首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The pigment composition of two species of green-colored BChl c-containing green sulfur bacteria (Chlorobium limicola and C. chlorovibrioides) and two species of brown-colored BChl e-containing ones (C. phaeobacteroides and C. phaeovibrioides) incubated at different light intensities have been studied. All species responded to the reduction of light intensity from 50 to 1 Einstein(E) m–2 s–1 by an increase in the specific content of light harvesting pigments, bacteriochlorophylls and carotenoids. At critical light intensities (0.5 to 0.1 E m–2 s–1) only brown-colored chlorobia were able to grow, though at low specific rates (0.002 days–1 mg prot–1). High variations in the relative content of farnesyl-bacteriochlorophyll homologues were found, in particular BChl e 1 and BChl e 4, which were tentatively identified as [M, E] and [I, E] BChlF e, respectively. The former was almost completely lost upon reduction of light intensity from 50 to 0.1 E m–2 s–1, whereas the latter increased from 7.2 to 38.4% and from 13.6 to 42.0% in C. phaeobacteroides and C. phaeovibrioides, respectively. This increase in the content of highly alkylated pigment molecules inside the chlorosomes of brown species is interpreted as a physiological mechanism to improve the efficiency of energy transfer towards the reaction center. This study provides some clues for understanding the physiological basis of the adaptation of brown species to extremely low light intensities.Abbreviations BChl bacteriochlorophyll - [M, E] BChlF e 8-methyl, 12-ethyl BChl e, esterified with farnesol (F). Analogously: I - isobutyl - Pr propyl - Car carotenoids - Chlb chlorobactene - HPLC high performance liquid chromatography - Isr isorenieratene - LHP light harvesting pigments - PDA photodiode array detector - RC reaction center - RCH relative content of homologues  相似文献   

3.
Carbohydrate hydrolyzing α‐glucosidases are commonly found in microorganisms present in the human intestine microbiome. We have previously reported crystal structures of an α‐glucosidase from the human gut bacterium Blaubia (Ruminococcus) obeum (Ro‐αG1) and its substrate preference/specificity switch. This novel member of the GH31 family is a structural homolog of human intestinal maltase‐glucoamylase (MGAM) and sucrase–isomaltase (SI) with a highly conserved active site that is predicted to be common in Ro‐αG1 homologs among other species that colonize the human gut. In this report, we present structures of Ro‐αG1 in complex with the antidiabetic α‐glucosidase inhibitors voglibose, miglitol, and acarbose and supporting binding data. The in vitro binding of these antidiabetic drugs to Ro‐αG1 suggests the potential for unintended in vivo crossreaction of the α‐glucosidase inhibitors to bacterial α‐glucosidases that are present in gut microorganism communities. Moreover, analysis of these drug‐bound enzyme structures could benefit further antidiabetic drug development.  相似文献   

4.
5.
The Swedish mutation within the amyloid precursor protein (APP) causes early‐onset Alzheimer’s disease due to increased cleavage of APP by BACE1. While β‐secretase shedding of Swedish APP (APPswe) largely results from an activity localized in the late secretory pathway, cleavage of wild‐type APP occurs mainly in endocytic compartments. However, we show that liberation of Aβ from APPswe is still dependent on functional internalization from the cell surface. Inspite the unchanged overall β‐secretase cleaved soluble APP released from APPswe secretion, mutations of the APPswe internalization motif strongly reduced C99 levels and substantially decreased Aβ secretion. We point out that α‐secretase activity‐mediated conversion of C99 to C83 is the main cause of this Aβ reduction. Furthermore, we demonstrate that α‐secretase cleavage of C99 even contributes to the reduction of Aβ secretion of internalization deficient wild‐type APP. Therefore, inhibition of α‐secretase cleavage increased Aβ secretion through diminished conversion of C99 to C83 in APP695, APP695swe or C99 expressing cells.  相似文献   

