首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Necrotrophic fungal pathogen Cochliobolus miyabeanus causes brown spot disease in rice leaves upon infection, resulting in critical rice yield loss. To better understand the rice–C. miyabeanus interaction, we employed proteomic approaches to establish differential proteomes of total and secreted proteins from the inoculated leaves. The 2DE approach after PEG‐fractionation of total proteins coupled with MS (MALDI‐TOF/TOF and nESI‐LC‐MS/MS) analyses led to identification of 49 unique proteins out of 63 differential spots. SDS‐PAGE in combination with nESI‐LC‐MS/MS shotgun approach was applied to identify secreted proteins in the leaf apoplast upon infection and resulted in cataloging of 501 unique proteins, of which 470 and 31 proteins were secreted from rice and C. miyabeanus, respectively. Proteins mapped onto metabolic pathways implied their reprogramming upon infection. The enzymes involved in Calvin cycle and glycolysis decreased in their protein abundance, whereas enzymes in the TCA cycle, amino acids, and ethylene biosynthesis increased. Differential proteomes also generated distribution of identified proteins in the intracellular and extracellular spaces, providing a better insight into defense responses of proteins in rice against C. miyabeanus. Established proteome of the rice–C. miyabeanus interaction serves not only as a good resource for the scientific community but also highlights its significance from biological aspects.  相似文献   

2.
Xylella fastidiosa is a xylem‐limited bacterial plant pathogen that causes bacterial leaf scorch in its hosts. Our previous work showed that water stress enhances leaf scorch symptom severity and progression along the stem of a liana, Parthenocissus quinquefolia, infected by X. fastidiosa. This paper explores the photosynthetic gas exchange responses of P. quinquefolia, with the aim to elucidate mechanisms behind disease expression and its interaction with water stress. We used a 2 × 2‐complete factorial design, repeated over two growing seasons, with high and low soil moisture levels and infected and non‐infected plants. In both years, low soil moisture levels reduced leaf water potentials, net photosynthesis and stomatal conductance at all leaf positions, while X. fastidiosa‐infection reduced these parameters at basally located leaves only. Intercellular CO2 concentrations were reduced in apical leaves, but increased at the most basal leaf location, implicating a non‐stomatal reduction of photosynthesis in leaves showing the greatest disease development. This result was supported by measured reductions in photosynthetic rates of basal leaves at high CO2 concentrations, where stomatal limitation was eliminated. Repeated measurements over the summer of 2000 showed that the effects of water stress and infection were progressive over time, reaching their greatest extent in September. By reducing stomatal conductances at moderate levels of water stress, P. quinquefolia maintained relatively high leaf water potentials and delayed the onset of photosynthetic damage due to pathogen and drought‐induced water stress. In addition, chlorophyll fluorescence measurements showed that P. quinquefolia has an efficient means of dissipating excess light energy that protects the photosynthetic machinery of leaves from irreversible photoinhibitory damage that may occur during stress‐induced stomatal limitation of photosynthesis. However, severe stress induced by disease and drought eventually led to non‐stomatal decreases in photosynthesis associated with leaf senescence.  相似文献   

