首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel multiple membrane blood‐feeding system for mosquitoes has been developed for the study and routine maintenance of Aedes aegypti L. and Aedes albopictus Skuse that require a meal of vertebrate blood to produce eggs. This blood‐feeding system uses cattle collagen sausage‐casing membrane to facilitate feeding. The efficiency of this blood‐feeding system was compared to a live mice blood source. We observed that Ae. aegypti that fed on pig whole blood had 89.7% (w/o ATP) and 90.7% (w/ ATP) blood‐feeding rates, which were not significantly different from the mice‐fed ones (98.0%). Ae. albopictus fed on pig whole blood (w/ ATP) had a success rate of 84.4%, which was significantly different from the mice‐fed mosquitoes (51.1%). The feeding rates did not differ between sausage‐casing membrane and Parafilm‐M®. The survival rate, fecundity, pupation, and pupal emergence rates of Aedes females fed on pig whole blood were not significantly different from the mice‐fed ones. The artificial blood feeder can be applied to replace live animals as blood sources. Considering that this simple, inexpensive, convenient, and efficient feeding device can be built with common laboratory materials for research on Aedes mosquitoes.  相似文献   

2.
High density lipophorin (HDLp) is the major lipid transport vehicle in insect hemolymph. Using an indirect ELISA, levels of HDLp were measured in the yellow fever mosquito, Aedes aegypti. The level of lipophorin, when normalized to the total weight of the insect, was similar in the different developmental stages. Starvation (access to water only) of adult females did not affect the level of HDLp nor its density when compared to sugar-fed females. On the other hand, blood feeding (of normally sugar-fed females) resulted in a three-fold increase of the HDLp level at 40 h after feeding. This increase was accompanied by a slight but significant increase in the density of HDLp at 24 h after feeding. Ingestion of a lipid-free protein meal or a lipid-supplemented protein meal induced changes in HDLp level and density that were comparable to those induced by ingestion of a blood meal. Ingestion of a blood meal, following starvation (access to water only) from the moment of adult emergence, did not induce an increase in HDLp level. The results presented indicate that, in contrast to other insect species, A. aegypti responds to an increased need for lipid transport in the hemolymph by increasing the amount of HDLp. Arch. Insect Biochem. Physiol. 34:301–312, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Essential oils of various plants can be effective at repelling mosquitoes. The repellent properties are often ascribed to their dominant constituents. Our objective was to analyse several essential oils by coupled gas chromatographic‐electroantennographic detection (GC‐EAD) on the premise that those compounds that are detected by the antennae of the yellow fever mosquito, Aedes aegypti L. (Diptera: Culicidae), are candidate repellents even though they may be minor constituents and thus be overlooked in GC‐mass spectrometric analyses of essential oils. In the essential oils of catnip, cinnamon, citronella, cumin, eucalyptus, geranium, ginger, melissa, peppermint, rosemary, and thyme, 42 components induced antennal responses, most commonly β‐caryophyllene, linalool, 1,8‐cineole, geraniol, and geranial. Some of these 42 components are known insect repellents, indicating that GC‐EAD screening of essential oils is a viable analytical technique to detect quantitatively minor constituents, which could be potent repellents when tested at an appropriate dose.  相似文献   

4.
Mosquito‐transmitted pathogens pass through the insect's midgut (MG) and salivary gland (SG). What occurs in these organs in response to a blood meal is poorly understood, but identifying the physiological differences between sugar‐fed and blood‐fed (BF) mosquitoes could shed light on factors important in pathogens transmission. We compared differential protein expression in the MGs and SGs of female Aedes aegypti mosquitoes after a sugar‐ or blood‐based diet. No difference was observed in the MG protein expression levels but certain SG proteins were highly expressed only in BF mosquitoes. In sugar‐fed mosquitoes, housekeeping proteins were highly expressed (especially those related to energy metabolism) and actin was up‐regulated. The immunofluorescence assay shows that there is no disruption of the SG cytoskeletal after the blood meal. We have generated for the first time the 2‐DE profiles of immunogenic Ae. aegypti SG BF‐related proteins. These new data could contribute to the understanding of the physiological processes that appear during the blood meal.  相似文献   

