首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A putative protein tyrosine phosphatase (PTPase) gene, PTP2, was cloned from Saccharomyces cerevisiae. The complete yeast PTP2 gene encodes a 750-amino acid residue protein with a predicted mass of 86 kDa. The conserved PTPase domain was localized in the C-terminal half of the protein. Amino acid sequence alignment of the yeast PTPase domain with other phosphatases indicated approximately 20-25% sequence identity with the mammalian PTPase and a similar degree of identity with the PTPase encoded by the yeast PTP1 gene. The PTP2 gene is closely linked to the yeast RET1 and STE4 genes and is localized on the right arm of chromosome 15. Gene disruption experiments demonstrated that neither PTP2 alone nor PTP2 in combination with PTP1 was essential for growth under the conditions tested. The ability of PTP2 to complement the cdc25-22 mutant of Schizosaccharomyces pombe was also examined, and unlike the human T-cell PTPase, which was able to complement the cdc25-22 mutant, the S. cerevisiae PTP2 was unable to complement the cdc25-22 mutant of S. pombe.  相似文献   

2.
The bacterial plant pathogen Pseudomonas syringae possesses a type III protein secretion system that delivers many virulence proteins into plant cells. A subset of these proteins (called Avr proteins) is recognized by the plant's innate immune system and triggers defences. One defence-associated response is the hypersensitive response (HR), a programmed cell death (PCD) of plant tissue. We have previously identified HopPtoD2 as a type III secreted protein from P. s. pv. tomato DC3000. Sequence analysis revealed that an N-terminal domain shared homology with AvrPphD and a C-terminal domain was similar to protein tyrosine phosphatases (PTPs). We demonstrated that purified HopPtoD2 possessed PTP activity and this activity required a conserved catalytic Cys residue (Cys(378)). Interestingly, HopPtoD2 was capable of suppressing the HR elicited by an avirulent P. syringae strain on Nicotiana benthamiana. HopPtoD2 derivatives that lacked Cys(378) no longer suppressed the HR indicating that HR suppression required PTP activity. A constitutively active MAPK kinase, called NtMEK2DD, is capable of eliciting an HR-like cell death when transiently expressed in tobacco. When NtMEK2DD and HopPtoD2 were co-delivered into plant cells, the HR was suppressed indicating that HopPtoD2 acts downstream of NtMEK2DD. DC3000 hopPtoD2 mutants were slightly reduced in their ability to multiply in planta and displayed an enhanced ability to elicit an HR. The identification of HopPtoD2 as a PTP and a PCD suppressor suggests that the inactivation of MAPK pathways is a virulence strategy utilized by bacterial plant pathogens.  相似文献   

3.
Recently we have cloned a putative protein tyrosine phosphatase, PTP36/PTPD2/pez, which possesses a domain homologous to the N-terminal half of band 4.1 protein. In mouse fibroblasts adhered to substrates, PTP36 was phosphorylated on serine residues. PTP36 was found to make complexes with serine/threonine kinase(s), which phosphorylated PTP36 in vitro. PTP36 was dephosphorylated rapidly when the cell-substrate adhesion was disrupted and it was phosphorylated again along with the reattachment of the cells to fibronectin. Rephosphorylation of PTP36 seemed to depend on actin polymerization since it was inhibited by cytochalasin D. The cell detachment also induced the translocation of PTP36 into the membrane-associated cytoskeletal fraction. Staurosporine and ML-9, which inhibited the phosphorylation of PTP36 in vivo, induced the translocation of PTP36 too. On the contrary, when the dephosphorylation of PTP36 was inhibited by okadaic acid, no translocation of PTP36 was induced by the cell detachment. These results demonstrate that the cell-substrate adhesion and cell spreading regulates the intracellular localization of PTP36 most likely through its phosphorylation and therefore, PTP36 may play important roles in the signal transduction pathway of cell-adhesion.  相似文献   

