首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One-carbon metabolism mediated by folate coenzymes plays an essential role in several major cellular processes. In the prokaryotes studied, three folate-dependent enzymes, 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) generally exist as monofunctional or bifunctional proteins, whereas in eukaryotes the three activities are present on one polypeptide. The structural organization of these enzymes in plants had not previously been examined. We have purified the 10-formyltetrahydrofolate synthetase activity from spinach leaves to homogeneity and raised antibodies to it. The protein was a dimer with a subunit molecular weight of Mr = 67,000. The Km values for the three substrates, (6R)-tetrahydrofolate, ATP, and formate were 0.94, 0.043, and 21.9 mM, respectively. The enzyme required both monovalent and divalent cations for maximum activity. The 5,10-methylenetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase activities of spinach coeluted separately from the 10-formyltetrahydrofolate synthetase activity on a Matrex Green-A column. On the same column, the activities of the yeast trifunctional C1-tetrahydrofolate synthase coeluted. In addition, antibodies raised to the purified spinach protein immunoinactivated and immunoprecipitated only the 10-formyltetrahydrofolate synthetase activity in a crude extract of spinach leaves. These results suggest that unlike the trifunctional form of C1-tetrahydrofolate synthase in the other eukaryotes examined, 10-formyltetrahydrofolate synthetase in spinach leaves is monofunctional and 5,10-methyl-enetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase appear to be bifunctional. Although structurally dissimilar to the other eukaryotic trifunctional enzymes, the 35 amino-terminal residues of spinach 10-formyltetrahydrofolate synthetase showed 35% identity with six other tetrahydrofolate synthetases.  相似文献   

2.
The combined activities of rabbit liver cytosolic serine hydroxymethyltransferase and C1-tetrahydrofolate synthase convert tetrahydrofolate and formate to 5-formyltetrahydrofolate. In this reaction C1-tetrahydrofolate synthase converts tetrahydrofolate and formate to 5,10-methenyltetrahydrofolate, which is hydrolyzed to 5-formyltetrahydrofolate by a serine hydroxymethyltransferase-glycine complex. Serine hydroxymethyltransferase, in the presence of glycine, catalyzes the conversion of chemically synthesized 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate with biphasic kinetics. There is a rapid burst of product that has a half-life of formation of 0.4 s followed by a slower phase with a completion time of about 1 h. The substrate for the burst phase of the reaction was shown not to be 5,10-methenyltetrahydrofolate but rather a one-carbon derivative of tetrahydrofolate which exists in the presence of 5,10-methenyltetrahydrofolate. This derivative is stable at pH 7 and is not an intermediate in the hydrolysis of 5,10-methenyltetrahydrofolate to 10-formyltetrahydrofolate by C1-tetrahydrofolate synthase. Cytosolic serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate pentaglutamate to 5-formyltetrahydrofolate pentaglutamate 15-fold faster than the hydrolysis of the monoglutamate derivative. The pentaglutamate derivative of 5-formyltetrahydrofolate binds tightly to serine hydroxymethyltransferase and dissociates slowly with a half-life of 16 s. Both rabbit liver mitochondrial and Escherichia coli serine hydroxymethyltransferase catalyze the conversion of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate at rates similar to those observed for the cytosolic enzyme. Evidence that this reaction accounts for the in vivo presence of 5-formyltetrahydrofolate is suggested by the observation that mutant strains of E. coli, which lack serine hydroxymethyltransferase activity, do not contain 5-formyltetrahydrofolate, but both these cells, containing an overproducing plasmid of serine hydroxymethyltransferase, and wild-type cells do have measurable amounts of this form of the coenzyme.  相似文献   

3.

Background

Folate is an essential nutrient for cell survival and embryogenesis. 10-Formyltetrahydrofolate dehydrogenase (FDH) is the most abundant folate enzyme in folate-mediated one-carbon metabolism. 10-Formyltetrahydrofolate dehydrogenase converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2, the only pathway responsible for formate oxidation in methanol intoxication. 10-Formyltetrahydrofolate dehydrogenase has been considered a potential chemotherapeutic target because it was down-regulated in cancer cells. However, the normal physiological significance of 10-Formyltetrahydrofolate dehydrogenase is not completely understood, hampering the development of therapeutic drug/regimen targeting 10-Formyltetrahydrofolate dehydrogenase.