5.
The colonization of Aedes aegypti and Anopheles dirus was performed using out‐of‐date human blood from a blood bank as a nutritional supply dispensed from a common artificial feeder. Preserved human blood was collected and used for feeding on days 5, 15, and 25 after date of expiration and dispensed from a common artificial feeder to rear the mosquitoes. Ae. aegypti had a feeding rate of 78.7, 62, and 18% at the respective intervals while An. dirus had a rate of 80, 56.8, and 7.3% on the same respective days. Direct feeding on live hamsters resulted in a rate of 96 and 90% for Ae. aegypti and An. dirus, respectively. Although egg production rates decreased from the day 5 feeding to the day 25 feeding, all of the developmental stages resulting from An. dirus fed at day 5 and 15 showed insignificant differences when compared with direct feeding on the blood of a hamster.  相似文献   

6.
Mosquitoes transmit many diseases to humans and animals e.g., malaria, yellow fever, dengue, filariasis and encephalitis. The fundamental target of this search was to study the effect of three different blood meal sources (human; rabbit and pigeon) on some biological and behavioral properties of Aedes aegypti and Culex pipiens. The results have assured that the females of the mosquito Ae. aegypti that were fed on human blood meal has registered the highest feeding activity from feeding on the blood meal whereas the females of the other mosquito Cx. pipiens have shown the highest feeding activity after being fed on pigeons when compared with its feeding on other factors. The results have shown non-significant variation in the average time necessary to digest the blood meal on both mosquito species Ae. aegypti and Cx. pipiens that were fed on vertebrate hosts under laboratory conditions. Furthermore, results assured that the difference in blood meal sources has yielded distinct variation in the reproductive capacity and efficiency of both female mosquitoes under investigation where both species Ae. aegypti and Cx. pipiens already fed on human blood meal have yielded a pronounced distinctive increase in egg production (oviposition) when compared with females that were fed on pigeon or rabbit blood meal respectively. Moreover, feeding of the female mosquitoes under lab conditions on different blood meal sources did not affect the level of the hatching eggs that were laid by both mosquito females.  相似文献   

7.
Several studies have examined how climatic variables such as temperature and precipitation may affect life history traits in mosquitoes that are important to disease transmission. Despite its importance as a seasonal cue in nature, studies investigating the influence of photoperiod on such traits are relatively few. This study aims to investigate how photoperiod alters life history traits, survival, and blood‐feeding activity in Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus). We performed three experiments that tested the effects of day length on female survival, development time, adult size, fecundity, adult life span, and propensity to blood feed in Ae. albopictus and Ae. aegypti. Each experiment had three photoperiod treatments: 1) short‐day (10L:14D), 2) control (12L:12D), and 3) long‐day (14L:10D). Aedes albopictus adult females were consistently larger in size when reared in short‐day conditions. Aedes aegypti adult females from short‐day treatments lived longer and were more likely to take a blood meal compared to other treatments. We discuss how species‐specific responses may reflect alternative strategies evolved to increase survival during unfavorable conditions. We review the potential impacts of these responses on seasonal transmission patterns, such as potentially increasing vectorial capacity of Ae. aegypti during periods of shorter day lengths.  相似文献   

8.
Artificial membrane‐feeding techniques have replaced direct feeding on animals for the maintenance of malaria and arbovirus vectors in many laboratories. Membrane feeding facilitates controlled experimentation of pathogen transmission during mosquito feeding. Sheep blood is commonly used due to its availability and low cost. We evaluated the impact of blood source (human, guinea pig, sheep, and hamster via direct feeding) on feeding rates, adult survival, fecundity, hatching rates, and developmental times for five species of laboratory‐colonized mosquitoes (Anopheles dirus, An. cracens, An. minimus, An. sawadwongporni, and Ae. aegypti). We found that feeding rates differ among blood sources within mosquito species. Survival, fecundity, and hatching rates were lower in all Anopheles species and Ae. aegypti after membrane feeding on sheep blood. Survival rates seven days post‐feeding on sheep blood were significantly lower (P<0.05) for An. dirus (84.2%), An. minimus (67.2%), An. sawadwongporni (51.5%), and An. cracens (35.5%) relative to other blood sources. An. minimus and An. sawadwongporni laid no eggs by seven days post‐feeding with sheep blood, while An. dirus and An. cracens produced significantly fewer numbers of eggs and demonstrated significantly lower hatching rates relative to what was observed with the other blood sources. These findings support the conclusion that sheep blood is not a suitable blood source for laboratory rearing of Anopheles spp.  相似文献   

9.
Aedes aegypti feeding on chickens infected with Plasmodium gallinaceum take less blood and lay fewer eggs than those feeding on uninfected hosts. Both activities show an inverse correlation with the degree of parasitemia. Mosquitoes feeding on infected chickens ingest blood in amounts directly proportional to the length of time spent on the hosts, whereas there is no relationship between host contact and blood meal size for mosquitoes feeding on uninfected hosts. Feeding and probing choice experiments demonstrate that infected chickens are less attractive to Aedes aegypti than uninfected chickens.  相似文献   

