共查询到20条相似文献,搜索用时 15 毫秒
1.
Briana H. Witteveen Alex De Robertis Lei Guo Kate M. Wynne 《Marine Mammal Science》2015,31(1):255-278
Near the Kodiak Archipelago, fin (Balaenoptera physalus) and humpback (Megaptera novaeangliae) whales frequently overlap spatially and temporally. The Gulf Apex Predator‐prey study (GAP) investigated the prey use and potential prey partitioning between these sympatric species by combining concurrent analysis of vertical whale distribution with acoustic assessment of pelagic prey. Acoustic backscatter was classified as consistent with either fish or zooplankton. Whale dive depths were determined through suction cup tags. Tagged humpback whales (n = 10) were most often associated with distribution of fish, except when zooplankton density was very high. Associations between the dive depths of tagged fin whales (n = 4) and the vertical distribution of either prey type were less conclusive. However, prey assessment methods did not adequately describe the distribution of copepods, a potentially significant resource for fin whales. Mean dive parameters showed no significant difference between species when compared across all surveys. However, fin whales spent a greater proportion of dive time in the foraging phase than humpbacks, suggesting a possible difference in foraging efficiency between the two. These results suggest that humpback and fin whales may target different prey, with the greatest potential for diet overlap occurring when the density of zooplankton is very high. 相似文献
2.
E. Elizabeth Henderson Tyler A. Helble Glenn Ierley Steve Martin 《Marine Mammal Science》2018,34(3):701-717
Although humpback whales have been well‐studied on their Hawaiian breeding grounds, it is difficult to track individual animals over long distances without tags, particularly when they move offshore. Here, singing humpback whales were localized in three dimensions on the Pacific Missile Range Facility off Kauai, Hawaii, located between 20 km and 80 km offshore, from January 2011 through June 2014. Detailed behavioral analyses were conducted on the resulting tracks. One hundred and eight individual tracks were identified and metrics of these tracks were examined. Using these metrics, the tracks were classified into four behavior categories, described herein as Directed Travel, Repeated Stationary Dives, Mill, and tracks with Combinations of behavioral states. Some diel and seasonal patterns were identified, with Mill tracks occurring more at night than the other behaviors, Repeated Stationary Dive tracks occurring more during the day, and Directed Travel occurring only at the start and end of the breeding season. These results provide detailed insights into the movement of singing humpback whales, particularly in offshore waters where they may be migrating into or out of breeding grounds. This also contributes valuable information on the baseline behavior of humpback whales on a US Navy training range. 相似文献
3.
Olga A. Filatova Briana H. Witteveen Anton A. Goncharov Alexei V. Tiunov Maria I. Goncharova Alexander M. Burdin Erich Hoyt 《Marine Mammal Science》2013,29(3):E253-E265
Humpback whales feed on a variety of prey, but significant differences likely occur between regional feeding grounds. In this study, the diets of humpback whales were analyzed by comparing stable isotope ratios in animal tissues at three humpback whale feeding grounds in the Russian Far East: Karaginsky Gulf, Anadyr Gulf, and the Commander Islands. Anadyr Gulf is a neritic zone far from a shelf break, Karaginsky Gulf is a neritic zone close to a shelf break, and the Commander Islands represent an open oceanic ecosystem where whales feed off the shelf break. Samples from the Commander Islands had the lowest mean δ13C and δ15N values (mean ± SE: δ13C = ?18.7 ± 0.1, δ15N = 10.4 ± 0.1) compared to the samples from Karaginsky Gulf (δ13C = ?17.2 ± 0.1, δ15N = 12.7 ± 0.2) and Anadyr Gulf (δ13C= ?17.8 ± 0.1, δ15N = 14.0 ± 0.4). The samples from Anadyr Gulf had the highest δ15N values, while the samples from Karaginsky Gulf had the highest δ13C values. Both δ13C and δ15N values differed significantly among all three areas. Our data support the hypothesis that humpback whales tend to feed on fish in neritic areas and on plankton in deep oceanic waters. 相似文献
4.