Methods

10-Formyltetrahydrofolate dehydrogenase expression in zebrafish embryos was knocked-down using morpholino oligonucleotides. The morphological and biochemical characteristics of fdh morphants were examined using specific dye staining and whole-mount in-situ hybridization. Embryonic folate contents were determined by HPLC.

Results

The expression of 10-formyltetrahydrofolate dehydrogenase was consistent in whole embryos during early embryogenesis and became tissue-specific in later stages. Knocking-down fdh impeded morphogenetic movement and caused incorrect cardiac positioning, defective hematopoiesis, notochordmalformation and ultimate death of morphants. Obstructed F-actin polymerization and delayed epiboly were observed in fdh morphants. These abnormalities were reversed either by adding tetrahydrofolate or antioxidant or by co-injecting the mRNA encoding 10-formyltetrahydrofolate dehydrogenase N-terminal domain, supporting the anti-oxidative activity of 10-formyltetrahydrofolate dehydrogenase and the in vivo function of tetrahydrofolate conservation for 10-formyltetrahydrofolate dehydrogenase N-terminal domain.

Conclusions

10-Formyltetrahydrofolate dehydrogenase functioned in conserving the unstable tetrahydrofolate and contributing to the intracellular anti-oxidative capacity of embryos, which was crucial in promoting proper cell migration during embryogenesis.

General significance

These newly reported tetrahydrofolate conserving and anti-oxidative activities of 10-formyltetrahydrofolate dehydrogenase shall be important for unraveling 10-formyltetrahydrofolate dehydrogenase biological significance and the drug development targeting 10-formyltetrahydrofolate dehydrogenase.  相似文献   

4.
The rabbit liver enzymes 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase, and 10-formyltetrahydrofolate synthetase have been purified to apparent homogeneity. Polyacrylamide gel electrophoresis patterns suggest a single protein is responsible for all three catalytic activities. The properties of the dehydrogenase and cyclohydrolase activities suggest that a single active site may catalyze these two reactions. This conclusion is based on spectral changes observed in the conversion of 5,10-methylenetetrahydrofolate to 10-formyltetrahydrofolate, the similarity of dissociation constants determined from initial velocity studies for the two reactions, and the similarity of the pH-activity curves for the two reactions. NADP+ and NADPH lower the Km for 5,10-methenyltetrahydrofolate 2- to 3-fold above pH 7 in the cyclohydrolase reaction but below pH 7 they act as partial inhibitors.  相似文献   

5.
10-Formyltetrahydrofolate dehydrogenase (EC 1.5.1.6) catalyzes the NADP-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Previous studies of 10-formyltetrahydrofolate dehydrogenase purified from rat or pig liver homogenized in phosphate buffers indicated the presence of copurifying 10-formyltetrahydrofolate hydrolase activity, which catalyzes conversion of 10-formyltetrahydrofolate to tetrahydrofolate and formate. We find that the supernatant from rat liver homogenized in mannitol/sucrose/EDTA medium contains essentially all of the total cellular 10-formyltetrahydrofolate dehydrogenase activity, but no measurable hydrolase activity. Treating mannitol/sucrose/EDTA-washed mitochondria with Triton X-100 (0.5%) releases hydrolase activity in soluble form. 10-Formyltetrahydrofolate dehydrogenase purified from the mannitol/sucrose/EDTA supernatant has no 10-formyltetrahydrofolate hydrolase activity. Results of kinetic experiments using the hydrolase-free dehydrogenase give a complex rate equation with respect to (6R,S)-10-formyltetrahydrofolate. Double-reciprocal plots fit a 2/1 hyperbolic function with apparent Km values of 3.9 and 68 microM. Our results indicate that 10-formyltetrahydrofolate hydrolase and dehydrogenase are not alternate catalytic activities of a single protein, but represent two closely related and separately compartmentalized hepatic enzymes.  相似文献   

