首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR‐defective mlo2 mutants were still competent in systemically increasing the levels of the SAR‐activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR‐related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA‐ or Pip‐inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during challenge by P. syringae.  相似文献   

2.
Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance.  相似文献   

3.
Upon inoculation with pathogenic microbes, plants induce an array of metabolic changes that potentially contribute to induced resistance or even enhance susceptibility. When analysing leaf lipid composition during the Arabidopsis thaliana–Pseudomonas syringae interaction, we found that accumulation of the phytosterol stigmasterol is a significant plant metabolic process that occurs upon bacterial leaf infection. Stigmasterol is synthesized from β‐sitosterol by the cytochrome P450 CYP710A1 via C22 desaturation. Arabidopsis cyp710A1 mutant lines impaired in pathogen‐inducible expression of the C22 desaturase and concomitant stigmasterol accumulation are more resistant to both avirulent and virulent P. syringae strains than wild‐type plants, and exogenous application of stigmasterol attenuates this resistance phenotype. These data indicate that induced sterol desaturation in wild‐type plants favours pathogen multiplication and plant susceptibility. Stigmasterol formation is triggered through perception of pathogen‐associated molecular patterns such as flagellin and lipopolysaccharides, and through production of reactive oxygen species, but does not depend on the salicylic acid, jasmonic acid or ethylene defence pathways. Isolated microsomal and plasma membrane preparations exhibited a similar increase in the stigmasterol/β‐sitosterol ratio as whole‐leaf extracts after leaf inoculation with P. syringae, indicating that the stigmasterol produced is incorporated into plant membranes. The increased contents of stigmasterol in leaves after pathogen attack do not influence salicylic acid‐mediated defence signalling but attenuate pathogen‐induced expression of the defence regulator flavin‐dependent monooxygenase 1. P. syringae thus promotes plant disease susceptibility through stimulation of sterol C22 desaturation in leaves, which increases the stigmasterol to β‐sitosterol ratio in plant membranes.  相似文献   

4.
Although they constitute an inert stage of the insect's life, eggs trigger plant defences that lead to egg mortality or attraction of egg parasitoids. We recently found that salicylic acid (SA) accumulates in response to oviposition by the Large White butterfly Pieris brassicae, both in local and systemic leaves, and that plants activate a response that is similar to the recognition of pathogen‐associated molecular patterns (PAMPs), which are involved in PAMP‐triggered immunity (PTI). Here we discovered that natural oviposition by P. brassicae or treatment with egg extract inhibit growth of different Pseudomonas syringae strains in Arabidopsis through the activation of a systemic acquired resistance (SAR). This egg‐induced SAR involves the metabolic SAR signal pipecolic acid, depends on ALD1 and FMO1, and is accompanied by a stronger induction of defence genes upon secondary infection. Although P. brassicae larvae showed a reduced performance when feeding on Pseudomonas syringae‐infected plants, this effect was less pronounced when infected plants had been previously oviposited. Altogether, our results indicate that egg‐induced SAR might have evolved as a strategy to prevent the detrimental effect of bacterial pathogens on feeding larvae.  相似文献   

5.
In mammals, lipid bodies play a key role during pathological and infectious diseases. However, our knowledge on the function of plant lipid bodies, apart from their role as the major site of lipid storage in seed tissues, remains limited. Here, we provide evidence that a calcium‐dependent protein kinase (CPK) mediates pathogen resistance in Arabidopsis. AtCPK1 expression is rapidly induced by fungal elicitors. Loss‐of‐function mutants of AtCPK1 exhibit higher susceptibility to pathogen infection compared to wild‐type plants. Conversely, over‐expression of AtCPK1 leads to accumulation of salicylic acid (SA) and constitutive expression of SA‐regulated defence and disease resistance genes, which, in turn, results in broad‐spectrum protection against pathogen infection. Expression studies in mutants affected in SA‐mediated defence responses revealed an interlocked feedback loop governing AtCPK1 expression and components of the SA‐dependent signalling pathway. Moreover, we demonstrate the dual localization of AtCPK1 in lipid bodies and peroxisomes. Overall, our findings identify AtCPK1 as a component of the innate immune system of Arabidopsis plants.  相似文献   

6.
Arabidopsis gain‐of‐resistance mutants, which show HR‐like lesion formation and SAR‐like constitutive defense responses, were used well as tools to unravel the plant defense mechanisms. We have identified a novel mutant, designated constitutive expresser of PR genes 30 (cpr30), that exhibited dwarf morphology, constitutive resistance to the bacterial pathogen Pseudomonas syringae and the dramatic induction of defense‐response gene expression. The cpr30‐conferred growth defect morphology and defense responses are dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4 (PAD4), and NONRACE‐SPECIFIC DISEASE RESISTANCE 1 (NDR1). Further studies demonstrated that salicylic acid (SA) could partially account for the cpr30‐conferred constitutive PR1 gene expression, but not for the growth defect, and that the cpr30‐conferred defense responses were NPR1 independent. We observed a widespread expression of CPR30 throughout the plant, and a localization of CPR30‐GFP fusion protein in the cytoplasm and nucleus. As an F‐box protein, CPR30 could interact with multiple Arabidopsis‐SKP1‐like (ASK) proteins in vivo. Co‐localization of CPR30 and ASK1 or ASK2 was observed in Arabidopsis protoplasts. Based on these results, we conclude that CPR30, a novel negative regulator, regulates both SA‐dependent and SA‐independent defense signaling, most likely through the ubiquitin‐proteasome pathway in Arabidopsis.  相似文献   

