首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The multigenic Rsv1 locus in the soybean plant introduction (PI) ‘PI96983’ confers extreme resistance against the majority of Soybean mosaic virus (SMV) strains, including SMV‐N, but not SMV‐G7 and SMV‐G7d. In contrast, in susceptible soybean cultivars lacking a functional Rsv1 locus, such as ‘Williams82’ (rsv1), SMV‐N induces severe disease symptoms and accumulates to a high level, whereas both SMV‐G7 and SMV‐G7d induce mild symptoms and accumulate to a significantly lower level. Gain of virulence by SMV‐N on Rsv1‐genotype soybean requires concurrent mutations in both the helper‐component proteinase (HC‐Pro) and P3 cistrons. This is because of the presence of at least two resistance (R) genes, probably belonging to the nucleotide‐binding leucine‐rich repeat (NB‐LRR) class, within the Rsv1 locus, independently mediating the recognition of HC‐Pro or P3. In this study, we show that the majority of experimentally evolved mutational pathways that disrupt the avirulence functions of SMV‐N on Rsv1‐genotype soybean also result in mild symptoms and reduced accumulation, relative to parental SMV‐N, in Williams82 (rsv1). Furthermore, the evaluation of SMV‐N‐derived HC‐Pro and P3 chimeras, containing homologous sequences from virulent SMV‐G7 or SMV‐G7d strains, as well as SMV‐N‐derived variants containing HC‐Pro or P3 point mutation(s) associated with gain of virulence, reveals a direct correlation between the perturbation of HC‐Pro and a fitness penalty in Williams82 (rsv1). Collectively, these data demonstrate that gain of virulence by SMV on Rsv1‐genotype soybean results in fitness loss in a previously susceptible soybean genotype, this being a consequence of mutations in HC‐Pro, but not in P3.  相似文献   

2.
‘Gene‐for‐gene’ theory predicts that gain of virulence by an avirulent pathogen on plants expressing resistance (R) genes is associated with fitness loss in susceptible hosts. However, the validity of this prediction has been studied in only a few plant viral pathosystems. In this study, the Soybean mosaic virus (SMV)–Rsv4 pathosystem was exploited to test this prediction. In Rsv4‐genotype soybeans, P3 of avirulent SMV strains provokes an as yet uncharacterized resistance mechanism that restricts the invading virus to the inoculated leaves. A single amino acid substitution in P3 functionally converts an avirulent to a virulent strain, suggesting that the genetic composition of P3 plays a crucial role in virulence on Rsv4‐genotype soybeans. In this study, we examined the impact of gain of virulence mutation(s) on the fitness of virulent variants derived from three avirulent SMV strains in a soybean genotype lacking the Rsv4 gene. Our data demonstrate that gain of virulence mutation(s) by all avirulent viruses on Rsv4‐genotype soybean is associated with a relative fitness loss in a susceptible host. The implications of this finding on the durable deployment of the Rsv4 gene in soybean are discussed.  相似文献   

3.
Resistance to Soybean mosaic virus (SMV) in soybean is conferred by three dominant genes: Rsv1, Rsv3 and Rsv4. Over the years, scientists in the USA have utilized a set of standard pathotypes, SMV‐G1 to SMV‐G7, to study interaction with Rsv‐genotype soybeans. However, these pathotypes were isolated from a collection of imported soybean germplasm over 30 years ago. In this study, 35 SMV field isolates collected in recent years from 11 states were evaluated for gain of virulence on soybean genotypes containing individual Rsv genes. All isolates were avirulent on L78‐379 (Rsv1), whereas 19 were virulent on L29 (Rsv3). On PI88788 (Rsv4), 14 of 15 isolates tested were virulent; however, only one was capable of systemically infecting all of the inoculated V94‐5152 (Rsv4). Nevertheless, virulent variants from 11 other field isolates were rapidly selected on initial inoculation onto V94‐5152 (Rsv4). The P3 cistrons of the original isolates and their variants on Rsv4‐genotype soybeans were sequenced. Analysis showed that virulence on PI88788 (Rsv4) was not associated, in general, with selection of any new amino acid, whereas Q1033K and G1054R substitutions were consistently selected on V94‐5152 (Rsv4). The role of Q1033K and G1054R substitutions, individually or in combination, in virulence on V94‐5152 (Rsv4) was confirmed on reconstruction in the P3 cistron of avirulent SMV‐N, followed by biolistic inoculation. Collectively, our data demonstrate that SMV has evolved virulence towards Rsv3 and Rsv4, but not Rsv1, in the USA. Furthermore, they confirm that SMV virulence determinants on V94‐5152 (Rsv4) reside on P3.  相似文献   