6.
10-Formyltetrahydrofolate dehydrogenase (FDH) is composed of three domains and possesses three catalytic activities but has only two catalytic centers. The amino-terminal domain (residue 1-310) bears 10-formyltetrahydrofolate hydrolase activity, the carboxyl-terminal domain (residue 420-902) bears an aldehyde dehydrogenase activity, and the full-length FDH produces 10-formyltetrahydrofolate dehydrogenase activity. The intermediate linker (residues 311-419) connecting the two catalytic domains does not contribute directly to the enzyme catalytic centers but is crucial for 10-formyltetrahydrofolate dehydrogenase activity. We have identified a region within the intermediate domain (residues 384-405) that shows sequence similarity to the central helix of calmodulin. Deletion of either the entire putative helix or the central part of the helix or replacement of the six residues within the central part with alanines resulted in total loss of the 10-formyltetrahydrofolate dehydrogenase activity, whereas the full hydrolase and aldehyde dehydrogenase activities were retained. Alanine-scanning mutagenesis revealed that neither of the six residues alone is required for FDH activity. Analysis of the predicted secondary structures and circular dichroic and fluorescence spectroscopy studies of the intermediate domain expressed as a separate protein showed that this region is likely to consist of two alpha-helices connected by a flexible loop. Our results suggest that flexibility within the putative helix is important for FDH function and could be a point for regulation of the enzyme.  相似文献   

7.
C1-Tetrahydrofolate synthase is a multifunctional enzyme which catalyzes three reactions in 1-carbon metabolism: 10-formyltetrahydrofolate synthetase; 5,10-methenyltetrahydrofolate cyclohydrolase; 5,10-methylenetetrahydrofolate dehydrogenase. A rapid 1-day purification procedure has been developed which gives 40 mg of pure enzyme from 10 rabbit livers. The 10-formyltetrahydrofolate synthetase activity of this trifunctional enzyme has a specific activity that is 4-fold higher than the enzyme previously purified from rabbit liver. Conditions have been developed for the rapid isolation of a tryptic fragment of the enzyme which contains the methylenetetrahydrofolate dehydrogenase and methenyltetrahydrofolate cyclohydrolase activities. This fragment is a monomer exhibiting a subunit and native molecular weight of 36,000 in most buffers. However, in phosphate buffers the native molecular weight suggests that the fragment is a dimer. Conditions are also given whereby chymotryptic digestion allows the simultaneous isolation from the native enzyme of a large fragment containing the 10-formyltetrahydrofolate synthetase activity and a smaller fragment containing the dehydrogenase and cyclohydrolase activities. The large fragment is a dimer with a subunit molecular weight of 66,000. The small fragment retains all of the dehydrogenase and cyclohydrolase activities of the native enzyme. The large fragment is unstable but retains most of the 10-formyltetrahydrofolate synthetase activity. Km values of substrates for the two fragments are the same as the values for the native enzyme. The 10-formyltetrahydrofolate synthetase activity of the native enzyme requires ammonium or potassium ions for expression of full catalytic activity. The effect of these two ions on the catalytic activity of the large chymotryptic fragment is the same as with the native enzyme. We have shown by differential scanning calorimetry that the native enzyme contains two protein domains which show thermal transitions at 47 and 60 degrees C. Evidence is presented that the two domains are related to the two protein fragments generated by proteolysis of the native enzyme. The larger of the two domains contains the active site for the 10-formyltetrahydrofolate synthetase activity while the smaller domain contains the active site which catalyzes the dehydrogenase and cyclohydrolase reactions. Replacement of sodium ion buffers with either ammonium or potassium ions results in an increase in stability of the large domain of the native enzyme. This change in stability is not accompanied by a change in the quaternary structure of the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The activities of enzymes catalysing glycollate oxidation, formate production and folate-dependent formate utilization were examined in the primary leaves of Hordeum vulgare cv Galt. Seedlings were grown for 6 days in darkness and then transferred to continuous light (500 μinsteins/m2 per sec) for up to 5 days. Cell-free extracts of the primary leaves contained glycollate oxidase (EC 1.1.3.1), 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5, 10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) and ability to enzymically decarboxylate glyoxylate. These activities increased during greening and at the end of the light treatment were 70–450% higher than etiolated controls. Greened primary leaves also incorporated [14C]formate at rates that were three- to four-fold higher than shown by etiolated leaves. The specific activity of 10-formyltetrahydrofolate synthetase was decreased by 20–35% when the leaves were greened in the presence of 10 mM hydroxysulphonate. This inhibitor also reduced the incorporation of [14C]formate by up to 45%. A potential flow of carbon from glycollate to 10-formyltetrahydrofolate via glyoxylate and formate was suggested by the data.  相似文献   

