首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imidacloprid, a widely used neonicotinoid insecticide, is toxic to silkworm (Bombyx mori). To explore whether N‐acetyl‐l ‐cysteine (NAC) has an effect on preventing silkworm (B. mori) from toxification caused by imidacloprid, we fed the fifth‐instar larvae with mulberry leaves dipped in 200 mg/L NAC solution before exposing in imidacloprid, and investigated the silkworm growth, survival rate, feed efficiency, cocoon quality, and the activities of antioxidant enzymes in midgut. The results showed that addition of NAC could significantly increase body weight, survival rate, and feed efficiency of imidacloprid poisoned silkworm larvae (P < 0.05), as well as cocoon mass, cocoon shell mass, and the ratio of cocoon shell (P < 0.05). Furthermore, it could significantly promote the activities of the antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxide in the midgut of fifth‐instar larvae under imidacloprid exposure at the late stage of treatment. In addition, it also could downregulate the malondialdehyde content. The results of our findings proved that the added NAC may have some beneficial effects on protection or restoration of antioxidant balance in imidacloprid exposed larvae.  相似文献   

2.
The present study was conducted to determine whether imidacloprid can impair the avoidance behaviour of the mosquito Stegomyia aegypti. Laboratory investigations using a T‐maze apparatus showed that St. aegypti mosquitoes present long term avoidance behaviour when they are exposed to repetitive trials with lemon oil and DEET. The present study tested the effect of a sublethal dose of imidacloprid on the avoidance behaviour of St. aegypti mosquitoes over a 48 h period. Data suggest that 0.5 ng of imidacloprid/mosquito reduces the avoidance behaviour of mosquitoes exposed to lemon oil, on the first day of exposure, after the second trial; whereas imidacloprid affected DEET repellency only the first day of exposure, after the second trial. Imidacloprid was toxic against St. aegypti mosquitoes, and at sublethal doses was able to impair the repellency induced by lemon oil and DEET. The present data were consistent with the finding that St. aegypti mosquitoes exhibit long term avoidance behaviour, and treatment of mosquitoes with a sublethal dose of imidacloprid under DEET application can affect the repellency of DEET against St. aegypti.  相似文献   

3.
Bioinsecticides are important in the control of disease vectors, but data regarding their physiological effects on target insects are incomplete. This study describes morphological changes that occur in the midgut of third instar Aedes aegypti L. (Diptera: Culicidae) following treatment with a methanolic extract of Annona coriacea (Magnoliales: Annonaceae). Dissected midguts were subdivided into anterior and posterior regions and analyzed by light and scanning electron microscopy. Insects exposed to the extract displayed intense, destructive cytoplasmic vacuolization in columnar and regenerative midgut cells. The apical surfaces of columnar cells exhibited cytoplasmic protrusions oriented toward the lumen, suggesting that these cells could be involved in apocrine secretory processes and/or apoptosis. We report that A. coriacea extracts induced morphological alterations in the midgut of A. aegypti midgut larvae, supporting the use of plant extracts for control of the dengue vector.  相似文献   

4.
5.
Entomopathogenic fungi are potential candidates for use in integrated vector management. However, efficient delivery systems for these fungi need to be investigated. It is known that adult mosquitoes are attracted to dark surfaces, and therefore, black cotton cloths impregnated with Metarhizium anisopliae alone or in combination with the insecticide imidacloprid (IMI) were tested under laboratory conditions. Black cloths impregnated with fungus were also tested in large‐cage trials under natural extradomicile conditions. Blood‐fed Rockefeller and wild‐type strain Aedes aegypti had higher levels of survival when compared with sucrose‐fed counterparts following exposure to fungus‐impregnated cloths. However, when blood‐fed A. aegypti were exposed to a combination of M. anisopliae + IMI, the survival rates were statistically equal to those of sucrose‐fed females. Large‐cage trials showed significant decreases in A. aegypti survival following a minimum 12 h exposure of the mosquitoes to fungus‐impregnated cloths. Increased exposure times results in further reductions in survival. The synergism between M. anisopliae and IMI resulted in reduced survival rates independent of feeding regime under laboratory conditions. Fungus‐impregnated cloths tested under simulated field conditions, considered to be unfavourable for fungal infection, resulted in significant reductions in adult A. aegypti survival. We are currently testing the combined use of fungi and insecticides against blood‐fed insects under simulated field conditions.