Robert L. Pitman Volker B. Deecke Christine M. Gabriele Mridula Srinivasan Nancy Black Judith Denkinger John W. Durban Elizabeth A. Mathews Dena R. Matkin Janet L. Neilson Alisa Schulman‐Janiger Debra Shearwater Peggy Stap Richard Ternullo 《Marine Mammal Science》2017,33(1):7-58
Humpback whales (Megaptera novaeangliae) are known to interfere with attacking killer whales (Orcinus orca). To investigate why, we reviewed accounts of 115 interactions between them. Humpbacks initiated the majority of interactions (57% vs. 43%; n = 72), although the killer whales were almost exclusively mammal‐eating forms (MEKWs, 95%) vs. fish‐eaters (5%; n = 108). When MEKWs approached humpbacks (n = 27), they attacked 85% of the time and targeted only calves. When humpbacks approached killer whales (n = 41), 93% were MEKWs, and ≥87% of them were attacking or feeding on prey at the time. When humpbacks interacted with attacking MEKWs, 11% of the prey were humpbacks and 89% comprised 10 other species, including three cetaceans, six pinnipeds, and one teleost fish. Approaching humpbacks often harassed attacking MEKWs (≥55% of 56 interactions), regardless of the prey species, which we argue was mobbing behavior. Humpback mobbing sometimes allowed MEKW prey, including nonhumpbacks, to escape. We suggest that humpbacks initially responded to vocalizations of attacking MEKWs without knowing the prey species targeted. Although reciprocity or kin selection might explain communal defense of conspecific calves, there was no apparent benefit to humpbacks continuing to interfere when other species were being attacked. Interspecific altruism, even if unintentional, could not be ruled out. 相似文献
5.
6.
Michael J. Williamson Ailbhe S. Kavanagh Michael J. Noad Eric Kniest Rebecca A. Dunlop 《Marine Mammal Science》2016,32(4):1234-1253
Small research vessels are often used as platforms for tagging activities to collect behavioral data on cetaceans and they have the potential to disturb that group or individual. If this disturbance is ignored, results and conclusions produced by that study could be inaccurate. Here land‐based behavioral data of migrating humpback whales (Megaptera novaeangliae) (n = 29) were used to determine the effect of close approaches for tagging by research vessels on their diving, movement and surface behaviors. Groups of whales were tagged, using digital recording tags, by small research vessels, as part of a behavioral response study. In groups that were approached for tagging, temporary changes in movement behaviors during close approaches were found, with subsequent recovery to “pre‐approach” levels. In female‐calf groups more long‐term changes in travel speed were found. Results suggest that, although close approaches for tagging by small vessels may cause behavioral changes in humpback whales, this change may be small and temporary. However, in female‐calf groups, the behavioral change may be greater and longer lasting. This study shows that when using small vessels for behavioral research, disturbance, and recovery should be measured to ensure integrity of data used for other analyses. 相似文献
7.
Lyn G. Irvine Michele Thums Christine E. Hanson Clive R. McMahon Mark A. Hindell 《Marine Mammal Science》2018,34(2):294-310
The recognized calving grounds of humpback whales (Megaptera novaeangliae) that breed along the Western Australian coast (Breeding Stock D) extend along the Kimberley coast between Camden Sound and Broome (15°–18°S). However, there are reports of neonates further south, suggesting that the calving areas may be poorly defined. During aerial photogrammetric research in 2013 and 2015, we sighted large numbers of humpback whale calves along North West Cape (21°47′–22°43′S). We estimated the minimum relative calf abundance to be 463–603 in 2013 and 557–725 in 2015. We categorized the calves as either neonate or post neonate according to their color and size. The majority of calves sighted in both years (85% in 2013; 94% in 2015) were neonates. Our observations indicate that a minimum of approximately 20% (17.1%–24.3%) of the expected number of calves of this population are born near, or south of, North West Cape. We thus demonstrate that the calving grounds for the Breeding Stock D population extend south from Camden Sound in the Kimberley (15°S) to at least North West Cape (22°43′S), 1,000 km southwest of the currently recognized calving area. 相似文献
8.
