首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Toxoplasma gondii is a widespread intracellular parasite of mammals and birds and an important opportunistic pathogen of humans. Following primary infection, fast‐replicating tachyzoites disseminate within the host and either are subsequently eliminated by the immune system or transform to latent bradyzoites which preferentially persist in brain and muscle tissues. The factors which determine the parasites' tissue distribution during chronic toxoplasmosis are unknown. Here we show that mouse skeletal muscle cells (SkMCs) after differentiation to mature, myosin heavy chain‐positive, polynucleated myotubes, significantly restrict tachyzoite replication and facilitate expression of bradyzoite‐specific antigens and tissue cyst formation. In contrast, proliferating mononuclear myoblasts and control fibroblasts enable vigorous T. gondii replication but do not sustain bradyzoite or tissue cyst formation. Bradyzoite formation correlates with upregulation of testis‐specific Y‐encoded‐like protein‐2 gene expression (Tspyl2) and p21Waf1/Cip1 as well as downregulation of cyclin B1 and absence of DNA synthesis, i.e. a cell cycle arrest of syncytial myotubes. Following infection with T. gondii, myotubes but not myoblasts or fibroblasts further upregulate the negative cell cycle regulator Tspyl2. Importantly, RNA interference‐mediated knock‐down of Tspyl2 abrogates differentiation of SkMCs to myotubes and enables T. gondii to replicate vigorously but abolishes bradyzoite‐specific gene expression and tissue cyst formation. Together, these data indicate that Tspyl2‐mediated host cell cycle withdrawal is a physiological trigger of Toxoplasma stage conversion in mature SkMCs. This finding might explain the preferred distribution of T. gondii tissue cysts in vivo.  相似文献   

3.
4.
Host cell manipulation is an important feature of the obligate intracellular parasite Toxoplasma gondii. Recent reports have shown that the tachyzoite stages subvert dendritic cells (DC) as a conduit for dissemination (Trojan horse) during acute infection. To examine the cellular basis of these processes, we performed a detailed analysis of the early events following tachyzoite invasion of human monocyte‐derived DC. We demonstrate that within minutes after tachyzoite penetration, profound morphological changes take place in DC that coincide with a migratory activation. Active parasite invasion of DC led to cytoskeletal actin redistribution with loss of adhesive podosome structures and redistribution of integrins (CD18 and CD11c), that concurred with the onset of DC hypermotility in vitro. Inhibition of parasite rhoptry secretion and invasion, but not inhibition of parasite or host cell protein synthesis, abrogated the onset of morphological changes and hypermotility in DC dose‐dependently. Also, infected DC, but not by‐stander DC, exhibited upregulation of C‐C chemokine receptor 7 (CCR7). Yet, the onset of parasite‐induced DC hypermotility preceded chemotactic migratory responsesin vitro. Collectively, present data reveal that invasion of DC by T. gondii initiates a series of regulated events, including rapid cytoskeleton rearrangements, hypermotility and chemotaxis, that promote the migratory activation of DC.  相似文献   

5.
Toxoplasma gondii is an intracellular apicomplexan parasite infecting warm-blooded vertebrate hosts, with only early infection stage being contained with drugs. But diagnosis differencing early and late infection was not available. In the present investigation, 2-dimensional immunobloting was used to explore early and late infections in chickens. The protein expression of T. gondii was determined by image analysis of the tachyzoites proteome separated by standard-one and conventional two-dimentional gel polyacrylamide electrophoresis (2D- PAGE). Pooled gels were prepared from tachyzoites of T. gondii. A representative gel spanning a pH range of 3-10 of the tachyzoite proteome consisted of 1306 distinct polypeptide spots. Two-dimensional electrophoresis (2-DE) combined with 2-DE immunoblotting was used to resolve and compare immunoglobulins (Igs) M & G patterns against Toxoplasma gondii strain RH (mouse virulent strain). Total tachyzoite proteins of T. gondii were separated by two-dimensional gel electrophoresis and analyzed by Western blotting for their reactivity with the 7 and 56 days post-infection (dpi) SPF chicken antisera. Different antigenic determinant patterns were detected during analysis with M and G immunoglobulins. Of the total number of polypeptide spots analyzed (1306 differentially expressed protein spots), 6.97% were identified as having shared antigenic polypeptide spots on immunoblot profiles with IgG and IgM antibodies regardless the time after infection. Furthermore, some of the immunoreactive polypeptide spots seemed to be related to the stage of infection. Interestingly, we found natural antibodies to toxoplasmic antigens, in addition to the highly conserved antigenic determinants that reacted with non-specific secondary antibody; goat anti-chicken IgG antibodies conjugated with horseradish peroxidase. In conclusion, unique reactive polypeptide spots are promising candidates for designation of molecular markers to discriminate early and late chicken infection.  相似文献   