Significance and Impact of the Study

The use of fungus‐impregnated cotton cloths is a promising point source application method for the control of adult Aedes aegypti, and this strategy could be incorporated into an integrated vector management programme aiming to reduce the incidence of dengue fever.  相似文献   

6.
Extracts from Justicia adhatoda L. (Acanthaceae) strongly reduced the fitness of the mosquito, Aedes aegypti Linn. The methanolic extracts inhibited several enzymes responsible for protecting insects from oxidative and other damage, including glutathione‐S‐transferase, superoxide dismutase, cytochrome P450, and α‐ and β‐esterases. They increased repellency (maximum repellency at 100 ppm) in host‐seeking adult females using the “arm‐in cage assay.” Histopathological examination showed the extracts led to serious midgut cell damage. Justicia adhatoda extracts led to reduced fecundity and oviposition of gravid females compared to controls. The extracts led to substantially reduced A. aegypti survival. We infer that the extracts have potential to reduce pathogen transmission by suppressing population growth of A. aegypti, and possibly other mosquito species.  相似文献   

7.
In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution should be used when employing this extract as a larvicidal agent.  相似文献   

8.
The Aedes aegypti midgut is restructured during metamorphosis; its epithelium is renewed by replacing the digestive and endocrine cells through stem or regenerative cell differentiation. Shortly after pupation (white pupae) begins, the larval digestive cells are histolized and show signs of degeneration, such as autophagic vacuoles and disintegrating microvilli. Simultaneously, differentiating cells derived from larval stem cells form an electron-dense layer that is visible 24 h after pupation begins. Forty-eight hours after pupation onset, the differentiating cells yield an electron-lucent cytoplasm rich in microvilli and organelles. Dividing stem cells were observed in the fourth instar larvae and during the first 24 h of pupation, which suggests that stem cells proliferate at the end of the larval period and during pupation. This study discusses various aspects of the changes during midgut remodeling for pupating A. aegypti.  相似文献   

9.
Dengue is a serious disease transmitted by the mosquito Aedes aegypti during blood meal feeding. It is estimated that the dengue virus is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies have been based on controlling the vector, Ae. aegypti, using insecticide, but the emergence of resistance poses new challenges. The aim of this study was the identification of specific protease inhibitors of the digestive enzymes from Ae. aegypti larvae, which may serve as a prospective alternative biocontrol method. High affinity protein inhibitors were selected by all of the digestive serine proteases of the 4th instar larval midgut, and the specificity of these inhibitors was characterized. These inhibitors were obtained from a phage library displaying variants of HiTI, a trypsin inhibitor from Haematobia irritans, that are mutated in the reactive loop (P1–P4′). Based on the selected amino acid sequence pattern, seven HiTI inhibitor variants were cloned, expressed and purified. The results indicate that the HiTI variants named T6 (RGGAV) and T128 (WNEGL) were selected by larval trypsin-like (IC50 of 1.1 nM) and chymotrypsin-like enzymes (IC50 of 11.6 nM), respectively. The variants T23 (LLGGL) and T149 (GGVWR) inhibited both larval chymotrypsin-like (IC50 of 4.2 nM and 29.0 nM, respectively) and elastase-like enzymes (IC50 of 1.2 nM for both). Specific inhibitors were successfully obtained for the digestive enzymes of Ae. aegypti larvae by phage display. Our data also strongly suggest the presence of elastase-like enzymes in Ae. aegypti larvae. The HiTI variants T6 and T23 are good candidates for the development as a larvicide to control the vector.  相似文献   

