0.6 microW/cm(2) with durations ranging from 0.25 to 150.0 min. Assessment of light-induced circadian rhythm phase response and Fos expression in the SCN by these animals revealed that a 50% reduction in input from photoreceptors stimulated directly with light caused a decrease in responsiveness to the longest duration and highest irradiance pulses presented. Despite this effect, both the magnitude of Fos induction in the SCN and phase-shift response remained directly proportional to the total energy in the photic stimuli. The results support the view that a reciprocal relationship between stimulus irradiance and duration persists despite the 50% reduction in retinal photoreceptor input. The mechanism of integration neither resides in the retina nor in the RHT.  相似文献   

20.
It was shown on rats that the effect of permanently generated electromagnetic field (a whole-body exposure) during 45 days (7h a day, the energy flux density of 10 microW/cm2) caused a decrease in number of hepatocytes with the affected chromosomes. Some part of animals exposed to higher energy loading (PD - 50 microW/cm2, 20 days, 7 h/day) showed the increase of aberrant cells level. A single exposure at 500 microW/cm2 and a ten-fold exposure at 50 microW/cm2 (10 days, 7h a day) were shown to be ineffective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号