6.
7.
Two julichrome monomers, julichromes Q11 ( 1 ) and Q12 ( 2 ), along with five known julichromes (Q10, Q3 ? 5, Q3 ? 3, Q6 ? 6, Q6, 3 – 7 ) and four known anthraquinones (chrysophanol, 4‐acetylchrysophanol, islandicin, huanglongmycin A, 8 – 11 ), were isolated from the marine gastropod mollusk Batillaria zonalis‐associated Streptomyces sampsonii SCSIO 054. This is the first report of julichromes isolated from a marine source. Extensive dissection of 1D and 2D NMR datasets combined with X‐ray crystallography enabled rigorous elucidation of the previously reported configurations of julichrome Q3 ? 5 ( 4 ) and related julichrome Q3 ? 3 ( 5 ); both of the configuration at C(9) needs to be revised. In addition, julichrome Q12 ( 2 ) was found to display antibacterial activity against Micrococcus luteus and Bacillus subtilis with MICs of 2.0 and 8.0 μg mL?1; four compounds ( 1 , 3 , 6 , 7 ) also showed inhibitory activities against an array of methicillin‐resistant Staphylococcus aureus, S. aureus and S. simulans AKA1 with MIC values ranging from 8 to 64 μg mL?1.  相似文献   

8.
It was shown that racemic (±)‐ 2 [1′‐benzyl‐3‐(3‐fluoropropyl)‐3H‐spiro[[2]benzofuran‐1,4′‐piperidine], WMS‐1813 ] represents a promising positron emission tomography (PET) tracer for the investigation of centrally located σ1 receptors. To study the pharmacological activity of the enantiomers of 2 , a preparative HPLC separation of (R)‐2 and (S)‐2 was performed. The absolute configuration of the enantiomers was determined by CD‐spectroscopy together with theoretical calculations of the CD‐spectrum of a model compound. In receptor binding studies with the radioligand [3H]‐(+)‐pentazocine, (S)‐2 was thrice more potent than its (R)‐configured enantiomer (R)‐2 . The metabolic degradation of the more potent (S)‐enantiomer was considerably slower than the metabolism of (R)‐2 . The structures of the main metabolites of both enantiomers were elucidated by determination of the exact mass using an Orbitrap‐LC‐MS system. These experiments showed a stereoselective biotransformation of the enantiomers of 2 . Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
Manganese (II) and manganese‐oxidizing bacteria were used as an efficient biological system for the degradation of the xenoestrogen 17α‐ethinylestradiol (EE2) at trace concentrations. Mn2+‐derived higher oxidation states of Mn (Mn3+, Mn4+) by Mn2+‐oxidizing bacteria mediate the oxidative cleavage of the polycyclic target compound EE2. The presence of manganese (II) was found to be essential for the degradation of EE2 by Leptothrix discophora, Pseudomonas putida MB1, P. putida MB6 and P. putida MB29. Mn2+‐dependent degradation of EE2 was found to be a slow process, which requires multi‐fold excess of Mn2+ and occurs in the late stationary phase of growth, implying a chemical process taking place. EE2‐derived degradation products were shown to no longer exhibit undesirable estrogenic activity.  相似文献   