3.
Brown spot is one of the most devasting and prevalent disease of rice and its control is mainly dependent on fungicide application. Therefore, this study aimed to examine the effects of Si and Mn on the development of brown spot on rice plants grown in hydroponic culture. Rice plants (cv. ‘Metica‐1’) were grown in plastic pots containing 0 or 2 mm Si (?Si and +Si treatments, respectively) with three Mn rates (0.5, 2.5 and 10 μm ). Plants were inoculated with B. oryzae 39 days after emergence. The following components of resistance were evaluated: incubation period (IP), number of lesions (NL) per cm2 of leaf area, real disease severity (RDS) and area under brown spot progress curve (AUBSPC). The content of Si and Mn in the plant tissues was also determined. Si content was significantly higher in rice tissue of plants of the +Si treatment than of the ?Si treatment regardless of the Mn rates used. The Mn rates did not affect the Si content of the rice plants. The Mn content of the rice tissues was significantly higher in the ?Si treatment than on +Si treatment, regardless of the Mn rate used. The Mn content was significantly lower at 0.5 μm Mn in comparison to the other rates for both ?Si and +Si treatments. The IP of brown spot on rice leaves significantly increased in the +Si treatment; but the Mn rates in the presence of Si had no effect on IP. In the ?Si treatment, the IP was significantly higher only at the rate of 2.5 μm . The NL, RDS and AUBSPC were significantly reduced in the +Si treatment regardless of the Mn rates. The Mn rates in the presence of Si had no effect on these components of resistance. Overall, Si dramatically impacted the development of brown spot regardless of the presence of Mn at either low or high rates. This may be useful in regions where the soil has either toxic or deficient levels of Mn and cultivars with brown spot resistance are not commercially available.  相似文献   

4.
Root colonization with arbuscular mycorrhizal fungi (AMF) enhances plant resistance particularly against soil‐borne pathogenic fungi. In this study, mycorrhizal inoculation with Glomus mosseae (Gm) significantly alleviated tomato mould disease caused by the air‐borne fungal pathogen, Cladosporium fulvum (Cf). The disease index (DI) in local leaves (receiving pathogen inoculation) and systemic leaves (just above the local leaf without pathogen inoculation) was 36.4% and 11.7% in mycorrhizal plants, respectively, whereas DI was 59.6% and 36.4% in the corresponding leaves of AMF non‐inoculated plants, after 50 days of Gm inoculation, corresponding to 15 days after Cf inoculation by leaf infiltration. Foliar spray inoculation with Cf also revealed that AMF pre‐inoculated plants had a higher resistance against subsequent pathogen infection, where the DI was 41.3% in mycorrhizal plants vs. 64.4% in AMF non‐inoculated plants. AMF‐inoculated plants showed significantly higher fresh and dry weight than non‐inoculated plants under both control (without pathogen) and pathogen treatments. AMF‐inoculated plants exhibited significant increases in activities of superoxide dismutase and peroxidase, along with decreases in levels of H2O2 and malondialdehyde, compared with non‐inoculated plants after pathogen inoculation. AMF inoculation led to increases in total chlorophyll contents and net photosynthesis rate as compared with non‐inoculated plants under control and pathogen infection. Pathogen infection on AMF non‐inoculated plants led to decreases in chlorophyll fluorescence parameters. However, pathogen infection did not affect these parameters in mycorrhizal plants. Taken together, these results indicate that AMF colonization may play an important role in plant resistance against air‐borne pathogen infection by maintaining redox poise and photosynthetic activity.  相似文献   

5.
Rice brown leaf spot is a major disease in the rice paddy field. The causal agent Cochliobolus miyabeanus is an ascomycete fungus and a representative necrotrophic pathogen in the investigation of rice-microbe interactions. The aims of this research were to identify a quantitative evaluation method to determine the amount of C. miyabeanus proliferation in planta and determine the method’s sensitivity. Real-time polymerase chain reaction (PCR) was employed in combination with the primer pair and Taqman probe specific to CmSCD1, a C. miyabeanus unigene encoding SCYTALONE DEHYDRATASE, which is involved in fungal melanin biosynthesis. Comparative analysis of the nucleotide sequences of CmSCD1 from Korean strains with those from the Japanese and Taiwanese strains revealed some sequence differences. Based on the crossing point (CP) values from Taqman real-time PCR containing a series of increasing concentrations of cloned amplicon or fungal genomic DNA, linear regressions with a high level of reliability (R2>0.997) were constructed. This system was able to estimate fungal genomic DNA at the picogram level. The reliability of this equation was further confirmed using DNA samples from both resistant and susceptible cultivars infected with C. miyabeanus. In summary, our quantitative system is a powerful alternative in brown leaf spot forecasting and in the consistent evaluation of disease progression.  相似文献   