9.
10-Formyltetrahydrofolate dehydrogenase (FDH) converts 10-formyltetrahydrofolate, a precursor for nucleotide biosynthesis, to tetrahydrofolate. The protein comprises two functional domains: a hydrolase domain that removes a formyl group from 10-formyltetrahydrofolate and a NADP(+)-dependent dehydrogenase domain that reduces the formyl to carbon dioxide. As a first step toward deciphering the catalytic mechanism of the enzyme, we have determined the crystal structure of the hydrolase domain of FDH from rat, solved to 2.3-A resolution. The structure comprises two domains. As expected, domain 1 shares the same Rossmann fold as the related enzymes, methionyl-tRNA-formyltransferase and glycinamide ribonucleotide formyltransferase, but, unexpectedly, the structural similarity between the amino-terminal domain of 10-formyltetrahydrofolate dehydrogenase and methionyl-tRNA-formyltransferase extends to the C terminus of both proteins. The active site contains a molecule of beta-mercaptoethanol that is positioned between His-106 and Asp-142 and that appears to mimic the formate product. We propose a catalytic mechanism for the hydrolase reaction in which Asp-142 polarizes the catalytic water molecule and His-106 orients the carbonyl group of formyl. The structure also provides clues as to how, in the native enzyme, the hydrolase domain transfers its product to the dehydrogenase domain.  相似文献   

10.
In a recent study, we have shown that N10-formyltetrahydrofolate synthetase prefers (Sp)-MgATP beta S over the Rp isomer in the forward reaction. In this report the stereochemistry of ATP beta S produced from prochiral ADP beta S in the reverse reaction was determined. The ATP beta S product was purified and tested as a substrate for hexokinase (preference for the Rp isomer), adenylate kinase (preference for the Sp isomer) and N10-formyltetrahydrofolate synthetase. A comparison of kinetic constants for the product and the authentic Sp and Rp isomers shows that the product is the Sp diastereomer. 31P NMR was also used to identify the product as (Sp)-ATP beta S.  相似文献   

11.

Introduction

Metabolomics analysis depends on the identification and validation of specific metabolites. This task is significantly hampered by the absence of well-characterized reference standards. The one-carbon carrier 10-formyltetrahydrofolate acts as a donor of formyl groups in anabolism, where it is a substrate in formyltransferase reactions in purine biosynthesis. It has been reported as an unstable substance and is currently unavailable as a reference standard for metabolomics analysis.

Objectives

The current study was undertaken to provide the metabolomics community thoroughly characterized 10-formyltetrahydrofolate along with analytical methodology and guidelines for its storage and handling.

Methods

Anaerobic base treatment of 5,10-methenyltetrahydrofolate chloride in the presence of antioxidant was utilized to prepare 10-formyltetrahydrofolate.

Results

Pure 10-formyltetrahydrofolate has been prepared and physicochemically characterized. Conditions toward maintaining the stability of a solution of the dipotassium salt of 10-formyltetrahydrofolate have been determined.