Danielle M. Cholewiak Renata S. Sousa‐Lima Salvatore Cerchio 《Marine Mammal Science》2013,29(3):E312-E332
Consistent and well‐defined criteria for the classification and measurement of humpback whale song features are essential for robust comparisons between investigators. Song structure terminology has been well‐established and used by many authors, though at times inconsistently. This review discusses the development of the nomenclature describing humpback song and explores the potential significance of the often‐overlooked variation in song patterns. Within the hierarchical definition of humpback song, the most problematic issues arise from the inconsistent delineation of phrase types, and the use of the metric of song duration without regards to variability in thematic sequence. With regards to the former, a set of guidelines is suggested to facilitate consistent delineation of phrases. With regards to the latter, current research demonstrates that the “song duration” metric has resulted in the disregard of variability at this level, which is more widespread than traditionally reported. An exemplar case is used to highlight the problem inherent in defining and measuring song duration. Humpback song is evaluated within the framework of avian songbird research, and a shift in analysis paradigm is recommended, towards phrase‐based analyses in which sequences of phrases are treated as a salient feature of song pattern. 相似文献
9.
North Pacific humpback whales (Megaptera novaeangliae) migrate annually to foraging grounds in Southeast Alaska that are characterized by semidiurnal tidal cycles. Tidal activity is an important driver of marine mammal behavior on foraging grounds, but is often omitted in studies of acoustic ecology. To better understand the role of sound in this vocal species we investigated the influence of tidal height and direction on humpback whale nonsong calling behavior in Frederick Sound and described new call types for this population. The likelihood of detecting a call from the low‐frequency‐harmonic, pulsed, or noisy‐complex call classes was independent of tidal activity. The likelihood of detecting a call from the tonal call class, and a feeding call in particular, was 2.1 times higher during flood tides than during ebb tides (95% CI 1.1–4.4). This likely reflects an indirect relationship between humpback whale foraging and tides. 相似文献
10.
Daniel Burns Lyndon Brooks Peter Harrison Trish Franklin Wally Franklin David Paton Phil Clapham 《Marine Mammal Science》2014,30(2):562-578
Humpback whales (Megaptera novaeangliae) migrate long distances each year on a return journey from low‐latitude breeding grounds to high‐latitude feeding grounds. Migration is influenced by subtle and complex social behaviors and the assumption that whales transit directly through the migratory corridor off the east coast of Australia requires further investigation. From 2003 to 2005, we followed the movements of 99 individual whales within one migratory cycle from three locations, off Byron Bay during the whales' northern migration and in Hervey Bay and at Ballina during the southern migration. The median sighting interval of whales between Byron Bay and Hervey Bay (n = 26) was 52 d (IQR = 42.5–75.5); between Byron Bay and Ballina (n = 21) was 59 d (IQR = 47.0–70.0); and between Hervey Bay and Ballina (n = 33) was 9 d (8.0–14.0). The overall pattern observed from these resightings suggests that Group E1 humpback whales spend approximately two months in the northern quarter of their range during the austral winter months. Intraseason resightings of whales at Ballina (n = 13, median sighting interval = 7 d) also suggest that some individuals, particularly adult males, may circle back north during their general southward journey along this part of the coast, perhaps in an attempt to increase mating opportunities. 相似文献
11.
Olga V. Titova Olga A. Filatova Ivan D. Fedutin Ekaterina N. Ovsyanikova Haruna Okabe Nozomi Kobayashi Jo Marie V Acebes Alexandr M. Burdin Erich Hoyt 《Marine Mammal Science》2018,34(1):100-112
Humpback whales migrate seasonally from high latitude feeding areas to lower latitude breeding areas for mating and calving. In 2004–2006, a North Pacific basin‐wide study called SPLASH was conducted as an international collaboration among various groups of researchers. The Russian Far East consists of multiple high latitude feeding areas and during SPLASH, 102 whales were identified and compared to catalogs from breeding areas. Our goal in this study was to further investigate the migratory destinations of whales from the Russian Far East using a total of 1,459 photographs of whales identified from 2004 to 2014. We compared the latest Russian catalog with the SPLASH catalog from wintering areas (2004–2006) and with two additional regional catalogs from Okinawa (1989–2006) and the northern Philippines (2000–2006). We found a total of 152 matches: 106 with Asian, 35 with Hawaiian, and 11 with Mexican breeding grounds. The match rate was higher in mainland Kamchatka and consisted mostly of whales from the Asian breeding ground. In the Commander Islands, the proportion of whales from Asia was twice that of Hawaii and six times higher than Mexico. The total match rate was low, supporting the hypothesis of some undiscovered humpback whale breeding location in the North Pacific. 相似文献
12.
