首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron acquisition by iron‐limited cyanobacteria is typically considered to be mediated mainly by siderophores, iron‐chelating molecules released by iron‐limited cyanobacteria into the environment. In this set of experiments, iron uptake by iron‐limited cells of the cyanobacterium Anabaena flos‐aquae (L.) Bory was investigated in cells resuspended in siderophore‐free medium. Removal of siderophores decreased iron‐uptake rates by ~60% compared to siderophore‐replete conditions; however, substantial rates of iron uptake remained. In the absence of siderophores, Fe(III) uptake was much more rapid from a weaker synthetic chelator [N‐(2‐hydroxyethyl)ethylenediamine‐N,N′,N′‐triacetic acid (HEDTA); log Kcond = 28.64 for Fe(III)HEDTA(OH)?] than from a very strong chelator [N,N′‐bis(2‐hydroxybenzyl)‐ethylenediamine‐N,N′‐diacetic acid (HBED); log Kcond = 31.40 for Fe(III)HBED?], and increasing chelator:Fe(III) ratios decreased the Fe(III)‐uptake rate; these results were evident in both short‐term (4 h; absence of siderophores) and long‐term (116 h; presence of siderophores) experiments. However, free (nonchelated) Fe(III) provided the most rapid iron uptake in siderophore‐free conditions. The results of the short‐term experiments are consistent with an Fe(III)‐binding/uptake mechanism associated with the cyanobacterial outer membrane that operates independently of extracellular siderophores. Iron uptake was inhibited by temperature‐shock treatments of the cells and by metabolically compromising the cells with diphenyleneiodonium; this finding indicates that the process is dependent on active metabolism to operate and is not simply a passive Fe(III)‐binding mechanism. Overall, these results point to an important, siderophore‐independent iron‐acquisition mechanism by iron‐limited cyanobacterial cells.  相似文献   

2.
3.
In order to stimulate selection for plant‐associated bacteria with the potential to improve Cd phytoextraction, yellow lupine plants were grown on a metal‐contaminated field soil. It was hypothesised that growing these plants on this contaminated soil, which is a source of bacteria possessing different traits to cope with Cd, could enhance colonisation of lupine with potential plant‐associated bacteria that could then be inoculated in Cd‐exposed plants to reduce Cd phytotoxicity and enhance Cd uptake. All cultivable bacteria from rhizosphere, root and stem were isolated and genotypically and phenotypically characterised. Many of the rhizobacteria and root endophytes produce siderophores, organic acids, indole‐3‐acetic acid (IAA) and aminocyclopropane‐1‐carboxylate (ACC) deaminase, as well as being resistant to Cd and Zn. Most of the stem endophytes could produce organic acids (73.8%) and IAA (74.3%), however, only a minor fraction (up to 0.7%) were Cd or Zn resistant or could produce siderophores or ACC deaminase. A siderophore‐ and ACC deaminase‐producing, highly Cd‐resistant Rhizobium sp. from the rhizosphere, a siderophore‐, organic acid‐, IAA‐ and ACC deaminase‐producing highly Cd‐resistant Pseudomonas sp. colonising the roots, a highly Cd‐ and Zn‐resistant organic acid and IAA‐producing Clavibacter sp. present in the stem, and a consortium composed of these three strains were inoculated into non‐exposed and Cd‐exposed yellow lupine plants. Although all selected strains possessed promising in vitro characteristics to improve Cd phytoextraction, inoculation of none of the strains (i) reduced Cd phytotoxicity nor (ii) strongly affected plant Cd uptake. This work highlights that in vitro characterisation of bacteria is not sufficient to predict the in vivo behaviour of bacteria in interaction with their host plants.  相似文献   