Conclusion

This study describes the facile preparation of pure (>90%) 10-formyltetrahydrofolate, its qualitative physicochemical characterization, as well as conditions to enable its use as a reference standard in physiologic samples.
  相似文献   

12.
The interaction of the mono- and triglutamate forms of 5-methyltetrahydrofolate and 5-formyltetrahydrofolate with serine hydroxymethyltransferase were determined by several methods. These methods included: determining dissociation constants by observing the absorbance at 502 nm of a ternary complex of the enzyme, glycine, and the folate compounds; determining inhibition constants from steady-state reactions; and determining the rate of formation and breakdown of the enzyme inhibitor complex by rapid reaction kinetics. Studies of the dissociation and inhibitor constants showed that both 5-methyltetrahydrofolate and 5-formyltetrahydrofolate have essentially the same affinity for the enzyme-glycine binary complex. However, rapid reaction and steady-state kinetic studies showed that the triglutamate form of 5-formyltetrahydrofolate both binds and is released much more slowly from the enzyme-glycine binary complex, compared with the triglutamate form of 5-methyltetrahydrofolate. The results also showed that only one rotamer of 5-formyltetrahydrofolate binds at the active site of serine hydroxymethyltransferase. The results are discussed in terms of the possible role of 5-formyltetrahydrofolate polyglutamates in regulation of one-carbon metabolism.  相似文献   

13.
Baggott JE 《Biochemistry》2000,39(47):14647-14653
At pH 4.0 to 4.5, 5,10-methenyltetrahydrofolate is hydrolyzed to only 5-formyltetrahydrofolate if reducing agents are present or iron-redox cycling is suppressed. At pH 4.0, the equilibrium position for this hydrolysis is approximately equal concentrations of both folates. If no reducing agents are used or iron-redox cycling is promoted, considerable amounts of 10-formyldihydrofolate are also formed. It is likely that 10-formyldihydrofolate has been misidentified as 5,10-hydroxymethylenetetrahydrofolate, which was reported to accumulate during the hydrolysis of 5, 10-methenyltetrahydrofolate to 5-formyltetrahydrofolate [Stover, P. and Schirch, V. (1992) Biochemistry 31, 2148-2155 and 2155-2164; (1990) J. Biol. Chem. 265, 14227-14233]. Since 5, 10-hydroxymethylenetetrahydrofolate is reported to be the viable in vivo substrate for serine hydroxymethyltransferase-catalyzed formation of 5-formyltetrahydrofolate, and 5, 10-hydroxymethylenetetrahydrofolate probably does not accumulate, the above folate metabolism is now doubtful. It is hypothesized that mildly acidic subcellular organelles provide an environment for the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate in vivo, and there is no requirement for enzyme catalysis. Finally, 10-formyltetrahydrofolate is susceptible to iron-catalyzed oxidation to 10-formyldihydrofolate at pH 4 to 4.5.  相似文献   

14.
1. N10-Formyltetrahydrofolate dehydrogenase was purified to homogeneity from rat liver with a specific activity of 0.7--0.8 unit/mg at 25 degrees C. The enzyme is a tetramer (Mw = 413,000) composed of four similar, if not identical, substrate addition and give the Km values as 4.5 micron [(-)-N10-formyltetrahydrofolate] and 0.92 micron (NADP+) at pH 7.0. Tetrahydrofolate acts as a potent product inhibitor [Ki = 7 micron for the (-)-isomer] which is competitive with respect to N10-formyltetrahydrofolate and non-competitive with respect to NADP+. 3. Product inhibition by NADPH could not be demonstrated. This coenzyme activates N10-formyltetrahydrofolate dehydrogenase when added at concentrations, and in a ratio with NADP+, consistent with those present in rat liver in vivo. No effect of methionine, ethionine or their S-adenosyl derivatives could be demonstrated on the activity of the enzyme. 4. Hydrolysis of N10-formyltetrahydrofolate is catalysed by rat liver N10-formyltetrahydrofolate dehydrogenase at 21% of the rate of CO2 formation based on comparison of apparent Vmax. values. The Km for (-)-N10-folate is a non-competitive inhibitor of this reaction with respect to N10-formyltetrahydrofolate, with a mean Ki of 21.5 micron for the (-)-isomer. NAD+ increases the maximal rate of N10-formyltetrahydrofolate hydrolysis without affecting the Km for this substrate and decreases inhibition by tetrahydrofolate. The activator constant for NAD+ is obtained as 0.35 mM. 5. Formiminoglutamate, a product of liver histidine metabolism which accumulates in conditions of excess histidine load, is a potent inhibitor of rat liver pyruvate carboxylase, with 50% inhibition being observed at a concentration of 2.8 mM, but has no detectable effect on the activity of rat liver cytosol phosphoenolpyruvate carboxykinase measured in the direction of oxaloacetate synthesis. We propose that the observed inhibition of pyruvate carboxylase by formiminoglutamate may account in part for the toxic effect of excess histidine.  相似文献   