Understanding the distribution, habitat preference, and social structure of highly migratory species at important life history stages (e.g., breeding and calving) is essential for conservation efforts. We investigated the spatial distribution and habitat preference of humpback whale social groups and singers, in relation to depth categories (<20 m, 20–50 m, and >50 m) and substrate type (muddy and mixed) on a coastal southeastern Pacific breeding ground. One hundred and forty‐three acoustic stations and 304 visual sightings were made at the breeding ground off the coast of Esmeraldas, Ecuador. Spatial autocorrelation analysis suggested singers were not randomly distributed, and Neu's method and Monte Carlo simulations indicated that singers frequented depths of <20 m and mixed substrate. Singletons, and groups with a calf displayed a preference for shallower waters (0–20 m), while pairs and groups with a calf primarily inhabited mixed bottom substrates. In contrast, competitive groups showed no clear habitat preference and exhibited social segregation from other whales. Understanding the habitat preference and distribution of humpback whales on breeding and calving grounds vulnerable to anthropogenic disturbance provides important baseline information that should be incorporated into conservation efforts at a regional scale. 相似文献
13.
Hector M. Guzman Catalina G. Gomez Carlos A. Guevara Lars Kleivane 《Marine Mammal Science》2013,29(4):629-642
Vessel collision is a threat to many whale species, and the risk has increased with expanding maritime traffic. This compromises international conservation efforts and requires urgent attention from the world's maritime industry. Humpback whales (Megaptera novaeangliae) are at the top of the death toll, and although Central America is a wintering area for populations from both the Northern and Southern Hemispheres, existing efforts to reduce ship‐whale collisions are meager. Herein, we evaluated the potential collisions between vessels and humpback whales wintering off Pacific Panama by following the movements of 15 whales tagged with satellite transmitters and comparing these data with tracks plotted using AIS real‐time latitude‐longitude points from nearly 1,000 commercial vessels. Movements of whales (adults and calves) in the Gulf of Panama coincide with major commercial maritime routes. AIS vessel data analyzed for individual whale satellite tracks showed that 53% (8 whales) of whales had 98 encounters within 200 m with 81 different vessels in just 11 d. We suggest implementing a 65 nmi Traffic Separation Scheme and a 10 kn maximum speed for vessel routing into the Gulf of Panama during the wintering season. In so doing, the area for potential whale‐vessel collisions could be reduced by 93%. 相似文献
14.
Ailbhe S. Kavanagh Michael J. Noad Simon P. Blomberg Anne W. Goldizen Eric Kniest Douglas H. Cato Rebecca A. Dunlop 《Marine Mammal Science》2017,33(2):413-439
Humpback whales (Megaptera novaeangliae) undertake one of the longest migrations of any animal and while on a broad‐scale this journey appears direct, on a fine‐scale, behaviors associated with socializing and breeding are regularly observed. However, little is known about which social and environmental factors influence behavior during this time. Here we examined the effect of multiple factors on the movement (speed and course) and diving behavior (dive and surfacing duration) of humpback whales during migration off the eastern coast of Australia. Focal data (202 h) were collected on 94 different whale groups with simultaneous social and environmental context data. The environmental factors water depth and wind speed were found to be important predictors of dive and movement behavior, whereas social factors were less influential at this site. Groups tended to dive for longer with increased water depth but traveled more slowly in increasing wind speeds. These baseline studies are crucial when examining the effect of anthropogenic disturbance. Determining which natural factors significantly affect behavior ensures any observed behavioral changes are correctly attributed to the disturbance and are not a result of other factors. In addition, any responses observed can be put into biological context and their relative magnitude determined. 相似文献
15.
