首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Chitin is a major structural component of fungal cell walls and acts as a microbe-associated molecular pattern (MAMP) that, on recognition by a plant host, triggers the activation of immune responses. To avoid the activation of these responses, the Septoria tritici blotch (STB) pathogen of wheat, Zymoseptoria tritici, secretes LysM effector proteins. Previously, the LysM effectors Mg1LysM and Mg3LysM were shown to protect fungal hyphae against host chitinases. Furthermore, Mg3LysM, but not Mg1LysM, was shown to suppress chitin-induced reactive oxygen species (ROS) production. Whereas initially a third LysM effector gene was disregarded as a presumed pseudogene, we now provide functional data to show that this gene also encodes a LysM effector, named Mgx1LysM, that is functional during wheat colonization. While Mg3LysM confers a major contribution to Z. tritici virulence, Mgx1LysM and Mg1LysM contribute to Z. tritici virulence with smaller effects. All three LysM effectors display partial functional redundancy. We furthermore demonstrate that Mgx1LysM binds chitin, suppresses the chitin-induced ROS burst, and is able to protect fungal hyphae against chitinase hydrolysis. Finally, we demonstrate that Mgx1LysM is able to undergo chitin-induced polymerization. Collectively, our data show that Z. tritici utilizes three LysM effectors to disarm chitin-triggered wheat immunity.  相似文献   

3.
4.
5.
Zymoseptoria tritici causes the major fungal wheat disease septoria tritici blotch, and is increasingly being used as a model for transmission and population genetics, as well as host–pathogen interactions. Here, we study the biological function of ZtWor1, the orthologue of Wor1 in the fungal human pathogen Candida albicans, as a representative of a superfamily of regulatory proteins involved in dimorphic switching. In Z. tritici, this gene is pivotal for pathogenesis, as ZtWor1 mutants were nonpathogenic and complementation restored the wild‐type phenotypes. In planta expression analyses showed that ZtWor1 is up‐regulated during the initiation of colonization and fructification, and regulates candidate effector genes, including one that was discovered after comparative proteome analysis of the Z. tritici wild‐type strain and the ZtWor1 mutant, which was particularly expressed in planta. Cell fusion and anastomosis occur frequently in ZtWor1 mutants, reminiscent of mutants of MgGpb1, the β‐subunit of the heterotrimeric G protein. Comparative expression of ZtWor1 in knock‐out strains of MgGpb1 and MgTpk2, the catalytic subunit of protein kinase A, suggests that ZtWor1 is downstream of the cyclic adenosine monophosphate (cAMP) pathway that is crucial for pathogenesis in many fungal plant pathogens.  相似文献   

6.
7.
8.
Puccinia triticina causes leaf rust, a disease that causes annual yield losses in wheat. It is an obligate parasite that invades the host leaf and forms intracellular structures called haustoria, which obtain nutrients and suppress host immunity using secreted proteins called effectors. Since effector proteins act at the frontier between plant and pathogen and help determine the outcome of the interaction, it is critical to understand their functions. Here, we used a direct proteomics approach to identify effector candidates from P. triticina Race 1 haustoria isolated with a specific monoclonal antibody. Haustoria were >95% pure and free of host contaminants. Using high resolution MS we have identified 1192 haustoria proteins. These were quantified using normalized spectral counts and spanned a dynamic range of three orders of magnitude, with unknown proteins and metabolic enzymes as the most highly represented. The dataset contained 140 candidate effector proteins, based on the presence of a signal peptide and the absence of a known function for the protein. Some of these candidates were significantly enriched with cysteine, with up to 13 residues per protein and up to 6.8% cysteine in composition.  相似文献   

9.
10.
Septoria tritici blotch (STB) caused by the heterothallic ascomycete Zymoseptoria tritici is currently one of the most devastating diseases of wheat worldwide. The extent of sexual reproduction of this pathogen is well documented on bread wheat, but not on durum wheat. The objective of the present study was to quantify the occurrence of Z. tritici sexual reproduction on durum wheat in the Tunisian environment. The assessment was undertaken using a triple approach combining fruiting body assessment, ascospore trapping and population genetic analyses. The results highlighted the formation of pseudothecia on leaves and stubble from the autumn until the end of the growing season. Likewise, qPCR monitoring highlighted a constant release of Z. tritici airborne inoculum during the wheat-growing season, with a peak of production at the end of the season. Genetic investigations using microsatellites revealed high levels of gene and genotypic diversities, an equal distribution of mating types, and a lack of genetic clustering within and between growing seasons. Taken together, these findings indicate that Z. tritici undergoes sexual reproduction on durum wheat in Tunisia at least to the same extent than on bread wheat in Western Europe, and that the dry and warm climate does not affect the mating process of the fungus. Frequent occurrence of sexual reproduction is a valuable knowledge to take into account in STB control strategies on durum wheat.  相似文献   