7.
Auxin is a key plant growth regulator that also impacts plant–pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole‐3‐acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector‐triggered immunity was active in YUC1‐overexpressing plants, and we observed only minor effects on SA levels and SA‐mediated responses. Furthermore, a plant line carrying both the YUC1‐overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA‐mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA‐mediated defenses.  相似文献   

8.
9.
Amino acid transporters in plants are crucial for distributing amino acids between plant organs and cellular compartments. The H+‐coupled plasma membrane transporter CAT1 (cationic amino acid transporter 1) facilitates the high‐affinity uptake of basic amino acids. The uptake of lysine (Lys) via the roots was not altered in loss‐of‐function mutants, in accordance with the minor expression of CAT1 in roots, but plants ectopically overexpressing CAT1 incorporated Lys at higher rates. Exogenous Lys inhibited the primary root of Arabidopsis, whereas lateral roots were stimulated. These effects were augmented by the presence or absence of CAT1. Furthermore, the total biomass of soil‐grown plants ectopically overexpressing CAT1 was reduced and the time to flowering was accelerated. These effects were accompanied by only minor changes in the overall amino acid profile. Interestingly, CAT1 belongs to a specific small cluster of nitrogen‐containing metabolite transporter genes that are rapidly up‐regulated upon infection with Pseudomonas syringae and that may participate in the systemic response of plants to pathogen attack. The overexpression of CAT1 indeed enhanced the resistance to the hemibiotrophic bacterial pathogen P. syringae via a constitutively activated salicylic acid (SA) pathway, which is consistent with the developmental defects and the resistance phenotype.  相似文献   

10.
DEFORMED ROOT AND LEAVES1 (DRL1) is an Arabidopsis homologue of the yeast TOXIN TARGET4 (TOT4)/KILLER TOXIN‐INSENSITIVE12 (KTI12) protein that is physically associated with the RNA polymerase II‐interacting protein complex named Elongator. Mutations in DRL1 and Elongator lead to similar morphological and molecular phenotypes, suggesting that DRL1 and Elongator may functionally overlap in Arabidopsis. We have shown previously that Elongator plays an important role in both salicylic acid (SA)‐ and jasmonic acid (JA)/ethylene (ET)‐mediated defence responses. Here, we tested whether DRL1 also plays a similar role as Elongator in plant immune responses. Our results show that, although DRL1 partially contributes to SA‐induced cytotoxicity, it does not play a significant role in SA‐mediated expression of PATHOGENESIS‐RELATED genes and resistance to the virulent bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. In contrast, DRL1 is required for JA/ET‐ and necrotrophic fungal pathogen Botrytis cinerea‐induced defence gene expression and for resistance to B. cinerea and Alternaria brassicicola. Furthermore, unlike the TOT4/KTI12 gene which, when overexpressed in yeast, confers zymocin resistance, a phenotype of the tot4/kti12 mutant, overexpression of DRL1 does not change B. cinerea‐induced defence gene expression and resistance to this pathogen. Finally, DRL1 contains an N‐terminal P‐loop and a C‐terminal calmodulin (CaM)‐binding domain and is a CaM‐binding protein. We demonstrate that both the P‐loop and the CaM‐binding domain are essential for the function of DRL1 in B. cinerea‐induced expression of PDF1.2 and ORA59, and in resistance to B. cinerea, suggesting that the function of DRL1 in plant immunity may be regulated by ATP/GTP and CaM binding.  相似文献   

11.
Sulphonation of small molecules by cytosolic sulphotransferases in mammals is an important process in which endogenous molecules are modified for inactivation/activation of their biological effects. Plants possess large numbers of sulphotransferase genes, but their biological functions are largely unknown. Here, we present a functional analysis of the Arabidopsis sulphotransferase AtSOT12 (At2g03760). AtSOT12 gene expression is strongly induced by salt, and osmotic stress and hormone treatments. The T‐DNA knock‐out mutant sot12 exhibited hypersensitivity to NaCl and ABA in seed germination, and to salicylic acid (SA) in seedling growth. In vitro enzyme activity assay revealed that AtSOT12 sulphonates SA, and endogenous SA levels suggested that sulphonation of SA positively regulates SA production. Upon challenging with the pathogen Pseudomonas syringae, sot12 mutant and AtSOT12 over‐expressing lines accumulate less and more SA, respectively, when compared with wild type. Consistent with the changes in SA levels, the sot12 mutant was more susceptible, while AtSOT12 over‐expressing plants are more resistant to pathogen infection. Moreover, pathogen‐induced PR gene expression in systemic leaves was significantly enhanced in AtSOT12 over‐expressing plants. The role of sulphonation of SA in SA production, mobile signalling and acquired systemic resistance is discussed.  相似文献   