10.
The induction of the naturally occurring phenomenon of RNA interference (RNAi) to study gene function in insects is now common practice. With appropriately chosen targets, the RNAi pathway has also been exploited for insect control, typically through oral delivery of dsRNA. Adapting current methods to deliver foreign compounds, such as amino acids and pesticides, to mosquitoes through sucrose solutions, we tested whether such an approach could be used in the yellow fever mosquito, Aedes aegypti. Using a non‐specific dsRNA construct, we found that adult Ae. aegypti ingested dsRNA through this method and that the ingested dsRNA can be recovered from the mosquitoes post‐feeding. Through the feeding of a species‐specific dsRNA construct against vacuolar ATPase, subunit A, we found that significant gene knockdown could be achieved at 12, 24 and 48 h post‐feeding.  相似文献   

11.
Dengue virus (DENV) comprises of four serotypes (DENV‐1 to ‐4) and is medically one of the most important arboviruses (arthropod‐borne virus). DENV infection is a major human health burden and is transmitted between humans by the insect vector, Aedes aegypti. Ae. aegypti ingests DENV while feeding on infected humans, which traverses through its gut, haemolymph and salivary glands of the mosquito before being injected into a healthy human. During this process of transmission, DENV must interact with many proteins of the insect vector, which are important for its successful transmission. Our study focused on the identification and characterisation of interacting protein partners in Ae. aegypti to DENV. Since domain III (DIII) of envelope protein (E) is exposed on the virion surface and is involved in virus entry into various cells, we performed phage display library screening against domain III of the envelope protein (EDIII) of DENV‐2. A peptide sequence showing similarity to lachesin protein was found interacting with EDIII. The lachesin protein was cloned, heterologously expressed, purified and used for in vitro interaction studies. Lachesin protein interacted with EDIII and also with DENV. Further, lachesin protein was localised in neuronal cells of different organs of Ae. aegypti by confocal microscopy. Blocking of lachesin protein in Ae. aegypti with anti‐lachesin antibody resulted in a significant reduction in DENV replication.  相似文献   

12.
Blood feeding in Aedes aegypti is essential for reproduction, but also permits the mosquito to act as a vector for key human pathogens such as the Zika and dengue viruses. Wolbachia pipientis is an endosymbiotic bacterium that can manipulate the biology of Aedes aegypti mosquitoes, making them less competent hosts for many pathogens. Yet while Wolbachia affects other aspects of host physiology, it is unclear whether it influences physiological processes associated with blood meal digestion. To that end, we examined the effects of wMel Wolbachia infection in Ae. aegypti, on survival post-blood feeding, blood meal excretion, rate of oviposition, expression levels of key genes involved in oogenesis, and activity levels of trypsin blood digestion enzymes. We observed that wMel infection altered the rate and duration of blood meal excretion, delayed the onset of oviposition and was associated with a greater number of eggs being laid later. wMel-infected Ae. aegypti also had lower levels of key yolk protein precursor genes necessary for oogenesis. However, all of these effects occurred without a change in trypsin activity. These results suggest that Wolbachia infection may disrupt normal metabolic processes associated with blood feeding and reproduction in Ae. aegypti.  相似文献   

13.
Most of the hematophagous insects act as disease vectors, including Aedes aegypti, responsible for transmitting some of the most critical arboviruses globally, such as Dengue. The use of repellents based on natural products is a promising alternative for personal protection compared to industrial chemical repellents. In this study, the repellent effect of essential oils extracted from Lippia thymoides, Lippia alba, Cymbopogon winterianus, and Eucalyptus globulus leaves was evaluated. Essential oils used showed repellent activity against Ae. aegypti in laboratory bioassays, obtaining protection rates above 70 % from 3.75 mg/mL and higher concentration for all analyzed oils. GC/MS identified 57 constituents, which were used in the ligand-based pharmacophore model to expose compounds with requirements for repellents that modulate mosquitoes behavior through odorant-binding protein 1 Ae. aegypti. Ligand-based pharmacophore model approach results suggested that repellent activity from C. winterianus, L. alba, and L. thymoides essential oils’ metabolites is related to Citronelal (QFIT=26.77), Citronelol (QFIT=11.29), Citronelol acetate (QFIT=52.22) and Geranil acetate (QFIT=10.28) with synergistic or individual activity. E. globulus essential oil's repellent activity is associated with Ledol (0.94 %; QFIT=41.95). Molecular docking was applied to understand the binding mode and affinity of the essential oils’ data set at the protein binding site. According to molecular docking, Citronelol (ChemPLP=60.98) and geranyl acetate (ChemPLP=60.55) were the best-classified compounds compared to the others and they can be explored to develop new repellents.  相似文献   