4.
5.
Aims:  This study was conducted to investigate the application of 2,2′‐dipyridyl as a new approach to isolating siderophore‐producing actinobacteria. Methods and Results:  Isolation of actinobacteria from soil was conducted by a soil dilution plate technique using starch‐casein agar. Iron starvation was fostered by the incorporation of the iron chelator 2,2′‐dipyridyl in the isolation medium. Pretreatment of the samples at an elevated temperature (40°C) ensured that the majority of nonsporulating bacteria were excluded. The survivors of this treatment were largely actinobacteria. Of the viable cultures grown in the presence of 2,2′‐dipyridyl, more than 78–88% (average of three separate studies) were reported to produce siderophore‐like compounds compared to 13–18% (average of three separate studies) when grown on the basic media in the absence of the chelating agent. The most prolific producers as assessed by the chrome azurol sulphate (CAS) assay were further characterized and found to belong to the genus Streptomyces. Conclusions:  Selective pressure using 2,2′‐dipyridyl as an iron‐chelating agent in starch‐casein media increased the isolation of siderophore‐producing actinobacteria compared to the unamended medium. Significance and Impact of the Study:  The study described represents a new approach to the isolation of siderophore‐producing actinobacteria using a novel procedure that places a selection on cell population based upon the incorporation of a chelating agent in the medium.  相似文献   

6.
In many aquatic environments the essential micronutrient iron is predominantly complexed by a heterogeneous pool of strong organic chelators. Research on iron uptake mechanisms of cyanobacteria inhabiting these environments has focused on endogenous siderophore production and internalization. However, as many cyanobacterial species do not produce siderophores, alternative Fe acquisition mechanisms must exist. Here we present a study of the iron uptake pathways in the unicellular, planktonic, non-siderophore producing strain Synechocystis sp. PCC 6803. By applying trace metal clean techniques and a chemically controlled growth medium we obtained reliable and reproducible short-term (radioactive assays) and long-term (growth experiments) iron uptake rates. We found that Synechocystis 6803 is capable of acquiring iron from exogenous ferrisiderophores (Ferrioxamine-B, FeAerobactin) and that unchelated, inorganic Fe is a highly available source of iron. Inhibition of iron uptake by the Fe(II)-specific ligand, ferrozine, indicated that reduction of both inorganic iron and ferrisiderophore complexes occurs before transport through the plasma membrane. Measurements of iron reduction rates and the inhibitory effect of ferrozine on growth supported this conclusion. The reduction-based uptake strategy is well suited for acquiring iron from multiple complexes in dilute aquatic environments and may play an important role in other cyanobacterial strains.  相似文献   

7.
Xanthomonas campestris pv. campestris causes black rot, a serious disease of crucifers. Xanthomonads encode a siderophore biosynthesis and uptake gene cluster xss (Xanthomonas siderophore synthesis) involved in the production of a vibrioferrin‐type siderophore. However, little is known about the role of the siderophore in the iron uptake and virulence of X. campestris pv. campestris. In this study, we show that X. campestris pv. campestris produces an α‐hydroxycarboxylate‐type siderophore (named xanthoferrin), which is required for growth under low‐iron conditions and for optimum virulence. A mutation in the siderophore synthesis xssA gene causes deficiency in siderophore production and growth under low‐iron conditions. In contrast, the siderophore utilization ΔxsuA mutant is able to produce siderophore, but exhibits a defect in the utilization of the siderophore–iron complex. Our radiolabelled iron uptake studies confirm that the ΔxssA and ΔxsuA mutants exhibit defects in ferric iron (Fe3+) uptake. The ΔxssA mutant is able to utilize and transport the exogenous xanthoferrin–Fe3+ complex; in contrast, the siderophore utilization or uptake mutant ΔxsuA exhibits defects in siderophore uptake. Expression analysis of the xss operon using a chromosomal gusA fusion indicates that the xss operon is expressed during in planta growth and under low‐iron conditions. Furthermore, exogenous iron supplementation in cabbage leaves rescues the in planta growth deficiency of ΔxssA and ΔxsuA mutants. Our study reveals that the siderophore xanthoferrin is an important virulence factor of X. campestris pv. campestris which promotes in planta growth by the sequestration of Fe3+.  相似文献   