10.
In Brazil, insecticide resistance in Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) populations to pyrethroids and to the organophosphate (OP) temephos is disseminated. Currently, insect growth regulators (IGRs) and the OP malathion are employed against larvae and adults, respectively. Bioassays with mosquitoes from two northeast municipalities, Crato and Aracaju, revealed, in both populations, susceptibility to IGRs and malathion (RR95 ≤ 2.0), confirming the effectiveness of these compounds. By contrast, temephos and deltamethrin (pyrethroid) resistance levels were high (RR95 > 10), which is consistent with the use of intense chemical control. In Crato, RR95 values were > 50 for both compounds. Knock‐down‐resistant (kdr) mutants in the voltage‐gated sodium channel, the pyrethroid target site, were found in 43 and 32%, respectively, of Aracaju and Crato mosquitoes. Biochemical assays revealed higher metabolic resistance activity (esterases, mixed function oxidases and glutathione‐S‐transferases) at Aracaju. With respect to fitness aspects, mating effectiveness was equivalently impaired in both populations, but Aracaju mosquitoes showed more damaging effects in terms of longer larval development, decreased bloodmeal acceptance, reduced engorgement and lower numbers of eggs laid per female. Compared with mosquitoes in Crato, Aracaju mosquitoes exhibited lower OP and pyrethroid RR95, increased activity of detoxifying enzymes and greater effect on fitness. The potential relationship between insecticide resistance mechanisms and mosquito viability is discussed.  相似文献   

11.
Abstract Xenorhabdus nematophila, a Gram‐negative proteobacterium belonging to the family Enterobacteriaceae and associated symbiotically with soil entomopathogenic nematodes, Steinernema carpocapsae, is pathogenic to a wide range of insects. A protein complex with insecticidal activity was isolated from the cells of X. nematophila HB310 strain using methods of salting out and native polyacrylamide gel electrophoresis (PAGE). Seven polypeptides ranging 50~250 kDa were well separated from the protein complex (named Xnpt) by sodium dodecyl sulfate (SDS)‐PAGE, five of which are identified as XptA2, xptC1, XptB1, GroEL and hypothetical protein by matrix‐assisted laser desorption‐time‐of‐flight mass spectrometry (MALDI‐TOFMS). Xnpt showed high oral virulence to larvae of diamondback moth (DBM), Plutella xylostella L. (Lepidoptera, Plutellidae) as its median lethal concentration (LC50) against second and third instar larvae were 331.45 ng/mL and 553.59 ng/mL at 72 h, respectively. The histological analysis of Xnpt‐fed DBM larvae showed extensive histopathological effects on the midgut. Biochemical analysis indicated that Xnpt markedly inhibited the activities of three important enzymes in the midgut. Overall, our data showed that the protein complex isolated from X. nematophila HB310 induced the antifeedant and death of insects by destroying midgut tissues and inhibiting midgut proteases activities.  相似文献   

12.
Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae) is the principal vector of dengue and yellow fever viruses in tropical and subtropical regions of the world. Disease management is largely based on mosquito control achieved by insecticides applied to interior resting surfaces and through space sprays. Population monitoring to detect insecticide resistance is a significant component of integrated disease management programmes. We developed a bioassay method for assessing insecticide susceptibility based on the feeding activity of mosquitoes on plant sugars. Our prototype sugar‐insecticide feeding bioassay system was composed of inexpensive, disposable components, contained minimal volumes of insecticide, and was compact and highly transportable. Individual mosquitoes were assayed in a plastic cup that contained a sucrose‐permethrin solution. Trypan blue dye was added to create a visual marker in the mosquito's abdomen for ingested sucrose‐permethrin solution. Blue faecal spots provided further evidence of solution ingestion. With the sugar‐insecticide feeding bioassay, the permethrin susceptibility of Ae. aegypti females from two field‐collected strains was characterized by probit analysis of dosage‐response data. The field strains were also tested by forced contact of females with permethrin residues on filter paper. Dosage‐response patterns were similar, indicating that the sugar‐insecticide feeding bioassay had appropriately characterized the permethrin susceptibility of the two strains.  相似文献   

13.
《Journal of Asia》2023,26(2):102051
The mosquito Aedes aegypti is the main vector for the virus dengue, chikungunya and Zika. For its control, it is essential to search for natural products with insecticidal effects. The climatic singularity of Caatinga, an exclusive Brazilian biome, aids the survival of plants that produce secondary metabolites, which could be toxic to insects. Therefore, this review discusses the insecticidal potential of Caatinga plants on Aedes aegypti mosquitoes. The meta-analysis was performed using Review Manager Software 5.4.1®. Several studies have demonstrated the insecticidal efficacy of Caatinga plants on the egg, larvae, pupae and adult phases of Ae. aegypti, with a predominance of the plant activity in the larval stage. The leaves were the most utilized part of the plant. The essential oils from Caatinga plants were significantly active against Ae. aegypti (RR = 0.21, 95 % CI = 0.07 – 0.68, p = 0.009). The most promising botanical genera as an insecticide are: Abarema, Myracrodruon, Croton, Lippia and Syagrus. Among chemical compounds from these insecticidal plants has been identified and isolated flavonoids and fatty acids. Therefore, the Caatinga plant is a promising plant that contain bioactive compounds that are useful in the control of vector insects. This could contribute to the characterisation and valorisation of flora of this biome, as well as the production of environmentally friendly insecticides with specific action on target insects.  相似文献   