12.
13.
Polyamine biosynthesis starts with putrescine production through the decarboxylation of arginine or ornithine. In Arabidopsis thaliana, putrescine is synthesised exclusively by arginine decarboxylase (ADC), which exists as two isoforms (ADC1 and 2) that are differentially regulated by abiotic stimuli, but their role in defence against pathogens has not been studied in depth. This work analysed the participation of ADC in Arabidopsis defence against Pseudomonas viridiflava. ADC activity and expression, polyamine levels and bacterial resistance were analysed in null mutants of each ADC isoform. In non‐infected wild‐type (WT) plants, ADC2 expression was much higher than ADC1. Analysis of adc mutants demonstrated that ADC2 contributes to a much higher extent than ADC1 to basal ADC activity and putrescine biosynthesis. In addition, adc2 mutants showed increased basal expression of salicylic acid‐ and jasmonic acid‐dependent PR genes. Bacterial infection induced putrescine accumulation and ADC1 expression in WT plants, but pathogen‐induced putrescine accumulation was blocked in adc1 mutants. Results suggest a specific participation of ADC1 in defence, although basal resistance was not decreased by dysfunction of either of the two ADC genes. In addition, and as opposed to WT plants, bacterial infection increased ADC2 expression and ADC activity in adc1 mutants, which could counterbalance the lack of ADC1. Results demonstrate a major contribution of ADC2 to total ADC activity and the specific induction of ADC1 in response to infection. A certain degree of functional redundancy between the two isoforms in relation to their contribution to basal resistance is also evident.  相似文献   

14.
15.
Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR‐RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR‐RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen‐related genes, particularly genes encoding nucleotide‐binding and leucine‐rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5‐aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.  相似文献   

16.
The plant growth‐promoting fungi (PGPF) have long been known to improve plant growth and suppress plant diseases. The PGPF Penicillium viridicatum GP15‐1 elicited plant growth and induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 (Pst), leading to a restriction of pathogen growth and disease development. Examination of local and systemic genes indicated that GP15‐1 did not modulate the expression of any of the tested defence‐related marker genes involved in salicylic acid (SA), jasmonic acid (JA) and ethylene signalling pathways. Subsequent challenge of GP15‐1‐colonized plants with Pst bacterium primed Arabidopsis plants for enhanced activation of the JA‐inducible Atvsp (vegetative storage protein) gene at a later stage of infection. To assess the contribution of different signalling pathways in GP15‐1‐elicited plant growth and ISR, Arabidopsis genotypes implicated in SA signalling expressing the nahG transgene (NahG) or carrying disruption in NPR1 (npr1), JA signalling (jar1) and ethylene signalling (ein2) were tested. The GP15‐1‐induced plant growth and ISR were fully compromised in an ein2 mutation. Root colonization assay revealed that the inability of the ein2 mutant to express GP15‐1‐induced plant growth and ISR was not associated with reduced root colonization by GP15‐1. In conclusion, our results demonstrate the ethylene signalling pathway is involved in plant growth promotion and ISR elicitation by the PGPF P. viridicatum GP15‐1 in Arabidopsis. These results provide evidence that ethylene signalling has a substantial role in plant growth and disease resistance.  相似文献   

17.
18.
19.
20.
Plant immune responses triggered upon recognition of microbe‐associated molecular patterns (MAMPs) typically restrict pathogen growth without a host cell death response. We isolated two Arabidopsis mutants, derived from accession Col‐0, that activated cell death upon inoculation with nonadapted fungal pathogens. Notably, the mutants triggered cell death also when treated with bacterial MAMPs such as flg22. Positional cloning identified NSL1 (Necrotic Spotted Lesion 1) as a responsible gene for the phenotype of the two mutants, whereas nsl1 mutations of the accession No‐0 resulted in necrotic lesion formation without pathogen inoculation. NSL1 encodes a protein of unknown function containing a putative membrane‐attack complex/perforin (MACPF) domain. The application of flg22 increased salicylic acid (SA) accumulation in the nsl1 plants derived from Col‐0, while depletion of isochorismate synthase 1 repressed flg22‐inducible lesion formation, indicating that elevated SA is needed for the cell death response. nsl1 plants of Col‐0 responded to flg22 treatment with an RBOHD‐dependent oxidative burst, but this response was dispensable for the nsl1‐dependent cell death. Surprisingly, loss‐of‐function mutations in PEN2, involved in the metabolism of tryptophan (Trp)‐derived indole glucosinolates, suppressed the flg22‐induced and nsl1‐dependent cell death. Moreover, the increased accumulation of SA in the nsl1 plants was abrogated by blocking Trp‐derived secondary metabolite biosynthesis, whereas the nsl1‐dependent hyperaccumulation of PEN2‐dependent compounds was unaffected when the SA biosynthesis pathway was blocked. Collectively, these findings suggest that MAMP‐triggered immunity activates a genetically programmed cell death in the absence of the functional MACPF domain protein NSL1 via Trp‐derived secondary metabolite‐mediated activation of the SA pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号