6.
Brown spot disease, caused by Cochliobolus miyabeanus, is currently considered to be one of the most important yield reducers of rice (Oryza sativa L.). Despite its agricultural importance, little is known about the virulence mechanisms deployed by the fungus. Therefore, we set out to identify novel virulence factors with a role in disease development. This article reports, for the first time, the production of tentoxin by C. miyabeanus as a virulence factor during brown spot disease and the identification of the non‐ribosomal protein synthetase (NRPS) CmNps3, responsible for tentoxin biosynthesis. We compared the chemical compounds produced by C. miyabeanus strains differing in virulence ability using ultra‐high‐performance liquid chromatography (UHPLC) coupled to high‐resolution Orbitrap mass spectrometry (HRMS). The production of tentoxin by a highly virulent strain was revealed by principal component analysis of the detected ions and confirmed by UHPLC coupled to tandem‐quadrupole mass spectrometry (MS/MS). The corresponding NRPS was identified by in silico genome analysis and confirmed by gene deletion. Infection tests with wild‐type and Cmnps3 mutants showed that tentoxin acts as a virulence factor and is correlated with chlorosis development during the second phase of infection. Although rice has previously been classified as a tentoxin‐insensitive plant species, our data demonstrate that tentoxin production by C. miyabeanus affects symptom development.  相似文献   

7.
Severe brown leaf spot disease was observed on Paris polyphylla var. chinensis in Sichuan Province, China, in 2017 and 2018. The initial symptoms were many light‐brown small spots with necrotic centres, round or irregular in shape, becoming dark brown, gradually enlarging and eventually coalescing, causing extensive leaf senescence. A fungus was isolated from diseased leaves showing typical symptoms of brown leaf spot. The isolates were cultured on potato sucrose agar, and their morphological characteristics of the causal pathogen were observed under a light microscope. Pathogenicity tests revealed that this fungus was the causal pathogen of the disease. Molecular analyses of the sequences of the ribosomal DNA internal transcribed spacer (ITS) region, translation elongation factor 1‐alpha (TEF) and the RNA polymerase II second largest subunit (RBP2) gene were conducted to confirm the identity of the pathogen. The multi‐gene phylogeny indicated that the causal agent was Alternaria tenuissima. To our knowledge, this is the first report of A. tenuissima causing brown leaf sports on P. polyphylla var. chinensis in China.  相似文献   

8.
Rice plants accumulate various specialized metabolites, including phenylamides, in response to pathogen attack. We prepared 25 phenylamides, and developed a method of analyzing them by multiple reaction monitoring with liquid chromatography coupled with tandem mass spectrometry. We analyzed phenylamides in rice leaves infected with Cochliobolus miyabeanus and Xanthomonas oryzae. The phenylamides induced included benzoyltryptamine, cinnamoyl-, p-coumaroyl-, feruloyl-, and benzoylserotonins, cinnamoyl and benzoyltyramines, feruloylagmatine, and feruloylputrescine. Some of the phenylamides exhibited antimicrobial activity against C. miyabeanus and X. oryzae, indicating that they are phytoalexins. Treatment with jasmonic acid, salicylic acid, 6-benzylaminopurine, and ethephone also induced phenylamide accumulation. The compositions of the induced amides varied depending on the plant hormone used, and cinnamoyltryptamine, cinnamoylserotonin, and cinnamoyltyramine were not induced by the plant hormones. These findings suggest that several plant hormones and additional factors are involved in phenylamide accumulation in response to pathogen infection in rice.  相似文献   