Dana L. Wright Briana Witteveen Kate Wynne Larissa Horstmann‐Dehn 《Marine Mammal Science》2015,31(4):1378-1400
Knowledge of humpback whale (Megaptera novaeangliae) foraging on feeding grounds is becoming increasingly important as the growing North Pacific population recovers from commercial whaling and consumes more prey, including economically important fishes. We explored spatial and temporal (interannual, within‐season) variability in summer foraging by humpback whales along the eastern side of the Kodiak Archipelago as described by stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of humpback whale skin (n = 118; 2004–2013). The trophic level (TL) of individual whales was calculated using basal food web δ15N values collected within the study area. We found evidence for the existence of two subaggregations of humpback whales (“North,” “South”) on the feeding ground that fed at different TLs throughout the study period. Linear mixed models suggest that within an average year, Kodiak humpback whales forage at a consistent TL during the feeding season. TL estimates support mixed consumption of fish and zooplankton species in the “North” (mean ± SE; 3.3 ± 0.1) and predominant foraging on zooplankton in the “South” (3.0 ± 0.1). This trend appears to reflect spatial differences in prey availability, and thus, our results suggest North Pacific humpback whales may segregate on feeding aggregations and target discrete prey species. 相似文献
16.
Janet L. Neilson Janice M. Straley Christine M. Gabriele Susan Hills 《Journal of Biogeography》2009,36(3):452-464
Aim Entanglement in fishing gear is recognized as a potentially significant source of serious injury and mortality for humpback whales (Megaptera novaeangliae) in some parts of their range. In recent years, the number of humpback whales reported to have been entangled in Alaska has increased. In 2003–04 we quantified the prevalence of non‐lethal entanglements of humpback whales in northern Southeast Alaska (SEAK) with the ultimate goal of informing management discussions of the entanglement issue for the Central North Pacific stock of humpback whales. Location The near‐shore waters of northern Southeast Alaska. Methods We photographed individual humpback whales’ caudal peduncles as they dived and then examined the photographs for scars indicative of a previous entanglement. Results The percentage of whales assessed to have been non‐lethally entangled at some time in their lives ranged from 52% (minimal estimate) to 71% (conditional estimate) to 78% (maximal estimate). Of these, the conditional estimate is recommended because it is based solely on unambiguous scars. Eight per cent of the whales in one portion of the study area (Glacier Bay/Icy Strait) acquired new entanglement scars between 2003 and 2004, although the sample size was small. Calves were less likely than older whales to have entanglement scars, and males may be at higher risk than females. Whales with more photographs and/or photographic coverage may be more likely to be assessed as having been entangled than whales with fewer photographs and/or coverage. Main conclusions Caudal peduncle scars reveal that the majority of humpback whales in northern SEAK have been entangled. Comparison with statistics on reported entanglements suggests that most whales apparently shed the gear on their own, unless humans are disentangling whales much more often than is reported. While cumulative estimates of the percentage of whales with entanglement scars (e.g. the conditional estimate) provide useful baseline information, future efforts should focus on monitoring the annual rate of entanglement scar acquisition as a more powerful measure of contemporary entanglement rates. Our findings indicate that entanglement of humpback whales in fishing gear in SEAK is a management issue warranting increased attention. A proactive approach is needed to address the problem and to identify and implement preventive measures. 相似文献
17.
We investigated sex‐related site fidelity by humpback whales to the Fueguian Archipelago, a new feeding area in the eastern South Pacific, by examining the resighting histories of 45 males and 39 females recorded from 2003 to 2012. Results indicated an overall annual return to the feeding area of 74.8%, and annual sex ratio is roughly equal in the population. The probability of an individual being resighted across years and in subsequent years was not significantly different for both males and females, however, the proportion of resighting within a year was significantly higher for individual males compared to females. Potential sources of sex‐related bias were analyzed, but none were found to be significant. Greater intraannual resighting frequency for males may reflect sex‐based differences in spatial occupation and short‐range movements due to potential differences in energy budgets. 相似文献
18.