4.
Chowda-Reddy RV  Sun H  Hill JH  Poysa V  Wang A 《PloS one》2011,6(11):e28342

Background

Genetic resistance is the most effective and sustainable approach to the control of plant pathogens that are a major constraint to agriculture worldwide. In soybean, three dominant R genes, i.e., Rsv1, Rsv3 and Rsv4, have been identified and deployed against Soybean mosaic virus (SMV) with strain-specificities. Molecular identification of virulent determinants of SMV on these resistance genes will provide essential information for the proper utilization of these resistance genes to protect soybean against SMV, and advance knowledge of virus-host interactions in general.

Methodology/Principal Findings

To study the gain and loss of SMV virulence on all the three resistance loci, SMV strains G7 and two G2 isolates L and LRB were used as parental viruses. SMV chimeras and mutants were created by partial genome swapping and point mutagenesis and then assessed for virulence on soybean cultivars PI96983 (Rsv1), L-29 (Rsv3), V94-5152 (Rsv4) and Williams 82 (rsv). It was found that P3 played an essential role in virulence determination on all three resistance loci and CI was required for virulence on Rsv1- and Rsv3-genotype soybeans. In addition, essential mutations in HC-Pro were also required for the gain of virulence on Rsv1-genotype soybean. To our best knowledge, this is the first report that CI and P3 are involved in virulence on Rsv1- and Rsv3-mediated resistance, respectively.

Conclusions/Significance

Multiple viral proteins, i.e., HC-Pro, P3 and CI, are involved in virulence on the three resistance loci and simultaneous mutations at essential positions of different viral proteins are required for an avirulent SMV strain to gain virulence on all three resistance loci. The likelihood of such mutations occurring naturally and concurrently on multiple viral proteins is low. Thus, incorporation of all three resistance genes in a soybean cultivar through gene pyramiding may provide durable resistance to SMV.  相似文献   

5.
In soybean, Rsv1, a single dominant resistance gene, invokes extreme resistance (ER) against most Soybean mosaic virus (SMV) strains, including SMV-N, but not SMV-G7, which provokes a virulent lethal systemic hypersensitive response (LSHR). The elicitor functions of the two viruses provoking Rsv1-mediated ER and LSHR have been mapped to the N-terminal 271 amino acids of P3 from SMV-N and SMV-G7, respectively, which differ by nine residues between the two strains. To identify amino acids of P3 from SMV-N provoking Rsv1-mediated ER, the unique residues of SMV-G7 were substituted with those of SMV-N. Of the mutants tested on Rsv1-genotype soybean, only SMV-G7(I788R) and SMV-G7(T948A) lost virulence. However, substitution of amino acids of SMV-N, individually or in combination, with the reciprocal residues from SMV-G7 at these two positions failed to confer virulence to SMV-N. In the search for additional virulence determinants, a series of SMV-N chimeras was generated in which fragments within a region from near the middle of the helper-component proteinase (HC-Pro) cistron to the 5' end of the cytoplasmic inclusion cistron, nucleotides 1,605 to 3,787, were replaced with those of SMV-G7. Only SMV-N-derived chimeras harboring the 3' region of HC-Pro, at least from nucleotide 2,013, and the entire 5' end of P3 (nucleotides 2,430 to 3,237) from SMV-G7 were virulent whereas reciprocal exchanges resulted in loss of SMV-G7 virulence. This region of HC-Pro differs by three amino acids between SMV-N and SMV-G7. Analyses of SMV-G7-derived HC-Pro site-directed mutants showed that only SMV-G7(M683R) lost virulence on Rsv1-genotype soybean; however, SMV-N(R682M) failed to gain virulence. Nevertheless, an SMV-N derived mutant with three concurrent substitutions, R682M+R787I+A947T, gained virulence. The data indicate that both P3 and HC-Pro are involved in virulence of SMV on Rsv1-genotype soybean.  相似文献   