9.
Five rice cultivars, one hybrid (WR96), three modern (BR16, BR26, and BRRI Dhan27) and one local (Pari) were screened for reaction to brown leaf spot disease caused by Cochliobolus miyabeanus and performance of yield-related characters. The severity of brown leaf spot varied with growth stages of rice plant as well as different cultivars tested under field condition. Low disease severity was observed at maximum tillering stage compared to moderate to high at dough stage, with hybrid cultivar WR96 showing highest disease, while local cultivar Pari had the lowest. Brown spot disease severity in different cultivars under induced epiphytic condition also followed the similar trend. The results also revealed that most of the yield-contributing characters examined showed wide variations among the cultivars. Modern cultivar BR16 produced the highest panicle length, number of grain per panicle and grain yield per hectare. At the same time as local cultivar Pari generated the lowest number of tiller per plant, panicle length, grain number per panicle and grain yield per hectare. Moreover, hybrid cultivar WR96 produced the highest percentage of spotted grain per panicle and seed yielding C. miyabeanus, and also the lower percentage of seed germination, while the reverse was observed in local cultivar Pari. These findings may allow producers and breeders to select rice cultivar, resistant or tolerant to brown leaf spot disease and to avoid significant reductions in grain yields.  相似文献   

10.
苹果褐斑病菌侵染对苹果叶片光合机构功能的影响   总被引:2,自引:0,他引:2  
为了探究苹果褐斑病菌侵染对苹果叶片光合机构的伤害机制,以‘寒富’苹果为试材,研究苹果褐斑病菌侵染对苹果叶片光合作用和光系统功能的影响。结果表明:随褐斑病菌侵染加重(叶片感病程度分0、1、2、3、4和5级),叶片的叶绿素a含量和总叶绿素含量持续下降,其中2~5级与对照相比差异显著,病菌侵染提高了叶片类胡萝卜素含量,但仅以2级与对照差异显著。苹果褐斑病菌侵染显著降低了叶片的净光合速率(Pn),3~5级病叶的Pn分别较对照下降44.9%、56.6%和70.3%,而胞间CO2浓度(Ci)上升,说明非气孔因素是光合作用的主要限制因子。褐斑病菌侵柒影响了光合电子传递效率,随病菌侵染程度加重,光系统Ⅱ反应中心、供体侧放氧复合体(Wk)和受体侧(Vj)受到的伤害加重,并引起苹果叶片PSII的光合性能指数用PIABS和PSI受体侧末端电子受体的量子产额(φRo)急剧下降。褐斑病菌侵染加重了苹果叶片的膜脂过氧化程度,1~5级感病叶片的丙二醛(MDA)含量均显著高于对照,引发超氧化物歧化酶(SOD)及过氧化物酶(POD)活性的上调。以上结果表明,苹果褐斑病菌侵染引起叶片光合色素降解,对PSII反应中心、受体侧和供体侧造成伤害,进一步影响了PSI的电子传递效率,并导致叶片膜脂过氧化,造成苹果叶片光合能力下降。  相似文献   

11.
It is well documented that slag-based silicon fertilizers have beneficial effects on the growth and disease resistance of rice. However, their effects vary greatly with sources of slag and are closely related to availability of silicon (Si) in these materials. To date, few researches have been done to compare the differences in plant performance and disease resistance between different slag-based silicon fertilizers applied at the same rate of plant-available Si. In the present study both steel and iron slags were chosen to investigate their effects on rice growth and disease resistance under greenhouse conditions. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the effects of slags on ultrastructural changes in leaves of rice naturally infected by Bipolaris oryaze, the causal agent of brown spot. The results showed that both slag-based Si fertilizers tested significantly increased rice growth and yield, but decreased brown spot incidence, with steel slag showing a stronger effect than iron slag. The results of SEM analysis showed that application of slags led to more pronounced cell silicification in rice leaves, more silica cells, and more pronounced and larger papilla as well. The results of TEM analysis showed that mesophyll cells of slag-untreated rice leaf were disorganized, with colonization of the fungus (Bipolaris oryzae), including chloroplast degradation and cell wall alterations. The application of slag maintained mesophyll cells relatively intact and increased the thickness of silicon layer. It can be concluded that applying slag-based fertilizer to Si-deficient paddy soil is necessary for improving both rice productivity and brown spot resistance. The immobile silicon deposited in host cell walls and papillae sites is the first physical barrier for fungal penetration, while the soluble Si in the cytoplasm enhances physiological or induced resistance to fungal colonization.  相似文献   