11.
12.
Significant advances have been achieved in the fields of peptide/protein synthesis, permitting the preparation of large, complex molecules. Shortcomings, however, continue to exist in the area of peptide purification. This paper details some studies we undertook to develop a new strategy for peptide purification based on a reactivity of α‐ketoacyl groups in peptides. The α‐ketoacyl peptide was generated from Nε‐acyl‐lysyl‐peptide in the solid phase via a transamination reaction using glyoxylic acid and nickel(II) ion. Cleavage of the α‐ketoacyl group with o‐phenylenediamine gave the target peptide in an acceptable yield and purity. We first carried out a careful step‐by‐step optimization of the purification conditions using a model peptide. The strategy was then used in the purification of a transmembrane peptide that could not be effectively purified using a conventional RP‐HPLC system due to the strong hydrophobicity of the peptide and its high tendency to aggregate. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
14.
The mechanisms that lead to the onset of organoselenium intoxication are still poorly understood. Therefore, in the present study, we investigated the effect of acute administration of 3‐methyl‐1‐phenyl‐2‐(phenylseleno)oct‐2‐en‐1‐one on some parameters of oxidative stress and on the activity of creatine kinase (CK) in different brain areas and on the behaviour in the open field test of 90‐day‐old male rats. Animals (n = 10/group) were treated intraperitoneally with a single dose of the organoselenium (125, 250 or 500 µg kg?1), and after 1 h of the drug administration, they were exposed to the open field test, and behaviour parameters were recorded. Immediately after they were euthanized, cerebral cortex, hippocampus and cerebellum were dissected for measurement of thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD) and CK activity. Our results showed that the dose of 500 µg kg?1 of the organoselenium increased the locomotion and rearing behaviours in the open field test. Moreover, the organochalcogen enhanced TBARS in the cerebral cortex and cerebellum and increased the oxidation of proteins (carbonyl) only in the cerebral cortex. Sulfhydryl content was reduced in all brain areas, CAT activity enhanced in the hippocampus and reduced in the cerebellum and SOD activity increased in all brain structures. The organoselenium also inhibited CK activity in the cerebral cortex. Therefore, changes in motor behaviour, redox state and energy homeostasis in rats treated acutely with organoselenium support the hypotheses that the brain is a potential target for the organochalcogen action. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The immunologically important (1 → 6) comb‐like branched (1 → 3)‐β‐D ‐glucans scleroglucan, schizophyllan, lentinan, and others, exist mainly as linear triple‐helical structures in aqueous solution. Partial interconversion from linear to circular topology has been reported to take place following conformational transition of the triple‐helical structure and subsequent regeneration of the triplex conformation. We here report on experimental data indicating that complete strand separation of the triple‐helical structure is required for this interconversion. NaOH or dimethylsulfoxide was used to induce dissociation of the triplex at combinations of concentrations and temperatures shown by calorimetry to yield a conformational transition of the triplex structures. For the alkaline treatment at 55°C, it is found that up to about 30% of the material readily can be converted to the cyclic topology. This fraction increased to about 60% when the subsequent annealing of the scleroglucan in aqueous solution at pH 7 was carried out at 100°C. Further increase of the annealing temperature yielded a smaller relative amount of cyclic species. The data indicate that the lower molecular weight fraction of the molecular weight distributions can be converted selectively to the macrocyclic topology by conditions that do not yield complete strand separation of the whole sample. These findings add to previous reports by providing more details about how the conditions required for the linear triplex to macrocycle interconversion relate to the conformational properties of the triple‐helical structure. © 1999 John Wiley & Sons, Inc. Biopoly 50: 496–512, 1999  相似文献   

16.
17.
18.
The p53 protein is a commonly studied cancer target because of its role in tumor suppression. Unfortunately, it is susceptible to mutation‐associated loss of function; approximately 50% of cancers are associated with mutations to p53, the majority of which are located in the central DNA‐binding domain. Here, we report molecular dynamics simulations of wild‐type (WT) p53 and 20 different mutants, including a stabilized pseudo‐WT mutant. Our findings indicate that p53 mutants tend to exacerbate latent structural‐disruption tendencies, or vulnerabilities, already present in the WT protein, suggesting that it may be possible to develop cancer therapies by targeting a relatively small set of structural‐disruption motifs rather than a multitude of effects specific to each mutant. In addition, α‐sheet secondary structure formed in almost all of the proteins. α‐Sheet has been hypothesized and recently demonstrated to play a role in amyloidogenesis, and its presence in the reported p53 simulations coincides with the recent re‐consideration of cancer as an amyloid disease.  相似文献   

19.
α, ω‐Dodecanedioic acid (DC12) usually serves as a monomer of polyamides or some special nylons. During the biosynthesis, oxygenation cascaded in conversion of hydrophobic n‐dodecane to DC12, while the oxidation of n‐dodecane took place in the intracellular space. Therefore, it was important to investigate the role of oxygen supply on the cell growth and DC12 biosynthesis. It was found that stirring speed and aeration influenced the dissolved oxygen (DO) concentration which in turn affected cell growth as well as DC12 biosynthesis. However, the effect of culture redox potential (Orp) level on DC12 biosynthesis was more significant than that of DO level. For DC12 biosynthesis, the first step was to form the emulsion droplets through the interaction of n‐dodecane and the cell. When the stirring speed was enhanced, slits in the surface layer of the emulsion droplets would be increased. Thus, the substances transportation by water through the slits would be intensified, leading to an enhanced DC12 production. Compared with the batch culture at a lower stirring speed (400 rpm) without culture redox potential (Orp) control, the DC12 concentration was increased by 5 times up to 201.3 g/L with Orp controlled above 0 mV at a higher stirring speed (800 rpm).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号