6.
7.
《Gene》1997,184(1):1-12
Two Toxoplasma gondii genes were characterized that are differentially expressed during the parasite's life cycle. The genes named LDH1 and LDH2, respectively, encode polypeptides similar to the enzyme lactate dehydrogenase (LDH; l-lactate:NAD+ oxidoreductase, EC 1.1.1.27) from a variety of organisms. They show 64.0% nucleotide identity in the coding region and both have an intron at the same relative position. The deduced amino acid sequences of LDH1 and LDH2 share 71.1% identity. LDH1 and LDH2 are most similar to an LDH of Plasmodium falciparum (46.5% and 48.5% amino acid identities, respectively). The mRNA of LDH2 was only detected in the bradyzoite stage, while the mRNA of LDH1 was detected in both the bradyzoite and tachyzoite stages. However, by isoelectric focusing and immunoblot analysis, only one LDH isoform was found to be expressed in each stage. Furthermore, the expression of a reporter gene carrying chloramphenicol acetyltransferase (CAT) coding sequence and the putative LDH2 promoter sequence was significantly up-regulated by growing parasites in tissue culture in media with alkaline pH (pH 8.2, a condition known to induce the expression of bradyzoite-specific antigens), while the expression of a CAT reporter construct carrying the putative LDH1 promoter sequence was down-regulated by similar treatment. These results indicate that LDH expression is developmentally regulated in T. gondii and suggest a possible correlation between stage conversion and alteration in carbohydrate or energy metabolism in this parasite.  相似文献   

8.
The discovery of two quinazolinones with selective, single-digit micromolar activity (IC50?=?6–7?µM) against the tachyzoites of the apicomplexan parasite Toxoplasma gondii is reported. These potent and selective third generation derivatives contain a benzyloxybenzyl substituent at C2 and a bulky aliphatic moiety at N3. Here we show that these quinazolinones inhibit T. gondii tachyzoite replication in an established infection, but do not significantly affect host cell invasion by the tachyzoites.  相似文献   

9.
Toxoplasma gondii is an obligatory intracellular apicomplexan parasite which exploits host cell surface components in cell invasion and intracellular parasitization. Sulfated glycans such as heparin and heparan sulfate have been reported to inhibit cell invasion by T. gondii and other apicomplexan parasites such as Plasmodium falciparum. The aim of this study was to investigate the heparin‐binding proteome of T. gondii. The parasite‐derived components were affinity‐purified on the heparin moiety followed by MS fingerprinting of the proteins. The heparin‐binding proteins of T. gondii and P. falciparum were compared based on functionality and affinity to heparin. Among the proteins identified, the invasion‐related parasite ligands derived from tachyzoite/merozoite surface and the secretory organelles were prominent. However, the profiles of the proteins were different in terms of affinity to heparin. In T. gondii, the proteins with highest affinity to heparin were the intracellular components with functions of parasite development contrasted to that of P. falciparum, of which the rhoptry‐derived proteins were prominently identified. The profiling of the heparin‐binding proteins of the two apicomplexan parasites not only explained the mechanism of heparin‐mediated host cell invasion inhibition, but also, to a certain extent, revealed that the action of heparin on the parasite extended after endocytosis.  相似文献   