8.
Many bacteria produce siderophores to bind and take up Fe(III), an essential trace metal with extremely low solubility in oxygenated environments at circumneutral pH. The purple non‐sulfur bacterium Rhodopseudomonas palustris str. CGA009 is a metabolically versatile model organism with high iron requirements that is able to grow under aerobic and anaerobic conditions. Siderophore biosynthesis has been predicted by genomic analysis, however, siderophore structures were not identified. Here, we elucidate the structure of two novel siderophores from R. palustris: rhodopetrobactin A and B. Rhodopetrobactins are structural analogues of the known siderophore petrobactin in which the Fe chelating moieties are conserved, including two 3,4‐dihydroxybenzoate and a citrate substructure. In the place of two spermidine linker groups in petrobactin, rhodopetrobactins contain two 4,4′‐diaminodibutylamine groups of which one or both are acetylated at the central amine. We analyse siderophore production under different growth modes and show that rhodopetrobactins are produced in response to Fe limitation under aerobic as well as under anaerobic conditions. Evaluation of the chemical characteristics of rhodopetrobactins indicates that they are well suited to support Fe acquisition under variable oxygen and light conditions.  相似文献   

9.
10.
11.
12.
We report the production of two types of siderophores namely catecholate and hydroxamate in modified succinic acid medium (SM) from Alcaligenes faecalis. Two fractions of siderophores were purified on amberlite XAD, major fraction was hydroxamate type having a λmax at 224 nm and minor fraction appeared as catecholate with a λmax of 264 nm. The recovery yield obtained from major and minor fractions was 297 and 50 mg ml−1 respectively. The IEF pattern of XAD-4 purified siderophore suggested the pI value of 6.5. Cross feeding studies revealed that A. faecalis accepts heterologous as well as self (hydroxamate) siderophore in both free and iron complexed forms however; the rate of siderophore uptake was more in case of siderophores complexed to iron. Siderophore iron uptake studies indicated the differences between hydroxamate siderophore of A. faecalis and Alc E, a siderophore of Alcaligenes eutrophus.  相似文献   

13.
14.
Secretion of proteins is a central strategy of bacteria to influence and respond to their environment. Until now, there has been very few discoveries regarding the cyanobacterial secrotome or the secretion machineries involved. For a mutant of the outer membrane channel TolC‐homologue HgdD of Anabaena sp. PCC 7120, a filamentous and heterocyst‐forming cyanobacterium, an altered secretome profile was reported. To define the role of HgdD in protein secretion, we have developed a method to isolate extracellular proteins of Anabaena sp. PCC 7120 wild type and an hgdD loss‐of‐function mutant. We identified 51 proteins of which the majority is predicted to have an extracellular secretion signal, while few seem to be localized in the periplasmic space. Eight proteins were exclusively identified in the secretome of wild‐type cells, which coincides with the distribution of type I secretion signal. We selected three candidates and generated hemagglutinin‐tagged fusion proteins which could be exclusively detected in the extracellular protein fraction. However, these proteins are not secreted in the hgdD‐mutant background, where they are rapidly degraded. This confirms a direct function of HgdD in protein secretion and points to the existence of a quality control mechanism at least for proteins secreted in an HgdD‐dependent pathway.  相似文献   

15.
Azotobacter vinelandii is a terrestrial diazotroph well studied for its siderophore production capacity and its role as a model nitrogen fixer. In addition to Fe, A. vinelandii siderophores are used for the acquisition of the nitrogenase co‐factors Mo and V. However, regulation of siderophore production by Mo‐ and V‐limitation has been difficult to confirm and knowledge of the full suite of siderophores synthesized by this organism has only recently become available. Using this new information, we conducted an extensive study of siderophore production in N2‐fixing A. vinelandii under a variety of trace metal conditions. Our results show that under Fe‐limitation the production of all siderophores increases, while under Mo‐limitation only catechol siderophore production is increased, with the strongest response seen in protochelin. We also find that the newly discovered A. vinelandii siderophore vibrioferrin is almost completely repressed under Mo‐ and V‐limitation. An examination of the potential nitrogen ‘cost’ of siderophore production reveals that investments in siderophore N can represent as much as 35% of fixed N, with substantial differences between cultures using the Mo‐ as opposed to the less efficient V‐nitrogenase.  相似文献   

