首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bacterial leaf blight of rice (BLB), caused by Xanthomonas oryzae pv oryzae, is one of the most serious bacterial diseases in China. Presently, bismerthiazol has been the major bactericide for the control of BLB, however, bismerthiazol‐resistant strains of X. oryzae pv. oryzae have appeared in the field in China. Zinc thiazole is a novel bactericide with strong antibacterial activity against Xanthomonas spp. In this study, sensitivity of 109 X. oryzae pv. oryzae strains to zinc thiazole was determined. The EC50 values for zinc thiazole in inhibiting bacterial growth of the 109 X. oryzae pv. oryzae strains were 0.53–9.62 µg mL?1 with the average EC50 value of 4.82 ± 1.86 µg/ml. The minimum inhibitory concentration (MIC) values of zinc thiazole against the 109 X. oryzae pv. oryzae strains were assessed and the results showed that the MIC values of zinc thiazole for completely inhibiting the growth of these 109 strains ranged from 5.0 to 40.0 µg mL?1. In the evaluation of protective and curative activity test, zinc thiazole exhibited great activity against BLB and provided over 88% control efficacy (at 300 µg mL?1) 1 and 3 days before or after inoculations, which was also higher that that of bismerthiazol in the corresponding treatments. Our field trials showed that zinc thiazole at 375 g.a.i ha?1 provided over 70% control efficacy in 2012 and over 80% control efficacy in 2013 at both sites. Moreover, in all the four field trials, zinc thiazole at 250 g.a.i ha?1 provided higher control efficacy than that of bismerthiazol at 250 g.a.i ha?1. Taken together, zinc thiazole is therefore an alternative tool for the management of BLB.  相似文献   

3.
4.
The role of the plant defence activator, acibenzolar‐S‐methyl (ASM), in inducing resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) was studied. Application of ASM induced resistance in rice to infection by Xoo. When the pathogen was clip‐inoculated to the rice plants, it caused bacterial leaf blight symptoms in the untreated control. However, in the rice plants pretreated with ASM, infection was significantly reduced. Induced systemic resistance was found to persist for up to 3 days in the pretreated rice plants. Increased phenolic content and accumulation of pathogenesis‐related (PR) proteins, viz. chitinase, β‐1,3‐glucanase and thaumatin‐like protein (TLP; PR 5) were observed in rice plants pretreated with ASM followed by inoculation with Xoo. Immunoblot analysis using rice TLP and tobacco chitinase antiserum revealed rapid induction and over‐expression of 25 and 35 kDa TLP and chitinase, respectively, in rice in response to pretreatment with ASM followed by Xoo inoculation. Based on these experiments, it is evident that induction of disease resistance in rice was accelerated following treatment with ASM.  相似文献   

5.
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight, a serious disease of rice. Xoo secretes a repertoire of cell wall‐degrading enzymes, including cellulases, xylanases and pectinases, to degrade various polysaccharide components of the rice cell wall. A secreted Xoo cellulase, CbsA, is not only a key virulence factor of Xoo, but is also a potent inducer of innate immune responses of rice. In this study, we solved the crystal structure of the catalytic domain of the CbsA protein to a resolution of 1.86 Å. The core structure of CbsA shows a central distorted TIM barrel made up of eight β strands with N‐ and C‐terminal loops enclosing the active site, which is a characteristic structural feature of an exoglucanase. The aspartic acid at the 131st position of CbsA was predicted to be important for catalysis and was therefore mutated to alanine to study its role in the catalysis and biological functions of CbsA. Intriguingly, the D131A CbsA mutant protein displayed the enzymatic activity of a typical endoglucanase. D131A CbsA was as proficient as wild‐type (Wt) CbsA in inducing rice immune responses, but was deficient in virulence‐promoting activity. This indicates that the specific exoglucanase activity of the Wt CbsA protein is required for this protein to promote the growth of Xoo in rice.  相似文献   

6.
The rice XA21 receptor kinase confers robust resistance to bacterial blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). A tyrosine‐sulfated peptide from Xoo, called RaxX, triggers XA21‐mediated immune responses, including the production of ethylene and reactive oxygen species and the induction of defence gene expression. It has not been tested previously whether these responses confer effective resistance to Xoo. Here, we describe a newly established post‐inoculation treatment assay that facilitates investigations into the effect of the sulfated RaxX peptide in planta. In this assay, rice plants were inoculated with a virulent strain of Xoo and then treated with the RaxX peptide 2 days after inoculation. We found that post‐inoculation treatment of XA21 plants with the sulfated RaxX peptide suppresses the development of Xoo infection in XA21 rice plants. The treated plants display restricted lesion development and reduced bacterial growth. Our findings demonstrate that exogenous application of sulfated RaxX activates XA21‐mediated immunity in planta, and provides a potential strategy for the control of bacterial disease in the field.  相似文献   