12.
Fifty plant extracts, four oil cakes and eight antagonistic organisms were tested against Bipolaris oryzae (Cochliobolus miyabeanus), the causal agent of brown spot disease of rice. In vitro studies indicated that two leaf extracts, Nerium oleander and Pithecolobium dulce exerted the higher percent inhibition to mycelial growth (77.4, 75.1%) and spore germination (80.3, 80.0%) of B. oryzae. Among the four oil cake extracts tested in vitro against B. oryzae, neem cake extract showed the maximum inhibition percent to mycelial growth (80.18%) and spore germination (81.13%) of the pathogen followed by mahua cake extract, castor and gingelly cake extract. Trichoderma viride (Tv2) was significantly effective in inhibiting the mycelial growth (62.92%) and spore germination (77.03%) of the pathogen followed by Trichoderma harzianum (Th5) and Trichoderma reesei (Tr3). The promising leaf extracts, oil cake extracts and antagonistic microorganisms were further evaluated for their efficacies in disease management under glasshouse and field conditions. In glasshouse studies, post-infectional spraying of rice plants with neem cake extract, N. oleander leaf extract and T. viride (Tv2) was significantly effective in reducing the incidence of brown spot of rice by 66, 52 and 45 percent respectively. Two rounds of spraying of rice plants with neem cake extract, N. oleander leaf extract and T. viride (Tv2) in the field at initial appearance of disease and 15 days later reduced the incidence of brown spot (70, 53 and 48% disease reduction respectively) and increased the yield by 23, 18 and 15 percent respectively.  相似文献   

13.
1. The response of a phytopathogen vector to pathogen‐induced plant volatiles was investigated, as well as the response of the phytopathogen vector's parasitoid to herbivore‐induced plant volatiles released from plants with and without drought stress. 2. These experiments were performed with Asian citrus psyllid (Diaphorina citri), vector of the plant pathogen Candidatus Liberibacter asiaticus (CLas) and its parasitoid Tamarixia radiata as models. Candidatus Liberibacter asiaticus is the presumed causal pathogen of huanglongbing (HLB), also called citrus greening disease. 3. Diaphorina citri vectors were attracted to headspace volatiles of CLas‐infected citrus plants at 95% of their water‐holding capacity (WHC); such attraction to infected plants was much lower under drought stress. Attraction of the vector to infected and non‐stressed plants was correlated with greater release of methyl salicylate (MeSA) as compared with uninfected and non‐stressed control citrus plants. Drought stress decreased MeSA release from CLas‐infected plants as compared with non‐stressed and infected plants. 4. Similarly, T. radiata was attracted to headspace volatiles released from D. citri‐infested citrus plants at 95% of their WHC. However, wasps did not show preference between headspace volatiles of psyllid‐infested and uninfested plants when they were at 35% WHC, suggesting that herbivore‐induced defences did not activate to recruit this natural enemy under drought stress. 5. Our results demonstrate that herbivore‐ and pathogen‐induced responses are environmentally dependent and do not occur systematically following damage. Drought stress affected both pathogen‐ and herbivore‐induced plant volatile release, resulting in concomitant decreases in behavioural response of both the pathogen's vector and the vector's primary parasitoid.  相似文献   