11.
12.
13.
We analysed the population genetic diversity of AvrStb6, the first avirulence gene cloned from the wheat pathogen Zymoseptoria tritici, using 142 Z. tritici strains sampled from four wheat fields growing on three continents. Although AvrStb6 was located in a recombination hotspot, it was found in every strain, with 71 polymorphic sites that produced 41 distinct DNA haplotypes encoding 30 AvrStb6 protein isoforms. An AvrStb6 homologue was found in the closest known relative, Z. pseudotritici, but not in three other closely related Zymoseptoria species, indicating that this gene has emerged in Zymoseptoria quite recently. Two AvrStb6 homologues with nucleotide similarities greater than 70% were identified on chromosome 10 in all Z. tritici isolates, suggesting that AvrStb6 belongs to a multigene family of candidate effectors that has expanded recently through gene duplication. The AvrStb6 sequences exhibited strong evidence for non‐neutral evolution, including a large number of non‐synonymous mutations, with significant positive diversifying selection operating on nine of the 82 codons. It appears that balancing selection is operating across the entire gene in natural field populations. There was also evidence for co‐evolving codons within the gene that may reflect compensatory mutations associated with the evasion of recognition by Stb6. Intragenic recombination also appears to have affected the diversity of AvrStb6.  相似文献   

14.
Different thermal environments impose strong, differential selection on populations, leading to local adaptation, but the genetic basis of thermal adaptation is poorly understood. We used quantitative trait locus (QTL) mapping in the fungal wheat pathogen Zymoseptoria tritici to study the genetic architecture of thermal adaptation and identify candidate genes. Four wild-type strains originating from the same thermal environment were crossed to generate two mapping populations with 263 (cross 1) and 261 (cross 2) progeny. Restriction site-associated DNA sequencing was used to genotype 9745 (cross 1) and 7333 (cross 2) single-nucleotide polymorphism markers segregating within the mapping population. Temperature sensitivity was assessed using digital image analysis of colonies growing at two different temperatures. We identified four QTLs for temperature sensitivity, with unique QTLs found in each cross. One QTL had a logarithm of odds score >11 and contained only six candidate genes, including PBS2, encoding a mitogen-activated protein kinase kinase associated with low temperature tolerance in Saccharomyces cerevisiae. This and other QTLs showed evidence for pleiotropy among growth rate, melanization and growth morphology, suggesting that many traits can be correlated with thermal adaptation in fungi. Higher temperatures were highly correlated with a shift to filamentous growth among the progeny in both crosses. We show that thermal adaptation has a complex genetic architecture, with natural populations of Z. tritici harboring significant genetic variation for this trait. We conclude that Z. tritici populations have the potential to adapt rapidly to climate change and expand into new climatic zones.  相似文献   

15.
Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is one of the most economically important diseases of wheat. Recently, both factors of a gene-for-gene interaction between Ztritici and wheat, the wheat receptor-like kinase Stb6 and the Ztritici secreted effector protein AvrStb6, have been identified. Previous analyses revealed a high diversity of AvrStb6 haplotypes present in earlier Ztritici isolate collections, with up to c.18% of analysed isolates possessing the avirulence isoform of AvrStb6 identical to that originally identified in the reference isolate IPO323. With Stb6 present in many commercial wheat cultivars globally, we aimed to assess potential changes in AvrStb6 genetic diversity and the incidence of haplotypes allowing evasion of Stb6-mediated resistance in more recent Ztritici populations. Here we show, using targeted resequencing of AvrStb6, that this gene is universally present in field isolates sampled from major wheat-growing regions of the world in 2013–2017. However, in contrast to the data from previous AvrStb6 population studies, we report a complete absence of the originally described avirulence isoform of AvrStb6 amongst modern Ztritici isolates. Moreover, a remarkably small number of haplotypes, each encoding AvrStb6 protein isoforms conditioning virulence on Stb6-containing wheat, were found to predominate among modern Ztritici isolates. A single virulence isoform of AvrStb6 was found to be particularly abundant throughout the global population. These findings indicate that, despite the ability of Ztritici to sexually reproduce on resistant hosts, AvrStb6 avirulence haplotypes tend to be eliminated in subsequent populations.  相似文献   