16.
Iron is a key trace element important for many biochemical processes and its availability varies with the environment. For human pathogenic fungi iron acquisition can be particularly problematical because host cells sequester free iron as part of the acute‐phase response to infection. Fungi rely on high‐affinity iron uptake systems, such as reductive iron assimilation (RIA) and siderophore‐mediated iron uptake (non‐RIA). These have been extensively studied in pathogenic fungi that exist outside of host cells, but much less is known for intracellular fungal pathogens. Talaromyces marneffei is a dimorphic fungal pathogen endemic to Southeast Asia. In the host T. marneffei resides within macrophages where it grows as a fission yeast. T. marneffei has genes of both iron assimilation systems as well as a paralogue of the siderophore biosynthetic gene sidA, designated sidX. Unlike other fungi, deletion of sidA or sidX resulted in cell type‐specific effects. Mutant analysis showed that T. marneffei yeast cells also employ RIA for iron acquisition, providing an additional system in this cell type that differs substantially from hyphal cells. These data illustrate the specialized iron acquisition systems used by the different cell types of a dimorphic fungal pathogen and highlight the complexity in siderophore‐biosynthetic pathways amongst fungi.  相似文献   

17.
Siderophores play a central role in iron metabolism and virulence of most fungi. Both Aspergillus fumigatus and Aspergillus nidulans excrete the siderophore triacetylfusarinine C (TAFC) for iron acquisition. In A. fumigatus, green fluorescence protein‐tagging revealed peroxisomal localization of the TAFC biosynthetic enzymes SidI (mevalonyl‐CoA ligase), SidH (mevalonyl‐CoA hydratase) and SidF (anhydromevalonyl‐CoA transferase), while elimination of the peroxisomal targeting signal (PTS) impaired both, peroxisomal SidH‐targeting and TAFC biosynthesis. The analysis of A. nidulans mutants deficient in peroxisomal biogenesis, ATP import or protein import revealed that cytosolic mislocalization of one or two but, interestingly, not all three enzymes impairs TAFC production during iron starvation. The PTS motifs are conserved in fungal orthologues of SidF, SidH and SidI. In agreement with the evolutionary conservation of the partial peroxisomal compartmentalization of fungal siderophore biosynthesis, the SidI orthologue of coprogen‐type siderophore‐producing Neurospora crassa was confirmed to be peroxisomal. Taken together, this study identified and characterized a novel, evolutionary conserved metabolic function of peroxisomes.  相似文献   

18.
Under iron limitation, bacteria scavenge ferric (Fe3+) iron bound to siderophores or other chelates from the environment to fulfill their nutritional requirement. In gram‐negative bacteria, the siderophore uptake system prototype consists of an outer membrane transporter, a periplasmic binding protein and a cytoplasmic membrane transporter, each specific for a single ferric siderophore or siderophore family. Here, we show that spontaneous single gain‐of‐function missense mutations in outer membrane transporter genes of Bradyrhizobium japonicum were sufficient to confer on cells the ability to use synthetic or natural iron siderophores, suggesting that selectivity is limited primarily to the outer membrane and can be readily modified. Moreover, growth on natural or synthetic chelators required the cytoplasmic membrane ferrous (Fe2+) iron transporter FeoB, suggesting that iron is both dissociated from the chelate and reduced to the ferrous form within the periplasm prior to cytoplasmic entry. The data suggest rapid adaptation to environmental iron by facile mutation of selective outer membrane transporter genes and by non‐selective uptake components that do not require mutation to accommodate new iron sources.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号