14.
In this study, we have used untargeted global metabolomic analysis to determine and compare the chemical nature of the metabolites altered during the infection of tomato plants (cv. Ailsa Craig) with Botrytis cinerea (Bot) or Pseudomonas syringae pv. tomato DC3000 (Pst), pathogens that have different invasion mechanisms and lifestyles. We also obtained the metabolome of tomato plants primed using the natural resistance inducer hexanoic acid and then infected with these pathogens. By contrasting the metabolomic profiles of infected, primed, and primed + infected plants, we determined not only the processes or components related directly to plant defense responses, but also inferred the metabolic mechanisms by which pathogen resistance is primed. The data show that basal resistance and hexanoic acid‐induced resistance to Bot and Pst are associated with a marked metabolic reprogramming. This includes significant changes in amino acids, sugars and free fatty acids, and in primary and secondary metabolism. Comparison of the metabolic profiles of the infections indicated clear differences, reflecting the fact that the plant's chemical responses are highly adapted to specific attackers. The data also indicate involvement of signaling molecules, including pipecolic and azelaic acids, in response to Pst and, interestingly, to Bot. The compound 1‐methyltryptophan was shown to be associated with the tomato–Pst and tomato–Bot interactions as well as with hexanoic acid‐induced resistance. Root application of this Trp‐derived metabolite also demonstrated its ability to protect tomato plants against both pathogens.  相似文献   

15.
Bacterial spot disease caused by Xanthomonas campestris pv. vesicatoria is one of the most important destructive diseases of tomato in many parts of the agricultural world. Therefore, the present study aims to determine the effects of Bacillus subtilis CBR05 inoculation on bacterial spot disease severity and the induction of defence-related enzymes response in tomato. Tomato leaves were evaluated to determine the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and polyphenol oxidase (PPO)) and the content of malondialdehyde (MDA). A reduction in bacterial spot severity was observed in plants inoculated with B. subtilis, compared with those of uninoculated controls. A significant increase in SOD, CAT, POD, and PPO activities was observed in plants treated with B. subtilis after 24?h inoculation compared with non-inoculated pathogen control and mock-inoculated controls. Moreover, the MDA content was induced by pathogen infection, and its amount in B. subtilis inoculated plants was significantly lower than that in pathogen control. Our results suggest that early increases in antioxidant enzymes and the reduction in MDA content with B. subtilis inoculation may play a pivotal role in mitigating oxidative stress, thereby induced systemic resistance against bacterial spot disease in tomato.  相似文献   

16.
Spot blotch, caused by the fungus Bipolaris sorokiniana, is one of the most important diseases on wheat. The effects of silicon (Si) on this wheat disease were studied. Plants of wheat cultivars BR‐18 and BRS‐208 were grown in plastic pots containing Si‐deficient soil amended with either calcium silicate (+Si) or calcium carbonate (?Si). The content of Si in leaf tissue was significantly increased by 90.5% for the +Si treatment. There was no significant difference between Si treatments for calcium content, so variations in Si accounted for differences in the level of resistance to spot blotch. The incubation period was significantly increased by 40% for the +Si treatment. The area under spot blotch progress curve, number of lesions per cm2 of leaf area, and real disease severity significantly decreased by 62, 36 and 43.5% in +Si treatment. There was no significant effect of Si on lesion size. The role played by total soluble phenolics in the increased resistance to spot blotch of plants from both cultivars supplied with Si was not clear. Plants from cultivar BR‐18 supplied with Si showed the highest values for concentration of lignin‐thioglycolic acid derivatives during the most advanced stages of fungus infection. Chitinase activity was high at the most advanced stages of fungus infection on leaves from both cultivars supplied with Si and may have had an effect on fungus growth based on the reduction of the components of resistance evaluated. Peroxidase activity was found to be high only at 96 h after inoculation of both cultivars supplied with Si. Polyphenoloxidase activity had no apparent effect on resistance regardless of Si treatments. Results revealed that supplying Si to wheat plants can increase resistance against spot blotch.  相似文献   