4.
The protein tyrosine phosphatase PTP-Basophil (PTP-Bas) and its mouse homologue, PTP-Basophil-like (PTP-BL), are high molecular mass protein phosphatases consisting of a number of diverse protein-protein interaction modules. Several splicing variants of these phosphatases are known to exist thus demonstrating the complexity of these molecules. PTP-Bas/BL serves as a central scaffolding protein facilitating the assembly of a multiplicity of different proteins mainly via five different PDZ domains. Many of these interacting proteins are implicated in the regulation of the actin cytoskeleton. However, some proteins demonstrate a nuclear function of this protein tyrosine phosphatase. PTP-Bas is involved in the regulation of cell surface expression of the cell death receptor, Fas. Moreover, it is a negative regulator of ephrinB phosphorylation, a receptor playing an important role during development. The phosphorylation status of other proteins such as RIL, IkappaBalpha and beta-catenin can also be regulated by this phosphatase. Finally, PTP-BL has been shown to be involved in the regulation of cytokinesis, the last step in cell division. Although the precise molecular function of PTP-Bas/BL is still elusive, current data suggest clearly that PTP-Bas/BL belongs to the family of PDZ domain containing proteins involved in the regulation of the cytoskeleton and of intracellular vesicular transport processes.  相似文献   

5.
The regulation of PLD2 activation is poorly understood at present. Transient transfection of COS-7 with a mycPLD2 construct results in elevated levels of PLD2 enzymatic activity and tyrosyl phosphorylation. To investigate whether this phosphorylation affects PLD2 enzymatic activity, anti-myc immunoprecipitates were treated with recombinant protein tyrosine phosphatase PTP1B. Surprisingly, lipase activity and PY levels both increased over a range of PTP1B concentrations. These increases occurred in parallel to a measurable PTP1B-associated phosphatase activity. Inhibitor studies demonstrated that an EGF-receptor type kinase is involved in phosphorylation. In a COS-7 cell line created in the laboratory that stably expressed myc-PLD2, PTP1B induced a robust (>6-fold) augmentation of myc-PLD2 phosphotyrosine content. The addition of growth factor receptor-bound protein 2 (Grb2) to cell extracts also elevated PY levels of myc-PLD (>10-fold). Systematic co-immunoprecipitation-immunoblotting experiments pointed at a physical association between PLD2, Grb2, and PTP1B in both physiological conditions and in overexpressed cells. This is the first report of a demonstration of the mammalian isoform PLD2 existing in a ternary complex with a protein tyrosine phosphatase, PTP1b, and the docking protein Grb2 which greatly enhances tyrosyl phosphorylation of the lipase.  相似文献   

6.
Mitogen-activated protein kinase phosphatase-4 (MKP-4) is a dual specificity phosphatase, which acts as a negative regulator of insulin-stimulated pathways. Here, we describe expression, purification, and biochemical characterization of MKP-4. We used the Baculovirus expression system and purification with a combination of affinity and gel filtration chromatography to generate pure MKP-4 and MKP-4/p38 complex. Both MKP-4 and the MKP-4/p38 complex exhibited moderate activity toward the surrogate substrates p-nitrophenyl phosphate, 6, 8-difluoro-4-methylumbelliferyl phosphate, and 3-O-methylfluorescein phosphate. The phosphatase activity could be inhibited by peroxovanate, a potent inhibitor of protein tyrosine phosphatases. We further determined kinetic parameters for the MKP-4 and the MKP-4/p38 by using spectrophotometric and fluorescence intensity methods. The MKP-4/p38 complex was found to provide substantially higher phosphatase activity than MKP-4 alone, similar to what has been shown for MKP-3. Our data allow the configuration of screens for modulators of MKP-4 activity.  相似文献   

7.
Bacterial pathogens commonly show intra‐species variation in virulence factor expression and often this correlates with pathogenic potential. The group A Streptococcus (GAS) produces a small regulatory RNA (sRNA), FasX, which regulates the expression of pili and the thrombolytic agent streptokinase. As GAS serotypes are polymorphic regarding (a) FasX abundance, (b) the fibronectin, collagen, T‐antigen (FCT) region of the genome, which contains the pilus genes (nine different FCT‐types), and (c) the streptokinase‐encoding gene (ska) sequence (two different alleles), we sought to test whether FasX regulates pilus and streptokinase expression in a serotype‐specific manner. Parental, fasX mutant and complemented derivatives of serotype M1 (ska‐2, FCT‐2), M2 (ska‐1, FCT‐6), M6 (ska‐2, FCT‐1) and M28 (ska‐1, FCT‐4) isolates were compared. While FasX reduced pilus expression in each serotype, the molecular basis differed, as FasX bound, and inhibited the translation of, different FCT‐region mRNAs. FasX enhanced streptokinase expression in each serotype, although the degree of regulation varied. Finally, we established that the regulation afforded by FasX enhances GAS virulence, assessed by a model of bacteremia using human plasminogen‐expressing mice. Our data are the first to identify and characterize serotype‐specific regulation by an sRNA in GAS, and to show an sRNA directly contributes to GAS virulence.  相似文献   