10.
Glycolysis was thought to be the major pathway of energy supply in both fast‐replicating tachyzoites and slowly growing bradyzoites of Toxoplasma gondii. However, its biological significance has not been clearly verified. The genome of T. gondii encodes two lactate dehydrogenases (LDHs), which are differentially expressed in tachyzoites and bradyzoites. In this study, we knocked out the two LDH genes individually and in combination and found that neither gene was required for tachyzoite growth in vitro under standard growth conditions. However, during infection in mice, Δldh1 and Δldh1 Δldh2 mutants were unable to propagate and displayed significant virulence attenuation and cyst formation defects. LDH2 only played minor roles in these processes. To further elucidate the mechanisms underlying the critical requirement of LDH in vivo, we found that Δldh1 Δldh2 mutants replicated significantly more slowly than wild‐type parasites when cultured under conditions with physiological levels of oxygen (3%). In addition, Δldh1 Δldh2 mutants were more susceptible to the oxidative phosphorylation inhibitor oligomycin A. Together these results suggest that lactate fermentation is critical for parasite growth under physiological conditions, likely because energy production from oxidative phosphorylation is insufficient when oxygen is limited and lactate fermentation becomes a key supplementation.  相似文献   

11.
12.
Toxoplasma gondii, an obligate intracellular protozoan parasite, infects a wide variety of mammals and birds. Although T. gondii infects the brain and muscles in its latent cyst form containing bradyzoite stage parasites during chronic infection, when a chronically infected host becomes immunodeficient or is preyed upon by a predator, the latent cyst undergoes excystation. However, it is not yet known how T. gondii recognises the triggers of excystation in the microenvironment surrounding the cyst. In this study, we incubated T. gondii cysts from host cells in several solutions containing a variety of ionic compositions. Excystation occurred in a solution with an ionic composition which mimicked that of the extracellular environment. However, excystation did not occur in a solution that mimicked the intracellular environment. We also found that the specific Na+/K+ ratio and the presence of Ca2+, mimicking the extracellular environment, are required to trigger excystation. To examine whether the stage conversion of bradyzoite to tachyzoite occurs prior to egress, we constructed a gene-modified T. gondii strain expressing a green fluorescent protein specifically in the tachyzoite stage. During the process of cyst reactivation of this strain, green fluorescence was detected prior to excystation. This suggests that stage conversion from bradyzoite to tachyzoite occurs prior to cyst disruption. These results indicate that T. gondii bradyzoites monitor the ionic composition of their surroundings to recognise their expulsion from host cells, to effectively time their excystation and stage conversion.  相似文献   

13.
Toxoplasma gondii causes retinitis and encephalitis. Avoiding targeting by autophagosomes is key for its survival because T. gondii cannot withstand lysosomal degradation. During invasion of host cells, T. gondii triggers epidermal growth factor receptor (EGFR) signalling enabling the parasite to avoid initial autophagic targeting. However, autophagy is a constitutive process indicating that the parasite may also use a strategy operative beyond invasion to maintain blockade of autophagic targeting. Finding that such a strategy exists would be important because it could lead to inhibition of host cell signalling as a novel approach to kill the parasite in previously infected cells and treat toxoplasmosis. We report that T. gondii induced prolonged EGFR autophosphorylation. This effect was mediated by PKCα/PKCβ ? Src because T. gondii caused prolonged activation of these molecules and their knockdown or incubation with inhibitors of PKCα/PKCβ or Src after host cell invasion impaired sustained EGFR autophosphorylation. Addition of EGFR tyrosine kinase inhibitor (TKI) to previously infected cells led to parasite entrapment by LC3 and LAMP‐1 and pathogen killing dependent on the autophagy proteins ULK1 and Beclin 1 as well as lysosomal enzymes. Administration of gefitinib (EGFR TKI) to mice with ocular and cerebral toxoplasmosis resulted in disease control that was dependent on Beclin 1. Thus, T. gondii promotes its survival through sustained EGFR signalling driven by PKCα/β ? Src, and inhibition of EGFR controls pre‐established toxoplasmosis.  相似文献   