16.
17.
While yeast has been extensively used as a model system for analysing protein–protein and genetic interactions, in the context of bacterial pathogenesis, the use of yeast‐based tools has largely been limited to identifying interactions between pathogen effectors and host targets. In their recent work, Ensminger and colleagues (Urbanus et al, 2016 ) use the combinatorial power of yeast genetics to systematically screen all known Legionella pneumophila effector proteins for effector–effector interactions. They provide new insights into how bacterial effectors balance host cell perturbation and describe mechanisms used by “meta‐effectors” to directly modulate target effector activity.  相似文献   

18.
Fungi of the Pucciniales order cause rust diseases which, altogether, affect thousands of plant species worldwide and pose a major threat to several crops. How rust effectors—virulence proteins delivered into infected tissues to modulate host functions—contribute to pathogen virulence remains poorly understood. Melampsora larici‐populina is a devastating and widespread rust pathogen of poplar, and its genome encodes 1184 identified small secreted proteins that could potentially act as effectors. Here, following specific criteria, we selected 16 candidate effector proteins and characterized their virulence activities and subcellular localizations in the leaf cells of Arabidopsis thaliana. Infection assays using bacterial (Pseudomonas syringae) and oomycete (Hyaloperonospora arabidopsidis) pathogens revealed subsets of candidate effectors that enhanced or decreased pathogen leaf colonization. Confocal imaging of green fluorescent protein‐tagged candidate effectors constitutively expressed in stable transgenic plants revealed that some protein fusions specifically accumulate in nuclei, chloroplasts, plasmodesmata and punctate cytosolic structures. Altogether, our analysis suggests that rust fungal candidate effectors target distinct cellular components in host cells to promote parasitic growth.  相似文献   

19.
We conducted a comprehensive analysis of virulence in the fungal wheat pathogen Zymoseptoria tritici using quantitative trait locus (QTL) mapping. High‐throughput phenotyping based on automated image analysis allowed the measurement of pathogen virulence on a scale and with a precision that was not previously possible. Across two mapping populations encompassing more than 520 progeny, 540 710 pycnidia were counted and their sizes and grey values were measured. A significant correlation was found between pycnidia size and both spore size and number. Precise measurements of percentage leaf area covered by lesions provided a quantitative measure of host damage. Combining these large and accurate phenotypic datasets with a dense panel of restriction site‐associated DNA sequencing (RADseq) genetic markers enabled us to genetically dissect pathogen virulence into components related to host damage and those related to pathogen reproduction. We showed that different components of virulence can be under separate genetic control. Large‐ and small‐effect QTLs were identified for all traits, with some QTLs specific to mapping populations, cultivars and traits and other QTLs shared among traits within the same mapping population. We associated the presence of four accessory chromosomes with small, but significant, increases in several virulence traits, providing the first evidence for a meaningful function associated with accessory chromosomes in this organism. A large‐effect QTL involved in host specialization was identified on chromosome 7, leading to the identification of candidate genes having a large effect on virulence.  相似文献   

20.
Plant nucleotide-binding leucine-rich repeat receptors (NLRs) act as intracellular sensors for pathogen-derived effector proteins and trigger an immune response, frequently resulting in the hypersensitive cell death response (HR) of the infected host cell. The wheat (Triticum aestivum) NLR Pm2 confers resistance against the fungal pathogen Blumeria graminis f. sp. tritici (Bgt) if the isolate contains the specific RNase-like effector AvrPm2. We identified and isolated seven new Pm2 alleles (Pm2e–i) in the wheat D-genome ancestor Aegilops tauschii and two new natural AvrPm2 haplotypes from Bgt. Upon transient co-expression in Nicotiana benthamiana, we observed a variant-specific HR of the Pm2 variants Pm2a and Pm2i towards AvrPm2 or its homolog from the AvrPm2 effector family, BgtE-5843, respectively. Through the introduction of naturally occurring non-synonymous single nucleotide polymorphisms and structure-guided mutations, we identified single amino acids in both the wheat NLR Pm2 and the fungal effector proteins AvrPm2 and BgtE-5843 responsible for the variant-specific HR of the Pm2 variants. Exchanging these amino acids led to a modified HR of the Pm2–AvrPm2 interaction and allowed the identification of the effector head epitope, a 20-amino-acid long unit of AvrPm2 involved in the HR. Swapping of the AvrPm2 head epitope to the non-HR-triggering AvrPm2 family member BgtE-5846 led to gain of a HR by Pm2a. Our study presents a molecular approach to identify crucial effector surface structures involved in the HR and demonstrates that natural and induced diversity in an immune receptor and its corresponding effectors can provide the basis for understanding and modifying NLR–effector specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号