Hector M. Guzman Richard Condit Betzi Pérez‐Ortega Juan J. Capella Peter T. Stevick 《Marine Mammal Science》2015,31(1):90-105
From 2003 to 2009, we surveyed Las Perlas Archipelago off the Pacific coast of Panama 53 times between the months of August and October to estimate abundance of humpback whales and to test for a migratory connection with populations from the southern hemisphere. We identified 295 individuals using photo‐identification of dorsal fins, including 58 calves, and the population estimate for a single season was 100–300 solitary adults plus 25–50 mothers with calves; the estimated population of animals across all seasons using a mark and recapture model was over 1,000. Eight of the 139 fluke identifications were matched to whales in photograph catalogues from the Antarctic Peninsula and a ninth was matched to a whale sighted in Chilean waters; four of these nine individuals have also been sighted in Colombia. We conclude that Panama (Las Perlas Archipelago in particular) is an important calving area for humpback whales in the Southern Hemisphere. These data should provide a foundation for monitoring of population change and to increase awareness in Panama about the need to manage vessel traffic and tourism related to the whales at Las Perlas. 相似文献
19.
Ailbhe S. Kavanagh Kylie Owen Michael J. Williamson Simon P. Blomberg Michael J. Noad Anne W. Goldizen Eric Kniest Douglas H. Cato Rebecca A. Dunlop 《Marine Mammal Science》2017,33(1):313-334
As part of their social sound repertoire, migrating humpback whales (Megaptera novaeangliae) perform a large variety of surface‐active behaviors, such as breaching and repetitive slapping of the pectoral fins and tail flukes; however, little is known about what factors influence these behaviors and what their functions might be. We investigated the potential functions of surface‐active behaviors in humpback whale groups by examining the social and environmental contexts in which they occurred. Focal observations on 94 different groups of whales were collected in conjunction with continuous acoustic monitoring, and data on the social and environmental context of each group. We propose that breaching may play a role in communication between distant groups as the probability of observing this behavior decreased significantly when the nearest whale group was within 4,000 m compared to beyond 4,000 m. Involvement in group interactions, such as the splitting of a group or a group joining with other whales, was an important factor in predicting the occurrence of pectoral, fluke, and peduncle slapping, and we suggest that they play a role in close‐range or within‐group communication. This study highlights the potentially important and diverse roles of surface‐active behaviors in the communication of migrating humpback whales. 相似文献
20.
Igor Oliveira Braga de Morais Daniel Danilewicz Alexandre Novaes Zerbini William Edmundson Ian B. Hart Guilherme Augusto Bortolotto 《Mammal Review》2017,47(1):11-23
- Historical catch records from whaling activity are crucial for assessments of whale populations. However, several gaps in the exploitation history for many populations from before the twentieth century create limitations that may lead to overestimates of the recovery of these populations. The history of modern whaling along the Brazilian coast is relatively well known. However, several questions relating to the pre‐modern period, during and before the nineteenth century, remain unanswered. For example, the level of exploitation of humpback whales Megaptera novaeangliae and southern right whales Eubalaena australis in this period is unknown.
- Pre‐modern whaling in Brazil began in 1602 and lasted until the 1920s. Whales were captured using manual harpoons from either rowing boats or sailing boats, and processed at land stations called ‘armações’. A review of the history and oil production of these stations indicates that substantial catches occurred.
- Pre‐modern whaling records also indicate the collapse of the southern right whale population in the western South Atlantic Ocean. Increasingly rare reports of sightings for the nineteenth century and the closing of the last armação in the breeding grounds off southern Brazil indicate that this population collapsed by 1830.
- Armações operating in north‐eastern Brazil remained active through the 1800s, and targeted humpback whales until modern whaling techniques were introduced in the early 1900s. It is estimated that between approximately 11000 and 32000 individuals of this species were captured at these coastal whaling stations from 1830 to 1924.