14.
The discovery of new compounds active against Toxoplasma gondii is extremely important due to the severe disease caused by this pathogen in immunocompromised hosts and to congenital infection. Type II fatty acid biosynthesis has shown to be a promising target for drug intervention in toxoplasmosis. Here we describe the inhibitory effect of 8 thiolactomycin (TLM) analogues against tachyzoite-infected LLC-MK2 cells. The TLM analogues demonstrated anti-T. gondii activity, arresting tachyzoite proliferation with IC50 values in the micromolar level after 24 h and 48 h of treatment. Metabolic labelling of extracellular parasites treated with TLM analogues using [3H]acetate demonstrated that these drugs affected acylglycerol synthesis. The rapid reduction of parasite load suggests that these compounds have selective cytotoxic effects against T. gondii. Transmission electron microscopy demonstrated that TLM analogues interfered with membrane-bounded organelles and parasite division and this in turn affected parasite development and survival.  相似文献   

15.
Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. In this paper, we show that human α-defensin-5 displays a parasiticidal role against Toxoplasma gondii, the causative agent of toxoplasmosis. Exposure of the tachyzoite form of T. gondii to defensin induced aggregation and significantly reduced parasite viability in a concentration-dependent peptide. Pre-incubation of tachyzoites with human α-defensin-5 followed by exposure to a mouse embryonal cell line (NIH/3T3) significantly reduced T. gondii infection in these cells. Thus, human α-defensin-5 is an innate immune molecule that causes severe toxocity to T. gondii and plays an important role in reducing cellular infection. This is the first report showing that human α-defensin-5 causes aggregation, leading to Toxoplasma destruction.  相似文献   

16.
Toxoplasma gondii is a natural intracellular protozoal pathogen of mice and other small mammals. After infection, the parasite replicates freely in many cell types (tachyzoite stage) before undergoing a phase transition and encysting in brain and muscle (bradyzoite stage). In the mouse, early immune resistance to the tachyzoite stage is mediated by the family of interferon-inducible immunity-related GTPases (IRG proteins), but little is known of the nature of this resistance. We reported earlier that IRG proteins accumulate on intracellular vacuoles containing the pathogen, and that the vacuolar membrane subsequently ruptures. In this report, live-cell imaging microscopy has been used to follow this process and its consequences in real time. We show that the rupture of the vacuole is inevitably followed by death of the intracellular parasite, shown by its permeability to cytosolic protein markers. Death of the parasite is followed by the death of the infected cell. The death of the cell has features of pyronecrosis, including membrane permeabilisation and release of the inflammatory protein, HMGB1, but caspase-1 cleavage is not detected. This sequence of events occurs on a large scale only following infection of IFNγ-induced cells with an avirulent strain of T. gondii, and is reduced by expression of a dominant negative mutant IRG protein. Cells infected by virulent strains rarely undergo necrosis. We did not find autophagy to play any role in the key steps leading to the death of the parasite. We conclude that IRG proteins resist infection by avirulent T. gondii by a novel mechanism involving disruption of the vacuolar membrane, which in turn ultimately leads to the necrotic death of the infected cell.  相似文献   

17.
Nucleoside triphosphate hydrolase (NTPase) is an abundant protein secreted by the obligate protozoan parasite Toxoplasma gondii, which has a wide specificity toward NTP. In the present study, two monoclonal antibodies (mAbs, MNT1 and MNT2) against recombinant T. gondii NTPase-II (rTgNTPase-II) were developed. Western blot analysis displayed that these two mAbs can recognize specifically rTgNTPase-II as well as a 63 kDa molecule in tachyzoites soluble antigens that corresponded to native NTPase-II. T. gondii tachyzoites pretreated with two mAbs were observed under Confocal Laser Microscope and a specific reaction was displayed on tachyzoites after indirect fluorescence antibody test (IFAT). When COS-7 cells were co-cultured with tachyzoites pretreated with two mAbs, the number of intracellular parasites per infected cell was significantly decreased compared with the control. Furthermore, incubation of T. gondii tachyzoites with two mAbs can inhibit NTPase activity in the presence of dithiothreitol, which hinted that the reduction of tachyzoite replication might be owing to the inhibition of NTPase-II by the mAbs. The passive immunization test indicated that the transferred mAbs can significantly prolong the survival time of challenge infected mice. Taken together, we concluded that the mAbs against NTPase-II can reduce the replication of T. gondii and have a crucial effect on the protection of host from T. gondii infection.  相似文献   