14.
Entomopathogenic fungi are potential candidates for use in integrated vector management. However, efficient delivery systems for these fungi need to be investigated. It is known that adult mosquitoes are attracted to dark surfaces, and therefore, black cotton cloths impregnated with Metarhizium anisopliae alone or in combination with the insecticide imidacloprid (IMI) were tested under laboratory conditions. Black cloths impregnated with fungus were also tested in large‐cage trials under natural extradomicile conditions. Blood‐fed Rockefeller and wild‐type strain Aedes aegypti had higher levels of survival when compared with sucrose‐fed counterparts following exposure to fungus‐impregnated cloths. However, when blood‐fed A. aegypti were exposed to a combination of M. anisopliae + IMI, the survival rates were statistically equal to those of sucrose‐fed females. Large‐cage trials showed significant decreases in A. aegypti survival following a minimum 12 h exposure of the mosquitoes to fungus‐impregnated cloths. Increased exposure times results in further reductions in survival. The synergism between M. anisopliae and IMI resulted in reduced survival rates independent of feeding regime under laboratory conditions. Fungus‐impregnated cloths tested under simulated field conditions, considered to be unfavourable for fungal infection, resulted in significant reductions in adult A. aegypti survival. We are currently testing the combined use of fungi and insecticides against blood‐fed insects under simulated field conditions.

Significance and Impact of the Study

The use of fungus‐impregnated cotton cloths is a promising point source application method for the control of adult Aedes aegypti, and this strategy could be incorporated into an integrated vector management programme aiming to reduce the incidence of dengue fever.  相似文献   

15.
BackgroundAedes aegypti mosquitoes are globally distributed vectors of viruses that impact the health of hundreds of millions of people annually. Mating and blood feeding represent fundamental aspects of mosquito life history that carry important implications for vectorial capacity and for control strategies. Females transmit pathogens to vertebrate hosts and obtain essential nutrients for eggs during blood feeding. Further, because host-seeking Ae. aegypti females mate with males swarming near hosts, biological crosstalk between these behaviors could be important. Although mating influences nutritional intake in other insects, prior studies examining mating effects on mosquito blood feeding have yielded conflicting results.Methodology/Principal findingsTo resolve these discrepancies, we examined blood-feeding physiology and behavior in virgin and mated females and in virgins injected with male accessory gland extracts (MAG), which induce post-mating changes in female behavior. We controlled adult nutritional status prior to blood feeding by using water- and sugar-fed controls. Our data show that neither mating nor injection with MAG affect Ae. aegypti blood intake, digestion, or feeding avidity for an initial blood meal. However, sugar feeding, a common supplement in laboratory settings but relatively rare in nature, significantly affected all aspects of feeding and may have contributed to conflicting results among previous studies. Further, mating, MAG injection, and sugar intake induced declines in subsequent feedings after an initial blood meal, correlating with egg production and laying. Taking our evaluation to the field, virgin and mated mosquitoes collected in Colombia were equally likely to contain blood at the time of collection.Conclusions/SignificanceMating, MAG, and sugar feeding impact a mosquito’s estimated ability to transmit pathogens through both direct and indirect effects on multiple aspects of mosquito biology. Our results highlight the need to consider natural mosquito ecology, including diet, when assessing their physiology and behavior in the laboratory.  相似文献   

16.
The distribution and biosynthesis of ecdysone and 20-hydroxyecdysone (20-OH-ecdysone) was followed in sugar- and blood-fed female Aedes aegypti. In both sugar- and early blood-fed animals most of the ecdysteroid determined by radioimmunoassay was found outside the ovary. Twenty-four to 40 h after blood feeding, however, ecdysteroid was distributed between ovary and carcass in the ratio of 1:1.5. Ecdysteroid titer reached a plateau between 18 to 40 h after the blood meal and decreased thereafter. Analysis of the ecdysteroid titer using thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) revealed that both 20-OH-ecdysone and ecdysone were synthesized after the blood meal. The ratio of 20-OH-ecdysone to ecdysone remained essentially constant and fluctuated in parallel throughout egg development. Chromatography of the early ecdysteroid peak (8 h after feeding) using TLC and HPLC indicated that although it cross-reacted with ecdysteroid antibodies, it did not have the same elution times as ecdysone and 20-OH-ecdysone and is, therefore, probably a precursor of these ecdysteroids. Injections of egg development neurosecretory hormone (EDNH) preparation purified to near homogeneity, into ligated abdomens, induced ecdysteroid synthesis only if the abdomens were first treated with methoprene (12.5 pg). Methoprene at this concentration did not stimulate ecdysteroid synthesis in these abdomens. When blood-fed females were treated with [4-14C] cholesterol and analyzed using TLC and HPLC procedures, both [14C]labeled ecdysone and [14C]labeled 20-OH-ecdysone were synthesized in the ratio of 1:1.5. This report is the first to show that both ecdysone and 20-OH-ecdysone are synthesized in vivo in female A. aegypti.  相似文献   