7.
8.
9.
10.
Rice bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae [(Ishiyama) Swings et al. 1990] (Xoo), is a major rice disease of the second crop season in Taiwan. A total of 88 Xoo strains collected from 10 major rice cultivating areas in Taiwan from 1986, 1997, 2000, 2004, and 2011 were characterized by repetitive‐element PCR (REP‐PCR) fingerprinting and virulence analyses. Among the five genetic clusters identified by the pJEL1/pJEL2 (IS1112‐based) and REP1R‐Dt/REP2‐D [repetitive extragenic palindromic (REP)‐based] primer sets, clusters A, C and D contained Xoo strains from geographically distant regions, which suggests a high frequency of Xoo dispersal in Taiwan. The 88 Xoo strains were evaluated by inoculations on IRBB near‐isogenic lines and five Taiwan rice cultivars. A subset of 45 moderately or highly virulent strains were classified into 15 pathotypes by their compatible or incompatible reactions on IR24 and 12 IRBB near‐isogenic lines, each containing a single resistance gene. Analysis of molecular haplotypes and pathotypes revealed a partial relationship. IRBB5, IRBB21 and IRBB4 were incompatible with 96%, 96% and 73% of the strains, so xa5, Xa21 and Xa4 can recognize most of the Xoo strains in Taiwan and elicit resistance. In contrast, IRBB3 (Xa3), IRBB8 (xa8), IRBB10 (Xa10), IRBB11 (Xa11), IRBB13 (xa13) and IRBB14 (Xa14) were susceptible to almost all of the 45 Xoo strains. Inoculation trials revealed significant differences in the susceptibility of five Taiwan cultivars to Xoo (from high to low susceptibility: Taichung Sen 10 >  IR24, Taichung Native 1 >  Taichung 192, Taikeng 9, Tainan 11). This study provides useful information for resistance breeding and the development of disease management strategies against bacterial blight disease of rice.  相似文献   

11.
Xanthomonas oryzae pv. oryzae (Xoo) rapidly triggers a hypersensitive response (HR) and non‐host resistance in its non‐host plant Nicotiana benthamiana. Here, we report that Agrobacterium tumefaciens strain GV3101 blocks Xoo‐induced HR in N. benthamiana when pre‐infiltrated or co‐infiltrated, but not when post‐infiltrated at 4 h after Xoo inoculation. This suppression by A. tumefaciens is local and highly efficient to Xoo. The HR‐inhibiting efficiency of A. tumefaciens is strain dependent. Strain C58C1 has almost no effect on Xoo‐induced HR, whereas strains GV3101, EHA105 and LBA4404 nearly completely block HR formation. Intriguingly, these three HR‐inhibiting strains employ different strategies to repress HR. Strain GV3101 displays strong antibiotic activity and thus suppresses Xoo growth. Comparison of the genotype and Xoo antibiosis activity of wild‐type A. tumefaciens strain C58 and a set of C58‐derived strains reveals that this Xoo antibiosis activity of A. tumefaciens is negatively, but not solely, regulated by the transferred‐DNA (T‐DNA) of the Ti plasmid pTiC58. Unlike GV3101, strains LBA4404 and EHA105 exhibit no significant antibiotic effect on Xoo, but rather abolish hydrogen peroxide accumulation. In addition, expression assays indicate that strains LBA4404 and EHA105 may inhibit Xoo‐induced HR by suppression of the expression of Xoo type III secretion system (T3SS) effector genes hpa1 and hrpD6. Collectively, our results unveil the multiple levels of effects of A. tumefaciens on Xoo in N. benthamiana and provide insights into the molecular mechanisms underlying the bacterial antibiosis of A. tumefaciens and the non‐host resistance induced by Xoo.  相似文献   