14.
Locally acquired dengue cases in the continental U.S. are rare. However, outbreaks of dengue‐1 during 2009, 2010, and 2013 in Florida and dengue‐1 and −2 in Texas suggest vulnerability to transmission. Travel and commerce between Puerto Rico and the U.S. mainland is common, which may pose a risk for traveler‐imported dengue cases. Mosquitoes were collected in Florida and used to evaluate their susceptibility to dengue viruses (DENV) from Puerto Rico. Aedes aegypti and Ae. albopictus were susceptible to virus infection with DENV‐1 and −2. No significant differences were observed in rates of midgut infection or dissemination between Ae. aegypti or Ae. albopictus for DENV‐1 (6–14%). Aedes aegypti was significantly more susceptible to midgut infection with DENV‐2 than Ae. albopictus (Ae. aegypti, ∼28%; Ae. albopictus, ∼9%). The dissemination rate with dengue‐2 virus for Ae. aegypti (23%) was greater than Ae. albopictus (0%), suggesting that Ae. albopictus is not likely to be an important transmitter of the DENV‐2 isolate from Puerto Rico. These results are discussed in light of Florida's vulnerability to DENV transmission.  相似文献   

15.
In this study, four blockers of anion transporters (ATs) belonging to four different classes of organic acids, including DIDS (4, 4'‐diisothiocyanatostilbene‐2, 2'‐ disulfonic acid; a stilbene disulfonic acid), NPPB [(5‐nitro‐2‐(3‐phenylpropylamino) benzoic acid; an anthranilic acid)], 9‐AC (anthracene‐9‐carboxylic acid; an aromatic carboxylic acid), and IAA‐94 (indanyloxy acetic acid; an indanyloxy alkanoic acid), were tested for their toxicity against the European corn borer (ECB), Ostrinia nubilalis. All the AT blockers inhibited the growth of larvae, increased the developmental time, and decreased survival compared to controls, when second‐instar ECB larvae were fed for seven days on treated diet. In general, DIDS and NPPB were the most active compounds, with the rank order of activity being DIDS>NPPB>IAA‐94>9‐AC. All the AT blockers decreased the midgut alkalinity in fifth‐instar larvae when fed for 3 h on treated diet. Effective concentrations required for 50% decrease in midgut alkalinity (EC50) ranged between 29.1 and 41.2 ppm and the rank order of activity was NPPB>DIDS>IAA‐94>9‐AC. Similarly, all the tested AT blockers inhibited 36Cl? uptake from the midgut lumen in fifth‐instar larvae when fed for 3 h on treated diet. Concentrations required for 50% inhibition of 36Cl? uptake (IC50) ranged between 7.4 and 11.0 ppm and the rank order of activity was DIDS>NPPB>9‐AC >IAA‐94. Modest to highly strong positive correlations observed among growth, midgut alkalinity, and midgut Cl? ion transport in AT blocker–fed larvae suggested that these effects are causally related to each other. Finally, AT blockers have the potential to become good candidates for development of insecticides with a unique mode of action. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
R. J. Wood 《Genetica》1990,46(1):45-48
Pecten spine number has been studied in larvae of Aedes aegypti exposed during development to low temperatures or to DDT at the fourth instar, both of which caused substantial mortality. But neither contingency caused stabilising selection for spine number, in contrast to what was observed in a previous study when larvae were exposed to scum on the surface of the rearing medium. — Two larval colour morphs, yellow and brown, did not differ in spine number.  相似文献   