15.
1. The effects of thyroidectomy and of ;acute' and ;chronic' administration of thyroxine on the synthesis of folate coenzymes were studied by determining the liver contents of folate active derivatives and the enzymic activities involved in their biosynthesis. The effect of thyroxine on the same enzymes in vitro was also studied. 2. In thyroidectomized rats the liver contents of folate coenzymes did not change except for a slight decrease in the contents of 5-formyltetrahydrofolate and tetrahydrofolate compared with those in control rats. 3. In the same animals serine hydroxymethyltransferase and formyltetrahydrofolate synthetase activities decreased markedly. 4. The ;chronic' administration of thyroxine to thyroidectomized rats caused more evident variations in the liver contents of folate coenzymes and in particular a decrease in the contents of 5-formyltetrahydrofolate, tetrahydrofolate, 5(or 10)-formyl derivatives of tetrahydropteroylpolyglutamate and of 5(or 10)-formyl derivatives of pteroylpolyglutamate. 5. The enzymic activities did not show significant variations. 6. The ;acute' administration of thyroxine caused changes in the liver contents of some folate derivatives such as 10-formyldihydrofolate, 10-formylfolate, tetrahydrofolate and the 10-formyl derivative of dihydropteroylpolyglutamate. In these animals also the enzymic activities were unchanged. 7. No effect of thyroxine on enzymic activities in vitro was observed.  相似文献   

16.
It has been assumed that humans cannot utilize 5,6,7,8-tetrahydrofolates with the unnatural configuration at carbon 6, since these folates are enzymatically and microbiologically inactive. We hypothesized that orally administered unnatural [6R]-5-formyltetrahydrofolate or [6S]-5,10-methenyltetrahydrofolate is bioactive in humans. Subjects were given independent oral doses of these unnatural folates and of a natural [6S]-5-formyltetrahydrofolate. Plasma, before and after the dose for 4 h, and 2 h urine were collected. Areas under the curve for the change in plasma folate concentrations were measured microbiologically and urinary folates were measured using HPLC. Based on findings of plasma and urinary folates, the unnatural folates were estimated to be 14-50% active as compared to [6S]-5-formyltetrahydrofolate. The major plasma and urinary folate was [6S]-5-methyltetrahydrofolate in all experiments. In urine, a [6S]-5-formyltetrahydrofolate peak was observed only after a [6S]-5-HCO-H4folate dose and peaks of unnatural [6S]-10-formyltetrahydrofolate and 5-formyltetrahydrofolate were identified after a [6R]-5-formyltetrahydrofolate dose. A possible pathway that explains our findings is discussed. This pathway includes the oxidation of the unnatural [6S]-10-formyltetrahydrofolate to 10-formyl-7,8-dihydrofolate which can be further metabolized by 5-amino-4-imidazolecarboxamide-ribotide transformylase producing dihydrofolate. Dihydrofolate can then be metabolized to [6S]-5-methyltetrahydrofolate by well-established metabolism.  相似文献   