18.
Toxoplasma gondii is a widespread parasite responsible for causing clinical diseases especially in pregnant and immunosuppressed individuals. Glucocorticoid-induced TNF receptor (GITR), which is also known as TNFRS18 and belongs to the TNF receptor superfamily, is found to be expressed in various cell types of the immune system and provides an important costimulatory signal for T cells and myeloid cells. However, the precise role of this receptor in the context of T. gondii infection remains elusive. Therefore, the current study investigated the role of GITR activation in the immunoregulation mechanisms induced during the experimental infection of mice with T. gondii. Our data show that T. gondii infection slightly upregulates GITR expression in Treg cells and B cells, but the most robust increment in expression was observed in macrophages and dendritic cells. Interestingly, mice infected and treated with an agonistic antibody anti-GITR (DTA-1) presented a robust increase in pro-inflammatory cytokine production at preferential sites of parasite replication, which was associated with the decrease in latent brain parasitism of mice under treatment with DTA-1. Several in vivo and in vitro analysis were performed to identify the cellular mechanisms involved in GITR activation upon infection, however no clear alterations were detected in the phenotype/function of macrophages, Tregs and B cells under treatment with DTA-1. Therefore, GITR appears as a potential target for intervention during infection by the parasite Toxoplasma gondii, even though further studies are still necessary to better characterize the immune response triggered by GITR activation during T. gondii infection.  相似文献   

19.
In Toxoplasma gondii, lactate dehydrogenase is encoded by two independent and developmentally regulated genes LDH1 and LDH2. These genes and their products have been implicated in the control of a metabolic flux during parasite differentiation. To investigate the significance of LDH1 and LDH2 in this process, we generated stable transgenic parasite lines in which the expression of these two expressed isoforms of lactate dehydrogenase was knocked down in a stage-specific manner. These LDH knockdown parasites exhibited variable growth rates in either the tachyzoite or the bradyzoite stage, as compared with the parental parasites. Their differentiation processes were impaired when the parasites were grown under in vitro conditions. In vivo studies in a murine model system revealed that tachyzoites of these parasite lines were unable to form significant numbers of tissue cysts and to establish a chronic infection. Most importantly, all mice that were initially infected with tachyzoites of either of the four LDH knockdown lines survived a subsequent challenge with tachyzoites of the parental parasites (10(4)), a dose that usually causes 100% mortality, suggesting that live vaccination of mice with the LDH knockdown tachyzoites can confer protection against T. gondii. Thus, we conclude that LDH expression is essential for parasite differentiation. The knockdown of LDH1 and LDH2 expression gave rise to virulence-attenuated parasites that were unable to exhibit a significant brain cyst burden in a murine model of chronic infection.  相似文献   

20.
UNC93B1 associates with Toll-Like Receptor (TLR) 3, TLR7 and TLR9, mediating their translocation from the endoplasmic reticulum to the endolysosome, hence allowing proper activation by nucleic acid ligands. We found that the triple deficient ‘3d’ mice, which lack functional UNC93B1, are hyper-susceptible to infection with Toxoplasma gondii. We established that while mounting a normal systemic pro-inflammatory response, i.e. producing abundant MCP-1, IL-6, TNFα and IFNγ, the 3d mice were unable to control parasite replication. Nevertheless, infection of reciprocal bone marrow chimeras between wild-type and 3d mice with T. gondii demonstrated a primary role of hemopoietic cell lineages in the enhanced susceptibility of UNC93B1 mutant mice. The protective role mediated by UNC93B1 to T. gondii infection was associated with impaired IL-12 responses and delayed IFNγ by spleen cells. Notably, in macrophages infected with T. gondii, UNC93B1 accumulates on the parasitophorous vacuole. Furthermore, upon in vitro infection the rate of tachyzoite replication was enhanced in non-activated macrophages carrying mutant UNC93B1 as compared to wild type gene. Strikingly, the role of UNC93B1 on intracellular parasite growth appears to be independent of TLR function. Altogether, our results reveal a critical role for UNC93B1 on induction of IL-12/IFNγ production as well as autonomous control of Toxoplasma replication by macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号