8.
Non-receptor-type putative protein tyrosine phosphatase-36 (PTP36), also known as PTPD2/Pez, possesses a domain homologous to the N-terminal half of band 4.1 protein. To gain insight into the biological function of PTP36, we established a HeLa cell line, HtTA/P36-9, in which the overexpression of PTP36 was inducible. PTP36 expressed in HeLa cells was enriched in the cytoskeleton near the plasma membrane. There was little endogenous PTP36 detectable in uninduced HtTA/P36-9 cells or in the parental HeLa cells. Upon induction of PTP36 overexpression, HtTA/P36-9 cells spread less well, grew more slowly, and adhered to the extracellular matrix proteins less well than uninduced cells. Moreover, decreases in the actin stress fibers and the number of focal adhesions were observed. The tyrosine phosphorylation of the focal adhesion kinase induced by lysophosphatidic acid was suppressed in the HtTA/P36-9 cells overexpressing PTP36. These results indicate that PTP36 affects cytoskeletons, cell adhesion, and cell growth, thus suggesting that PTP36 is involved in their regulatory processes.  相似文献   

9.
The Streptococcus pyogenes collagen type I-binding protein Cpa (collagen-binding protein of group A streptococci) expressed by 28 serotypes of group A streptococci has been extensively characterized at the gene and protein levels. Evidence for three distinct families of cpa genes was found, all of which shared a common sequence encoding a 60-amino acid domain that accounted for selective binding to type I collagen. Surface plasmon resonance-based affinity measurements and functional studies indicated that the expression of Cpa was consistent with an attachment role for bacteria to tissue containing collagen type I. A cpa mutant displayed a significantly decreased internalization rate when incubated with HEp-2 cells but had no effect on the host cell viability. By utilizing serum from patients with a positive titer for streptolysin/DNase antibody, an increased anti-Cpa antibody titer was noted for patients with a clinical history of arthritis or osteomyelitis. Taken together, these results suggest Cpa may be a relevant matrix adhesin contributing to the pathogenesis of S. pyogenes infection of bones and joints.  相似文献   

10.
Smallpox, a highly contagious infectious disease caused by the variola major virus, has an overall mortality rate of about 30%. Because there currently is no specific treatment for smallpox, and the only prevention is vaccination, there is an urgent need for the development of effective antiviral drugs. The dual specificity protein phosphatase encoded by the smallpox virus (H1) is essential for the production of infectious viral particles, making it a promising molecular target for antiviral therapeutics. Here, we report the molecular cloning, overproduction, purification, and initial biochemical characterization of H1 phosphatase, thereby paving the way for the discovery of small molecule inhibitors.  相似文献   

11.
Epithelial-mesenchymal transition (EMT), crucial during embryogenesis for new tissue and organ formation, is also considered to be a prerequisite to cancer metastasis. We report here that the protein tyrosine phosphatase Pez is expressed transiently in discrete locations in developing brain, heart, pharyngeal arches, and somites in zebrafish embryos. We also find that Pez knock-down results in defects in these organs, indicating a crucial role in organogenesis. Overexpression of Pez in epithelial MDCK cells causes EMT, with a drastic change in cell morphology and function that is accompanied by changes in gene expression typical of EMT. Transfection of Pez induced TGFbeta signaling, critical in developmental EMT with a likely role also in oncogenic EMT. In zebrafish, TGFbeta3 is co- expressed with Pez in a number of tissues and its expression was lost from these tissues when Pez expression was knocked down. Together, our data suggest Pez plays a crucial role in organogenesis by inducing TGFbeta and EMT.  相似文献   