6.
In Rsv1-genotype soybean, Soybean mosaic virus (SMV)-N (an avirulent isolate of strain G2) elicits extreme resistance (ER) whereas strain SMV-G7 provokes a lethal systemic hypersensitive response (LSHR). SMV-G7d, an experimentally evolved variant of SMV-G7, induces systemic mosaic. Thus, for Rsv1-genotype soybean, SMV-N is avirulent whereas SMV-G7 and SMV-G7d are both virulent. Exploiting these differential interactions, we recently mapped the elicitor functions of SMV provoking Rsv1-mediated ER and LSHR to the N-terminal 271 amino acids of P3 from SMV-N and SMV-G7, respectively. The phenotype of both SMV-G7 and SMV-G7d were rendered avirulent on Rsv1-genotype soybean when the part of the genome encoding the N-terminus or the entire P3 cistron was replaced with that from SMV-N; however, reciprocal exchanges did not confer virulence to SMV-N-derived P3 chimeras. Here, we describe virulent SMV-N-derived P3 chimeras containing the full-length or the N-terminal P3 from SMV-G7 or SMV-G7d, with or without additional mutations in P3, that were selected on Rsv1-genotype soybean by sequential transfers on rsv1 and Rsv1-genotype soybean. Sequence analyses of the P3 and helper-component proteinase (HC-Pro) cistrons of progeny recovered from Rsv1-genotype soybean consistently revealed the presence of mutations in HC-Pro. Interestingly, the precise mutations in HC-Pro required for the adaptation varied among the chimeras. No mutation was detected in the HC-Pro of progeny passaged continuously in rsv1-genotype soybean, suggesting that selection is a consequence of pressure imposed by Rsv1. Mutations in HC-Pro alone failed to confer virulence to SMV-N; however, reconstruction of mutations in HC-Pro of the SMV-N-derived P3 chimeras resulted in virulence. Taken together, the data suggest that HC-Pro complementation of P3 is essential for SMV virulence on Rsv1-genotype soybean.  相似文献   

7.
A small open reading frame, termed 'pipo', is embedded in the P3 cistron of potyviruses. Currently, knowledge on pipo and its role(s) in the life cycle of potyviruses is limited. The P3 and helper-component proteinase (HC-Pro) cistrons of Soybean mosaic virus (SMV) harbour determinants affecting virulence on functionally immune Rsv1-genotype soybeans. Interestingly, a key virulence determinant of SMV on Rsv1-genotype soybeans (i.e. soybeans containing the Rsv1 resistance gene) that resides at polyprotein codon 947 overlaps both P3 and a pipo-encoded codon. This raises the question of whether PIPO or P3 is the virulence factor. To answer this question, the corresponding pipo of an avirulent and two virulent strains of SMV were studied by comparative genomics, followed by syntheses and analyses of site-directed mutants. Our data demonstrate that the virulence of SMV on Rsv1-genotype soybeans is affected by P3 and not the overlapping pipo-encoded protein.  相似文献   

8.
9.
Identification of virulence determinants of viruses is of critical importance in virology. In search of such determinants, virologists traditionally utilize comparative genomics between a virulent and an avirulent virus strain and construct chimeras to map their locations. Subsequent comparison reveals sequence differences, and through analyses of site-directed mutants, key residues are identified. In the absence of a naturally occurring virulent strain, an avirulent strain can be functionally converted to a virulent variant via an experimental evolutionary approach. However, the concern remains whether experimentally evolved virulence determinants mimic those that have evolved naturally. To provide a direct comparison, we exploited a plant RNA virus, soybean mosaic virus (SMV), and its natural host, soybean. Through a serial in vivo passage experiment, the molecularly cloned genome of an avirulent SMV strain was converted to virulent variants on functionally immune soybean genotypes harboring resistance factor(s) from the complex Rsv1 locus. Several of the experimentally evolved virulence determinants were identical to those discovered through a comparative genomic approach with a naturally evolved virulent strain. Thus, our observations validate an experimental evolutionary approach to identify relevant virulence determinants of an RNA virus.  相似文献   