17.
Summary

The insect eggshell provides a model system for the study of gene regulation because several proteins are synthesized in an ordered spatial and temporal pattern within a single tissue, the follicular epithelium. Progress is being made towards an understanding of Aedes aegypti and Drosophila melanogaster vitelline membrane formation. The vitelline membrane is the innermost layer of the eggshells of A. aegypti and D. melanogaster. Genes encoding three A. aegypti and four D. melanogaster vitelline membrane proteins have been cloned and sequenced. Significant similarity is observed between the A. aegypti and D. melanogaster vitelline membrane genes. Both families contain highly conserved regions of 34 and 38 amino acids in A. aegypti and D. melanogaster respectively. The protein composition of the two families are both rich in proline and alanine, but differ in their serine and histidine compositions. The regulation of vitelline membrane gene expression in A. aegypti and D. melanogaster is compared.  相似文献   

18.
Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae) is the principal vector of dengue and yellow fever viruses in tropical and subtropical regions of the world. Disease management is largely based on mosquito control achieved by insecticides applied to interior resting surfaces and through space sprays. Population monitoring to detect insecticide resistance is a significant component of integrated disease management programmes. We developed a bioassay method for assessing insecticide susceptibility based on the feeding activity of mosquitoes on plant sugars. Our prototype sugar‐insecticide feeding bioassay system was composed of inexpensive, disposable components, contained minimal volumes of insecticide, and was compact and highly transportable. Individual mosquitoes were assayed in a plastic cup that contained a sucrose‐permethrin solution. Trypan blue dye was added to create a visual marker in the mosquito's abdomen for ingested sucrose‐permethrin solution. Blue faecal spots provided further evidence of solution ingestion. With the sugar‐insecticide feeding bioassay, the permethrin susceptibility of Ae. aegypti females from two field‐collected strains was characterized by probit analysis of dosage‐response data. The field strains were also tested by forced contact of females with permethrin residues on filter paper. Dosage‐response patterns were similar, indicating that the sugar‐insecticide feeding bioassay had appropriately characterized the permethrin susceptibility of the two strains.  相似文献   

19.
Mosquitoes transmit a diverse group of human flaviviruses including West Nile, dengue, yellow fever, and Zika viruses. Mosquitoes are also naturally infected with insect‐specific flaviviruses (ISFs), a subgroup of the family not capable of infecting vertebrates. Although ISFs are not medically important, they are capable of altering the mosquito's susceptibility to flaviviruses and may alter host fitness. Wolbachia is an endosymbiotic bacterium of insects that when present in mosquitoes limits the replication of co‐infecting pathogens, including flaviviruses. Artificially created Wolbachia‐infected Aedes aegypti mosquitoes are being released into the wild in a series of trials around the globe with the hope of interrupting dengue and Zika virus transmission from mosquitoes to humans. Our work investigated the effect of Wolbachia on ISF infection in wild‐caught Ae. aegypti mosquitoes from field release zones. All field mosquitoes were screened for the presence of ISFs using general degenerate flavivirus primers and their PCR amplicons sequenced. ISFs were found to be common and widely distributed in Ae. aegypti populations. Field mosquitoes consistently had higher ISF infection rates and viral loads compared to laboratory colony material indicating that environmental conditions may modulate ISF infection in Ae. aegypti. Surprisingly, higher ISF infection rates and loads were found in Wolbachia‐infected mosquitoes compared to the Wolbachia‐free mosquitoes. Our findings demonstrate that the symbiont is capable of manipulating the mosquito virome and that Wolbachia‐mediated viral inhibition is not universal for flaviviruses. This may have implications for the Wolbachia‐based DENV control strategy if ISFs confer fitness effects or alter mosquito susceptibility to other flaviviruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号