12.
The protein anosmin‐1, coded by the KAL1 gene responsible for the X‐linked form of Kallmann syndrome (KS), exerts its biological effects mainly through the interaction with and signal modulation of fibroblast growth factor receptor 1 (FGFR1). We have previously shown the interaction of the third fibronectin‐like type 3 (FnIII) domain and the N‐terminal region of anosmin‐1 with FGFR1. Here, we demonstrate that missense mutations reported in patients with KS, C172R and N267K did not alter or substantially reduce, respectively, the binding to FGFR1. These substitutions annulled the chemoattraction of the full‐length protein over subventricular zone (SVZ) neuronal precursors (NPs), but they did not annul it in the N‐terminal‐truncated protein (A1Nt). We also show that although not essential for binding to FGFR1, the cysteine‐rich (CR) region is necessary for anosmin‐1 function and that FnIII.3 cannot substitute for FnIII.1 function. Truncated proteins recapitulating nonsense mutations found in KS patients did not show the chemotropic effect on SVZ NPs, suggesting that the presence behind FnIII.1 of any part of anosmin‐1 produces an unstable protein incapable of action. We also identify the extracellular signal‐regulated kinase 1/2 (ERK1/2) pathway as necessary for the chemotropic effect exerted by FGF2 and anosmin‐1 on rat SVZ NPs.  相似文献   

13.
The cellular localization of protein tyrosine phosphatase 51 (PTPIP51) and its in vitro interacting partner protein tyrosine phosphatase 1B (PTP1B) was studied in human placentae of different gestational stages. The expression of PTPIP51 protein and mRNA was observed in the syncytiotrophoblast and cytotrophoblast layer of placentae from the first, second, and third trimesters. In contrast, PTP1B expression was restricted to the syncytiotrophoblast during all gestational stages. Cells of the cytotrophoblasts and parts of the syncytiotrophoblasts expressing high amounts of PTPIP51 were found to execute apoptosis as shown by TdT-mediated dUTP-biotin nick end labeling assay, cytokeratin 18f, and caspase 3 expression. PTPIP51 could also be traced in the endothelium and smooth muscle cells of placental arterial and venous vessels, identified by double immunostainings with antibodies directed against van Willebrand factor and alpha-smooth muscle actin. Some of these cells showing a high PTPIP51 reactivity were Ki67 positive, indicating proliferation. Additionally, a small population of placental CD14-positive macrophages and mesenchymal cells within the villous stroma were detected as PTPIP51 positive. Our data suggest that both proteins, PTPIP51 and PTP1B, play a role in differentiation and apoptosis of the cytotrophoblast and syncytiotrophoblast, respectively. Moreover, PTPIP51 may also serve as a cellular signaling partner in angiogenesis and vascular remodeling.  相似文献   

14.
Protein tyrosine phosphatases (PTPs) are signaling enzymes that control a diverse array of cellular processes. Further insight into the specific functional roles of PTPs in cellular signaling requires detailed understanding of the molecular basis for substrate recognition by the PTPs. A central question is how PTPs discriminate between multiple structurally diverse substrates that they encounter in the cell. Although X-ray crystallography is capable of revealing the intimate structural details for molecular interaction, structures of higher order PTP.substrate complexes are often difficult to obtain. Hydrogen/deuterium exchange mass spectrometry (H/DX-MS) is a powerful tool for mapping protein-protein interfaces, as well as identifying conformational and dynamic perturbations in proteins. In addition, H/DX-MS enables analysis of large protein complexes at physiological concentrations and provides insight into the solution behavior of these complexes that can not be gleaned from crystal structures. We have utilized H/DX-MS to probe PTP dynamics, ligand binding, and the structural basis of substrate recognition. In this article, we review general principles of H/DX-MS technology as applied to study protein-protein interactions and dynamics. We also provide protocols for H/DX-MS successfully used in our laboratory to define the molecular basis of ERK2 substrate recognition by MKP3. Many of the aspects that we cover in detail should be applicable to the study of other PTPs with their specific targets.  相似文献   