10.
PI 507389 soybean [Glycine max (L.) Merr.], a large-seeded line from Japan, exhibits a rapid, lethal, necrotic response to strains G1, G2, G5, and G6 of soybean mosaic virus (SMV). Unlike the hypersensitive necrotic reaction, this stem-tip necrosis can be a serious threat to soybean production. To investigate the genetic basis of lethal necrosis (LN), PI 507389 was crossed with the susceptible (S) cv. Lee 68 and with resistant (R) lines PI 96983, cv. York, and cv. Marshall, which carry single dominant genes for SMV resistance at the Rsv1 locus. F(1) plants, F(2) populations, and F(2:3) lines were inoculated with G1 and G6 in the greenhouse or in the field. Results indicated that LN is controlled by a single gene allelic to Rsv1, and this allele in PI 507389 is recessive to R alleles in PI 96983, York, and Marshall. The LN allele is codominant with the allele for S, for the heterozygotes showed a mixed phenotype of both necrosis (N) and mosaic (M) symptoms (NM). The LN allele becomes recessive to the S allele as the mixed NM shifts to S at a later stage in response to more virulent strains. The gene symbol Rsv1-n is assigned for the allele conferring LN in PI 507389. Rsv1-n is the only allele at the Rsv1 locus conditioning N to G1 and no R to any other SMV strains, and thus a unique genotype for SMV strain differentiation. The phenotypic expression of heterozygotes and the dominance relationships among R, N, and S depend on the virulence of SMV strains, source of alleles, and developmental stage.  相似文献   

11.
Seven strains of Soybean mosaic virus (SMV) and three independent resistance loci (Rsv1, Rsv3, and Rsv4) have been identified in soybean. The objective of this research was to pyramid Rsv1, Rsv3, and Rsv4 for SMV resistance using molecular markers. J05 carrying Rsv1 and Rsv3 and V94-5152 carrying Rsv4 were used as the donor parents for gene pyramiding. A series of F2:3, F3:4, and F4:5 lines derived from J05 × V94-5152 were developed for selecting individuals carrying all three genes. Eight PCR-based markers linked to the three SMV resistance genes were used for marker-assisted selection. Two SSR markers (Sat_154 and Satt510) and one gene-specific marker (Rsv1-f/r) were used for selecting plants containing Rsv1; Satt560 and Satt063 for Rsv3; and Satt266, AI856415, and AI856415-g for Rsv4. Five F4:5 lines were homozygous for all eight marker alleles and presumably carry all three SMV resistance genes that would potentially provide multiple and durable resistance to SMV.  相似文献   

12.
Soybean mosaic virus (SMV) is one of the most destructive viral diseases in soybean (Glycine max). Three independent loci for SMV resistance have been identified in soybean germplasm. The use of genetic resistance is the most effective method of controlling this disease. Marker assisted selection (MAS) has become very important and useful in the effort of selecting genes for SMV resistance. Single nucleotide polymorphism (SNP), because of its abundance and high-throughput potential, is a powerful tool in genome mapping, association studies, diversity analysis, and tagging of important genes in plant genomics. In this study, a 10 SNPs plus one insert/deletion (InDel) multiplex assay was developed for SMV resistance: two SNPs were developed from the candidate gene 3gG2 at Rsv1 locus, two SNPs selected from the clone N11PF linked to Rsv1, one ‘BARC’ SNP screened from soybean chromosome 13 [linkage group (LG) F] near Rsv1, two ‘BARC’ SNPs from probe A519 linked to Rsv3, one ‘BARC’ SNP from chromosome 14 (LG B2) near Rsv3, and two ‘BARC’ SNPs from chromosome 2 (LG D1b) near Rsv4, plus one InDel marker from expressed sequence tag (EST) AW307114 linked to Rsv4. This 11 SNP/InDel multiplex assay showed polymorphism among 47 diverse soybean germplasm, indicating this assay can be used to investigate the mode of inheritance in a SMV resistant soybean line carrying Rsv1, Rsv3, and/or Rsv4 through a segregating population with phenotypic data, and to select a specific gene or pyramid two or three genes for SMV resistance through MAS in soybean breeding program. The presence of two SMV resistance genes (Rsv1 and Rsv3) in J05 soybean was confirmed by the SNP assay.  相似文献   