17.
Benzoylphenyl ureas inhibit chitin synthesis and interfere with the molting process in arthropods. In this study, the effect of diflubenzuron on third‐instar larvae of Aedes aegypti was evaluated. The susceptibility to the product was determined, and the alterations generated were shown through light and electron microscopy. LC50 and LC90 were 0.23 and 0.47 ppm, respectively. The main alterations observed were the incapacity to complete the molt, a reduction of mobility, the fragmentation of the old cuticle, a division of the body segments that was not evident, and the deformation of the caudal structures. Images of the ultrastructure are included, where breaking zones in the cuticle were observed, separation of the cuticle, the epidermis and the muscles, and these latter with a disorganized arrangement. In low concentrations, from 0.15 ppm, diflubenzuron causes alterations in the behavior and morphology of Ae. aegypti.  相似文献   

18.
Black nightshade (Solanum nigrum, S. nigrum L.) and red nightshade ( Solanum villosum, S. villosum Mill.) are medicinal plants from the Solanaceae family that synthesize glycoalkaloids and other secondary metabolites. To recognize the potential insecticide activity of these compounds, leaf extracts (containing glycoalkaloid and methanol fractions) were tested for enzyme inhibition, antifeedant activity and toxicity. For in‐vitro glutathione S‐transferase (GST) inhibition activity, we used insecticide‐resistant Colorado potato beetle, Leptinotarsa decemlineata ( L. decemlineata; Say) midgut and fat‐body homogenate. In‐vivo toxicity and the antifeedant activity were performed using larval bioassays. The methanol extracts had greater GST inhibitory activity compared to the glycoalkaloids, as well as greater 2nd instar larvae mortality and antifeedant activity. Furthermore, the green leaf volatile compound, cis‐hex‐3‐enyl acetate, at the concentration of 5 ppm, caused 50% mortality of 2nd instar larvae. Our findings suggest the potential usefulness of S. nigrum and S. villosum extracts to control L. decemlineata.  相似文献   

19.
A new system for deployment of fungus‐impregnated black cloths was tested against Aedes aegypti. A “PET trap” was placed in a test chamber to evaluate attractiveness to female A. aegypti with black cloths covered in adhesive film or adhesive film only for 24 and 48 hr. Traps with fungus (Metarhizium anisopliae and Beauveria bassiana)‐impregnated black cloths were tested against female mosquitoes for different time periods (3 h to 48 hr) in the chambers. Traps were then tested under intradomicile conditions against sucrose and blood‐fed insects. Experiments were carried out to ascertain the minimum number of PET traps need to be deployed per test room and to test the effect of different periods of exposure to traps. Exposing the insects for 24 and 48 hr to a PET trap with adhesive film + black cloth resulted in higher rates of trapped mosquitoes (38.6% and 68%, respectively) when compared with adhesive film only (6% and 12.6%, respectively). Both fungal species were effective at reducing survival rates when mosquitoes were exposed to traps for 24 hr or 48 hr. Lower exposure times did not significantly alter survival rates when compared to controls. The results showed that five traps or three traps per room were equally effective in reducing mosquito survival rates when testing both fungal species. The results for sucrose‐fed insects showed significant reductions in survival when exposed to M. ansiopliae or B. bassiana for 24, 48 or 120 hr when compared to control survival, with the lowest survival rates seen following 48‐ or 120‐hr exposures. Survival of blood‐fed mosquitoes exposed to fungus‐impregnated traps for 48 hr was not significantly different to the controls; however, longer exposure times significantly reduced survival rates. PET traps could be an effective system for deploying fungus‐impregnated cloths in residences, facilitating cooperation of volunteers and reducing distribution time.  相似文献   

20.
In this paper, we assessed the suitability of using the neonicotinoid imidacloprid with standard ovitraps by evaluating the ovicidal properties of imidacloprid and its influence on the oviposition response of gravid females of Aedes (Stegomyia) aegypti Linnaeus (Diptera: Culicidae). First, we calculated the imidacloprid lethal dose 99 (LD(99)) by exposing third instar larvae of the target species to different concentrations of the insecticide. Next, Ae. aegypti eggs were exposed to the imidacloprid LD(99) for 24 h and hatching inhibition was recorded. Finally, we investigated any potential repellent effect of the imidacloprid solution on the oviposition response of gravid Aedes females in field and laboratory conditions. The LD(99) obtained from larvae tests proved to be sufficient to keep any exposed eggs from hatching. No repellent effect was observed; females laid as many eggs in imidacloprid-treated ovitraps as in traps containing either clean water or temephos-treated water in both field and laboratory conditions. Our results indicate that imidacloprid is a suitable insecticide for treating ovitraps against Ae. aegypti.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号