15.
16.
The interactions between pathogenic bacteria and the host need to be resolved at the molecular level in order to develop novel vaccines and drugs. We have previously identified strepadhesin, a novel glycoprotein-binding activity in Streptococcus pyogenes, which is regulated by Mga, a regulator of streptococcal virulence factors. We have now identified the protein responsible for the strepadhesin activity and find that (i) strepadhesin activity is carried by SpeB, streptococcal pyrogenic exotoxin with cysteine protease activity; (ii) SpeB carries laminin-binding activity of the bacteria; and (iii) SpeB is not only a secreted molecule but also occurs unexpectedly tightly bound to the bacterial cell surface. Thus, in contrast to the previous view of SpeB as mainly an extracellular protease, it is also present as a streptococcal surface molecule with binding activity to laminin and other glycoproteins.  相似文献   

17.
The non-transmembrane protein tyrosine phosphatase, PTP1B, comprises 435 amino acids, of which the C-terminal 114 residues have been implicated in controlling both localization and function of this enzyme. Inspection of the sequence of the C-terminal segment reveals a number of potential sites of phosphorylation. We show that PTP1B is phosphorylated on seryl residues in vivo. Increased phosphorylation of PTP1B is seen to accompany the transition from G2 to M phase of the cell cycle. Two major tryptic phosphopeptides appear in two-dimensional maps of PTP1B from mitotic cells. One of these comigrates with the peptide generated following phosphorylation of PTP1B in vitro at Ser386 by the mitotic protein Ser/Thr kinase p34cdc2:cyclin B. The site of phosphorylation that is responsible for the pronounced retardation in the electrophoretic mobility of PTP1B from mitotic cells has been identified by site directed mutagenesis as Ser352. The identify of the kinase responsible for this modification is presently unknown. We also show that stimulation of HeLa cells with the phorbol ester TPA enhances phosphorylation of PTP1B. Two dimensional phosphopeptide mapping reveals that the bulk of the phosphate is in a single tryptic peptide. The site, identified as Ser378, is also the site of phosphorylation by protein kinase C (PKC) in vitro. Thus the TPA-stimulated phosphorylation of PTP1B in vivo appears to result directly from phosphorylation by PKC. The effect of phosphorylation on the activity of PTP1B has been examined in immunoprecipitates from TPA-treated and nocodazole-arrested cells. TPA treatment does not appear to affect activity directly, whereas the activity of PTP1B from nocodazole-arrested cells is only 70% of that from asynchronous populations.  相似文献   

18.
19.
In vertebrates the collapsin response mediator proteins (CRMPs) are encoded by five highly related genes. CRMPs are cytosolic phosphoproteins abundantly expressed in developing and mature mammalian brains. CRMPs are best understood as effectors of Semaphorin 3A signaling regulating growth cone collapse in migratory neurons. Phosphorylation in the carboxyl‐terminal regulatory domain of CRMPs by several serine/threonine kinases has been described. These phoshorylation events appear to function, at least in part, to disrupt the interaction of CRMPs with tubulin heterodimers. In a large‐scale phosphoproteomic analysis of murine brain, we recently identified a number of in vivo tyrosine phosphorylation sites on CRMP isoforms. Using biochemical approaches and quantitative mass spectrometry we demonstrate that one of these sites, CRMP1 tyrosine 504 (Y504), is a primary target of the Src family of tyrosine kinases (SFKs), specifically Fyn. Y504 is adjacent to CDK5 and GSK‐3β sites that regulate the interaction of CRMPs with tubulin. Although Y504 is highly conserved among vertebrate CRMP1 orthologs, a residue corresponding to Y504 is absent in CRMP isoforms 2–5. This suggests an isoform‐specific regulatory role for CRMP1 Y504 phosphorylation and may help explain the observation that CRMP1‐deficient mice exhibit neuronal migration defects not compensated for by CRMPs 2–5. J. Cell. Biochem. 111: 20–28, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Abstract Several reports have shown that Streptococcus pyogenes strains which produce opacity factor (OF+) have diverged significantly from OF serotypes. This study questions whether several surface proteins of an OF+ culture are regulated by the positive regulatory protein VirR, in a manner similar to OF~ strains. Interruption of the virR region of an OF+ S. pyogenes (strain CS101, M type 49) was performed using a temperature-sensitive plasmid containing a fragment of virR . Interruption of the virR region produced cultures with (indétectable amounts of M49 and ScpA proteins, and reduced the yield of FcRA protein. In addition, mutants had a significant reduction in detectable opacity factor. These results suggest that virR functions as a positive regulator of a variety of surface proteins in OF+ strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号