13.
Soybean mosaic virus (SMV) is one of the most devastating viral pathogens of soybean (Glycine max (L.) Merr). In total, 22 Chinese SMV strains (SC1–SC22) have been classified based on the responses of 10 soybean cultivars to these pathogens. However, although several SMV-resistance loci in soybean have been identified, no gene conferring SMV resistance in the resistant soybean cultivar (cv.) Kefeng No.1 has been cloned and verified. Here, using F2-derived F3 (F2:3) and recombinant inbred line (RIL) populations from a cross between Kefeng No.1 and susceptible soybean cv. Nannong 1138-2, we localized the gene in Kefeng No.1 that mediated resistance to SMV-SC3 strain to a 90-kb interval on chromosome 2. To study the functions of candidate genes in this interval, we performed Bean pod mottle virus (BPMV)-induced gene silencing (VIGS). We identified a recombinant gene (which we named RSC3K) harboring an internal deletion of a genomic DNA fragment partially flanking the LOC100526921 and LOC100812666 reference genes as the SMV-SC3 resistance gene. By shuffling genes between infectious SMV DNA clones based on the avirulent isolate SC3 and virulent isolate 1129, we determined that the viral protein P3 is the avirulence determinant mediating SMV-SC3 resistance on Kefeng No.1. P3 interacts with RNase proteins encoded by RSC3K, LOC100526921, and LOC100812666. The recombinant RSC3K conveys much higher anti-SMV activity than LOC100526921 and LOC100812666, although those two genes also encode proteins that inhibit SMV accumulation, as revealed by gene silencing in a susceptible cultivar and by overexpression in Nicotiana benthamiana. These findings demonstrate that RSC3K mediates the resistance of Kefeng No.1 to SMV-SC3 and that SMV resistance of soybean is determined by the antiviral activity of RNase proteins.  相似文献   

14.
Soybean mosaic disease caused by soybean mosaic virus (SMV) occurs wherever soybean [Glycine max (L.) Merr.] is grown and is considered one of the most important soybean diseases in many areas of the world. Use of soybean cultivars with resistance to SMV is a very effective way of controlling the disease. China has rich soybean germplasm, but there is very limited information on genetics of SMV resistance in Chinese soybean germplasm and reaction of the resistance genes to SMV strains G1-G7. There also is no report on allelic relationships of resistance genes in Chinese soybeans with other named genes at the three identified loci Rsv1, Rsv3, and Rsv4. The objectives of this study were to examine reactions of Chinese soybean cultivar Zao18 to SMV strains G1-G3 and G5-G7, to reveal the inheritance of SMV resistance in Zao18 and to determine the allelic relationship of resistance genes in Zao18 with previously reported resistance genes. Zao18 was crossed with the SMV-susceptible cultivar Lee 68 to study the inheritance of resistance. Zao18 was also crossed with the resistant lines PI96983, L29, and V94-5152, which possess Rsv1, Rsv3, and Rsv4, respectively, to examine the allelic relationship between the genes in Zao18 and genes at these three loci. Our research results indicated that Zao18 possesses two independent dominant genes for SMV resistance, one of which is allelic to the Rsv3 locus; the other is allelic with Rsv1. The presence of both genes (Rsv1 and Rsv3) in Zao18 confers resistance to SMV strains G1-G7.  相似文献   

15.
Rsv1, a single dominant resistance gene in soybean PI 96983 (Rsv1), confers extreme resistance against all known American strains of Soybean mosaic virus (SMV), except G7 and G7d. SMV-G7 provokes a lethal systemic hypersensitive response (LSHR), whereas SMV-G7d, an experimentally evolved variant of SMV-G7, induces systemic mosaic. To identify the elicitor of Rsv1-mediated LSHR, chimeras were constructed by exchanging fragments between the molecularly cloned SMV-G7 (pSMV-G7) and SMV-G7d (pSMV-G7d), and their elicitor functions were assessed on PI 96983 (Rsv1). pSMV-G7-derived chimeras containing only P3 of SMV-G7d lost the elicitor function, while the reciprocal chimera of pSMV-G7d gained the function. The P3 regions of the two viruses differ by six nucleotides, of which two are translationally silent. The four amino acid differences are located at positions 823, 915, 953, and 1112 of the precursor polypeptide. Analyses of the site-directed point mutants of both the viruses revealed that nucleotide substitutions leading to translationally silent mutations as well as reciprocal amino acid substitution at position 915 did not influence the loss or gain of the elicitor function. pSMV-G7-derived mutants with amino acid substitutions at any of the other three positions lost the ability to provoke LSHR but induced SHR instead. Two concomitant amino acid substitutions at positions 823 (V to M) and 953 (K to E) abolished pSMV-G7 elicitor function, provoking Rsv1-mediated SHR. Conversely, pSMV-G7d gained the elicitor function of Rsv1-mediated LSHR by a single amino acid substitution at position 823 (M to V), and mutants with amino acid substitutions at position 953 or 1112 induced SHR instead of mosaic. Taken together, the data suggest that strain-specific P3 of SMV is the elicitor of Rsv1-mediated LSHR.  相似文献   