17.
Upon inoculation with pathogenic microbes, plants induce an array of metabolic changes that potentially contribute to induced resistance or even enhance susceptibility. When analysing leaf lipid composition during the Arabidopsis thaliana–Pseudomonas syringae interaction, we found that accumulation of the phytosterol stigmasterol is a significant plant metabolic process that occurs upon bacterial leaf infection. Stigmasterol is synthesized from β‐sitosterol by the cytochrome P450 CYP710A1 via C22 desaturation. Arabidopsis cyp710A1 mutant lines impaired in pathogen‐inducible expression of the C22 desaturase and concomitant stigmasterol accumulation are more resistant to both avirulent and virulent P. syringae strains than wild‐type plants, and exogenous application of stigmasterol attenuates this resistance phenotype. These data indicate that induced sterol desaturation in wild‐type plants favours pathogen multiplication and plant susceptibility. Stigmasterol formation is triggered through perception of pathogen‐associated molecular patterns such as flagellin and lipopolysaccharides, and through production of reactive oxygen species, but does not depend on the salicylic acid, jasmonic acid or ethylene defence pathways. Isolated microsomal and plasma membrane preparations exhibited a similar increase in the stigmasterol/β‐sitosterol ratio as whole‐leaf extracts after leaf inoculation with P. syringae, indicating that the stigmasterol produced is incorporated into plant membranes. The increased contents of stigmasterol in leaves after pathogen attack do not influence salicylic acid‐mediated defence signalling but attenuate pathogen‐induced expression of the defence regulator flavin‐dependent monooxygenase 1. P. syringae thus promotes plant disease susceptibility through stimulation of sterol C22 desaturation in leaves, which increases the stigmasterol to β‐sitosterol ratio in plant membranes.  相似文献   

18.
19.
Reactive oxygen species (ROS) play fundamental roles in plant responses to pathogen infection, including modulation of cell death processes and defense‐related gene expression. Cell death triggered as part of the hypersensitive response enhances resistance to biotrophic pathogens, but favors the virulence of necrotrophs. Even though the involvement of ROS in the orchestration of defense responses is well established, the relative contribution of specific subcellular ROS sources to plant resistance against microorganisms with different pathogenesis strategies is not completely known. The aim of this work was to investigate the role of chloroplastic ROS in plant defense against a typical necrotrophic fungus, Botrytis cinerea. For this purpose, we used transgenic Nicotiana tabacum (tobacco) lines expressing a plastid‐targeted cyanobacterial flavodoxin (pfld lines), which accumulate lower chloroplastic ROS in response to different stresses. Tissue damage and fungal growth were significantly reduced in infected leaves of pfld plants, as compared with infected wild‐type (WT) counterparts. ROS build‐up triggered by Botrytis infection and associated with chloroplasts was significantly decreased (70–80%) in pfld leaves relative to the wild type. Phytoalexin accumulation and expression of pathogenesis‐related genes were induced to a lower degree in pfld plants than in WT siblings. The impact of fungal infection on photosynthetic activity was also lower in pfld leaves. The results indicate that chloroplast‐generated ROS play a major role in lesion development during Botrytis infection. This work demonstrates that the modulation of chloroplastic ROS levels by the expression of a heterologous antioxidant protein can provide a significant degree of protection against a canonical necrotrophic fungus.  相似文献   

20.
A leaf spot and leaf blight disease was observed on Aloe vera plants as small, circular to oval dark brown necrotic sunken spots on leaves. Infected tissues collected from different sites in diseased fields were cultured on potato carrot agar medium, and the pathogen was identified as Alternaria alternata on the basis of morphological and cultural characteristics. The conidiophores were branched, straight, golden brown, smooth‐walled, measuring up to μm long by 3 μm wide with one conidial scar. The conidia were golden brown in colour and produced in long branched chains, obclavate in shape and in short conical flask. Pathogenicity tests conducted on healthy potted aloe plants in a glasshouse showed typical leaf spot symptoms after 4–7 days. The optimal temperature for the growth of A. alternata was 25°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号