17.
The interaction of 5-formyltetrahydrofolate analogs with murine methenyltetrahydrofolate synthetase (MTHFS) was investigated using steady-state kinetics, molecular modeling, and site-directed mutagenesis. MTHFS catalyzes the irreversible cyclization of 5-formyltetrahydrofolate to 5,10-methenyltetrahydrofolate. Folate analogs that cannot undergo the rate-limiting step in catalysis were inhibitors of murine MTHFS. 5-Formyltetrahydrohomofolate was an effective inhibitor of murine MTHFS (K(i)=0.7 microM), whereas 5-formyl,10-methyltetrahydrofolate was a weak inhibitor (K(i)=10 microM). The former, but not the latter, was slowly phosphorylated by MTHFS. 5-Formyltetrahydrohomofolate was not a substrate for murine MTHFS, but was metabolized when the MTHFS active site Y151 was mutated to Ala. MTHFS active site residues do not directly facilitate N10 attack on the on the N5-iminium phosphate intermediate, but rather restrict N10 motion around N5. Inhibitors specifically designed to block N10 attack appear to be less effective than the natural 10-formyltetrahydrofolate polyglutamate inhibitors.  相似文献   

18.
The effects of nitrous oxide inactivation of the vitamin B12-dependent enzyme, methionine synthetase (EC 2.1.1.13), on the subcellular distribution of hepatic folate coenzymes was determined. In controls, cytosolic folates were 5-methyltetrahydrofolate (45%), 5- and 10-formyltetrahydrofolate (9 and 19%, respectively), and tetrahydrofolate (27%). Exposure of rats to an atmosphere containing 80% nitrous oxide for 18 h resulted in a marked shift in this distribution pattern to 5-methyltetrahydrofolate, 84%; 5- and 10-formyltetrahydrofolate, 2.1 and 9.1%, respectively; and tetrahydrofolate, 4.7%. Activity of the cytosolic enzyme, methionine synthetase, was reduced by about 84% as compared to that of air breathing controls. In controls, mitochondrial folates were 5-methyltetrahydrofolate (7.3%), 5- and 10-formyltetrahydrofolate (11.5 and 33.1%, respectively), and tetrahydrofolate (48.1%). This distribution did not change after exposure to nitrous oxide. These results show that the effects of nitrous oxide inactivation of vitamin B12 are confined to the cytosol, at least in the short term, and suggest that there is little, if any, transport of free folates between the cytosolic and mitochondrial compartments.  相似文献   

19.
Glycinamide ribonucleotide transformylase catalyzes the conversion of glycinamide ribonucleotide and 10-formyltetrahydrofolate to formylglycinamide ribonucleotide and tetrahydrofolate. The enzyme purified from the murine lymphoma cell line L5178Y also catalyzes two other de novo purine biosynthetic activities, glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. The transformylase reaction shows a 1:1 stoichiometry for substrate utilization and an optimum rate between pH 7.9 and 8.3. Initial velocity and dead-end inhibition patterns indicate that the kinetic mechanism of the transformylation reaction is ordered-sequential, with 10-formyltetrahydrofolate binding first. alpha, beta-Hydroxyacetamide ribonucleotide (alpha, beta-N-(hydroxyacetyl)-D-ribofuranosylamine) is shown to be an inhibitor of the transformylase, competitive against glycinamide ribonucleotide.  相似文献   

20.
C1-Tetrahydrofolate synthase is a trifunctional polypeptide found in eukaryotic organisms that catalyzes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) activities. In Saccharomyces cerevisiae, C1-tetrahydrofolate synthase is found in both the cytoplasm and the mitochondria. The gene encoding yeast mitochondrial C1-tetrahydrofolate synthase was isolated using synthetic oligonucleotide probes based on the amino-terminal sequence of the purified protein. Hybridization analysis shows that the gene (designated MIS1) has a single copy in the yeast genome. The predicted amino acid sequence of mitochondrial C1-tetrahydrofolate synthase shares 71% identity with yeast C1-tetrahydrofolate synthase and shares 39% identity with clostridial 10-formyltetrahydrofolate synthetase. Chromosomal deletions of the mitochondrial C1-tetrahydrofolate synthase gene were generated using the cloned MIS1 gene. Mutant strains which lack a functional MIS1 gene are viable and can grow in medium containing a nonfermentable carbon source. In fact, deletion of the MIS1 locus has no detectable effect on cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号