16.
The soybean–Phytophthora sojae interaction operates on a gene-for-gene relationship, where the product of a resistance gene (Rps) in the host recognizes that of an avirulence gene (Avr) in the pathogen to generate an incompatible reaction. To exploit this form of resistance, one must match with precision the appropriate Rps gene with the corresponding Avr gene. Currently, this association is evaluated by phenotyping assays that are labour-intensive and often imprecise. To circumvent this limitation, we sought to develop a molecular assay that would reveal the avirulence allele of the seven main Avr genes (Avr1a, Avr1b, Avr1c, Avr1d, Avr1k, Avr3a, and Avr6) in order to diagnose with precision the pathotypes of P. sojae isolates. For this purpose, we analysed the genomic regions of these Avr genes in 31 recently sequenced isolates with different virulence profiles and identified discriminant mutations between avirulence and virulence alleles. Specific primers were designed to generate amplicons of a distinct size, and polymerase chain reaction conditions were optimized in a final assay of two parallel runs. When tested on the 31 isolates of known virulence, the assay accurately revealed all avirulence alleles. The test was further assessed and compared to a phenotyping assay on 25 isolates of unknown virulence. The two assays matched in 97% (170/175) of the interactions studied. Interestingly, the sole cases of discrepancy were obtained with Avr3a, which suggests a possible imperfect interaction with Rps3a. This molecular assay offers a powerful and reliable tool to exploit and study with greater precision soybean resistance against P. sojae.  相似文献   

17.
Soybean cultivar J05 was identified to be resistant to the most virulent strain of soybean mosaic virus (SMV) in northeastern China. However, the reaction of J05 to SMV strains in the United States of America is unknown, and genetic information is needed to utilize this germplasm in a breeding program. The objectives of this study were to determine the reaction of J05 to all US strains of SMV (G1-G7), the inheritance of SMV resistance in J05, and the allelic relationship of resistance genes in J05 with other reported resistance genes. J05 was crossed with susceptible cultivar Essex (rsv) to study the inheritance of SMV resistance. J05 was also crossed with PI 96983 (Rsv1), L29 (Rsv3), and V94-5152 (Rsv4) to test the allelism of resistance genes. F(2) populations and F(2:3) lines from these crosses were inoculated with G1 or G7 in the greenhouse. Inheritance and allelism studies indicate that J05 possesses 2 independent dominant genes for SMV resistance, one at the Rsv1 locus conferring resistance to G1 and necrosis to G7 and the other at the Rsv3 locus conditioning resistance to G7 but susceptibility to G1. The presence of both genes in J05 provides resistance to G1 and G7. J05 is unique from the previous sources that carry 2 genes of Rsv1Rsv3 and will be useful in breeding for SMV resistance.  相似文献   

18.
Hayes AJ  Jeong SC  Gore MA  Yu YG  Buss GR  Tolin SA  Maroof MA 《Genetics》2004,166(1):493-503
The soybean Rsv1 gene for resistance to soybean mosaic virus (SMV; Potyvirus) has previously been described as a single-locus multi-allelic gene mapping to molecular linkage group (MLG) F. Various Rsv1 alleles condition different responses to the seven (G1-G7) described strains of SMV, including extreme resistance, localized and systemic necrosis, and mosaic symptoms. We describe the cloning of a cluster of NBS-LRR resistance gene candidates from MLG F of the virus-resistant soybean line PI96983 and demonstrate that multiple genes within this cluster interact to condition unique responses to SMV strains. In addition to cloning 3gG2, a strong candidate for the major Rsv1 resistance gene from PI96983, we describe various unique resistant and necrotic reactions coincident with the presence or absence of other members of this gene cluster. Responses of recombinant lines from a high-resolution mapping population of PI96983 (resistant) x Lee 68 (susceptible) demonstrate that more than one gene in this region of the PI96983 chromosome conditions resistance and/or necrosis to SMV. In addition, the soybean cultivars Marshall and Ogden, which carry other previously described Rsv1 alleles, are shown to possess the 3gG2 gene in a NBS-LRR gene cluster background distinct from PI96983. These observations suggest that two or more related non-TIR-NBS-LRR gene products are likely involved in the allelic response of several Rsv1-containing lines to SMV.  相似文献   