12.
13.
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), usually causes serious rice yield loss in many countries. Rice breeders have used resistance (R) genes to control the disease but many of the resistant cultivars become susceptible few years after releasing. Identification of new R genes to Xoo is one of the main objectives in rice breeding programs. In this study, we used a genomewide association study (GWAS) to analyse the resistance against the Xoo race C1 using the Rice Diversity Panel 1 (RDP1). Disease evaluation of the RDP1 population to C1 indicated that the AUS subgroup conferred a higher level of resistance to C1 than other subgroups. Genomewide association mapping identified 15 QTLs that are distributed on chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 10 and 12. Some of them are located in the regions without known resistance loci or QTLs. This study demonstrated the effectiveness of GWAS on the genetic dissection of rice resistance to Xoo and provided many Xoo resistance‐associated SNP markers for rice breeding.  相似文献   

14.
Xanthomonas oryzae pv. oryzae (Xoo) causes a serious disease of rice known as bacterial leaf blight. Several virulence-associated functions have been characterized in Xoo. However, the role of important second messenger c-di-GMP signalling in the regulation of virulence-associated functions still remains elusive in this phytopathogen. In this study we have performed an investigation of 13 c-di-GMP modulating deletion mutants to understand their contribution in Xoo virulence and lifestyle transition. We show that four Xoo proteins, Xoo2331, Xoo2563, Xoo2860 and Xoo2616, are involved in fine-tuning the in vivo c-di-GMP abundance and also play a role in the regulation of virulence-associated functions. We have further established the importance of the GGDEF domain of Xoo2563, a previously characterized c-di-GMP phosphodiesterase, in the virulence-associated functions of Xoo. Interestingly the strain harbouring the GGDEF domain deletion (ΔXoo2563GGDEF) exhibited EPS deficiency and hypersensitivity to streptonigrin, indicative of altered iron metabolism. This is in contrast to the phenotype exhibited by an EAL overexpression strain wherein, the ΔXoo2563GGDEF exhibited other phenotypes, similar to the strain overexpressing the EAL domain. Taken together, our results indicate a complex interplay of c-di-GMP signalling with the cell–cell signalling to coordinate virulence-associated function in Xoo.  相似文献   

15.
16.
The two‐component signal transduction system PhoBR regulates the adaptation to phosphate limitation and the virulence of many animal bacterial pathogens. However, PhoBR in phytopathogens has rarely been investigated. In this study, we found that PhoBR in Xanthomonas oryzae pv. oryzae (Xoo), the pathogen of rice bacterial leaf blight, also regulates the adaptation to phosphate starvation. Unexpectedly, rice leaves infected by the phoBR‐deleted mutant and wild‐type PXO99A showed similar lesions, indicating that PhoBR is unnecessary for the virulence of Xoo. phoBR was found to be silenced during host infection, whereas artificially constitutive PhoBR expression attenuated virulence on host rice and growth in phosphate‐rich media. RNA‐sequencing (RNA‐seq) was then performed to investigate the global effect caused by constitutive PhoBR activation. RNA‐seq and further experiments revealed that the PhoBR regulon in Xoo comprised a wide range of genes. Nutrient transport and metabolism readjustments that resulted from PhoBR regulon activation may be responsible for growth attenuation. Our findings suggest that growth reduction regulated by PhoBR is a fitness cost of adaptation to phosphate starvation. PhoBR in Xoo is activated under phosphate‐limited conditions, which could exist in epiphytic and saprophytic surviving phases, and is strictly repressed within phosphate‐rich host plants to minimize fitness costs.  相似文献   

17.
18.
Bacterial Blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo), a destructive disease of rice. Altogether, 96 isolates of Xoo were collected from 19 rice growing districts of Bangladesh in irrigated and rainfed seasons during 2014 to assess pathotypic variation. Pathotypic analyses on a set of 12 Near Isogenic Lines (NILs) of rice containing resistance genes viz. Xa1, Xa2, Xa3, Xa4, Xa5, Xa7, Xa8, Xa10, Xa11, Xa13, Xa14 and Xa21 and two check varieties IR24 and TN1 by leaf clip-inoculation technique. A total of 24 pathotypes were identified based on their virulence patterns on NILs tested. Among these, pathotypes VII, XII, and XIV considered as major, containing maximum number of isolates, (9.38% each) frequently distributed in North to Mid-Eastern districts of Bangladesh. Most virulent pathotype I recorded from Habiganj and Brahmanbaria. This pathotypic variation explained the pathogenic relatedness of X. oryzae pv. oryzae populations from diverse geographic areas in Bangladesh.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号