19.
Yang  Xiangdong  Niu  Lu  Zhang  Wei  He  Hongli  Yang  Jing  Xing  Guojie  Guo  Dongquan  Zhao  Qianqian  Zhong  Xiaofang  Li  Haiyun  Li  Qiyun  Dong  Yingshan 《Transgenic research》2019,28(1):129-140

Viruses constitute a major constraint to soybean production worldwide and are responsible for significant yield losses every year. Although varying degrees of resistance to specific viral strains has been identified in some soybean genetic sources, the high rate of mutation in viral genomes and mixed infections of different viruses or strains under field conditions usually hinder the effective control of viral diseases. In the present study, we generated transgenic soybean lines constitutively expressing the double-strand RNA specific ribonuclease gene PAC1 from Schizosaccharomyces pombe to evaluate their resistance responses to multiple soybean-infecting virus strains and isolates. Resistance evaluation over three consecutive years showed that the transgenic lines displayed significantly lower levels of disease severity in field conditions when challenged with soybean mosaic virus (SMV) SC3, a prevalent SMV strain in soybean-growing regions of China, compared to the non-transformed (NT) plants. After inoculation with four additional SMV strains (SC7, SC15, SC18, and SMV-R), and three isolates of bean common mosaic virus (BCMV), watermelon mosaic virus (WMV), and bean pod mottle virus (BPMV), the transgenic plants exhibited less severe symptoms and enhanced resistance to virus infections relative to NT plants. Consistent with these results, the accumulation of each virus isolate was significantly inhibited in transgenic plants as confirmed by quantitative real-time PCR and double antibody sandwich enzyme-linked immunosorbent assays. Collectively, our results showed that overexpression of PAC1 can increase multiple virus resistance in transgenic soybean, and thus provide an efficient control strategy against RNA viruses such as SMV, BCMV, WMV, and BPMV.

  相似文献   

20.
Soybean mosaic virus (SMV) is one of the most broadly distributed soybean (Glycine max (L.) Merr.) diseases and causes severe yield loss and seed quality deficiency. Multiple studies have proved that a single dominant gene can confer resistance to several SMV strains. Plant introduction (PI) 96983 has been reported to contain SMV resistance genes (e.g., Rsv1 and Rsc14) on chromosome 13. The objective of this study was to delineate the genetics of resistance to SMV in PI 96983 and determine whether one gene can control resistance to more than one Chinese SMV strain. In this study, PI 96983 was identified as resistant and Nannong 1138-2 was identified as susceptible to four SMV strains SC3, SC6, SC7, and SC17. Genetic maps based on 783 F2 individuals from the cross of PI 96983 × Nannong 1138-2 showed that the gene(s) conferring resistance to SC3, SC6, and SC17 were between SSR markers BARCSOYSSR_13_1114 and BARCSOYSSR_13_1136, whereas SC7 was between markers BARCSOYSSR_13_1140 and BARCSOYSSR_13_1185. The physical map based on 58 recombinant lines confirmed these results. The resistance gene for SC7 was positioned between BARCSOYSSR_13_1140 and BARCSOYSSR_13_1155, while the resistance gene(s) for SC3, SC6, and SC17 were between BARCSOYSSR_13_1128 and BARCSOYSSR_13_1136. We concluded that, there were two dominant resistance genes flanking Rsv1 or one of them at the reported genomic location of Rsv1. One of them (designated as “Rsc-pm”) conditions resistance for SC3, SC6, and SC17 and another (designated as “Rsc-ps”) confers resistance for SC7. The two tightly linked genes identified in this study would be helpful to cloning of resistance genes and breeding of multiple resistances soybean cultivars to SMV through marker-assisted selection (MAS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号