首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autotransporters are a large superfamily of cell surface proteins produced by Gram‐negative bacteria that consist of an N‐terminal extracellular domain (‘passenger domain’) and a C‐terminal β‐barrel domain that resides in the outer membrane (OM). Although it was originally proposed that the passenger domain is translocated across the OM through a channel formed exclusively by the covalently linked β‐barrel domain, this idea has been strongly challenged by a variety of observations. Recent experimental results have suggested a new model in which both the translocation of the passenger domain and the membrane integration of the β‐barrel domain are facilitated by the Bam complex, a highly conserved heteroligomer that plays a general role in OM protein assembly. Other factors, including periplasmic chaperones and inner membrane proteins, have also recently been implicated in the biogenesis of at least some members of the autotransporter superfamily. New results have raised intriguing questions about the energetics of the secretion reaction and the relationship between the assembly of autotransporters and the assembly of other classes of OM proteins. Concomitantly, new mechanistic and structural insights have expanded the utility of the autotransporter pathway for the surface display of heterologous peptides and proteins of interest.  相似文献   

2.
Gram-negative bacterial autotransporter proteins are a growing group of virulence factors that are characterized by their ability to cross the outer membrane without the help of accessory proteins. A conserved C-terminal beta-domain is critical for targeting of autotransporters to the outer membrane and for translocation of the N-terminal "passenger" domain to the bacterial surface. We have demonstrated previously that the Haemophilus influenzae Hia adhesin belongs to the autotransporter family, with translocator activity residing in the C-terminal 319 residues. To gain further insight into the mechanism of autotransporter protein translocation, we performed a structure-function analysis on Hia. In initial experiments, we generated a series of in-frame deletions and a set of chimeric proteins containing varying regions of the Hia C terminus fused to a heterologous passenger domain and discovered that the final 76 residues of Hia are both necessary and sufficient for translocation. Analysis by flow cytometry revealed that the region N-terminal to this shortened translocator domain is surface localized, further suggesting that this region is not involved in beta-barrel formation or in translocation of the passenger domain. Western analysis demonstrated that the translocation-competent regions of the C terminus migrated at masses consistent with trimers, suggesting that the Hia C terminus oligomerizes. Furthermore, fusion proteins containing a heterologous passenger domain demonstrated that similarly small C-terminal regions of Yersinia sp. YadA and Neisseria meningitidis NhhA are translocation-competent. These data provide experimental support for a unique subclass of autotransporters characterized by a short trimeric translocator domain.  相似文献   

3.
Autotransporters are secreted proteins that are assembled into the outer membrane of bacterial cells. The passenger domains of autotransporters are crucial for bacterial pathogenesis, with some remaining attached to the bacterial surface while others are released by proteolysis. An enigma remains as to whether autotransporters should be considered a class of secretion system, or simply a class of substrate with peculiar requirements for their secretion. We sought to establish a sensitive search protocol that could identify and characterize diverse autotransporters from bacterial genome sequence data. The new sequence analysis pipeline identified more than 1500 autotransporter sequences from diverse bacteria, including numerous species of Chlamydiales and Fusobacteria as well as all classes of Proteobacteria. Interrogation of the proteins revealed that there are numerous classes of passenger domains beyond the known proteases, adhesins and esterases. In addition the barrel-domain-a characteristic feature of autotransporters-was found to be composed from seven conserved sequence segments that can be arranged in multiple ways in the tertiary structure of the assembled autotransporter. One of these conserved motifs overlays the targeting information required for autotransporters to reach the outer membrane. Another conserved and diagnostic motif maps to the linker region between the passenger domain and barrel-domain, indicating it as an important feature in the assembly of autotransporters.  相似文献   

4.
Autotransporters are a superfamily of proteins that use the type V secretion pathway for their delivery to the surface of Gram-negative bacteria. At first glance, autotransporters look to contain all the functional elements required to promote their own secretion: an amino-terminal signal peptide to mediate translocation across the inner membrane, a central passenger domain that is the secreted functional moiety, and a channel-forming carboxyl terminus that facilitates passenger domain translocation across the outer membrane. However, recent discoveries of common structural themes, translocation intermediates and accessory interactions have challenged the perceived simplicity of autotransporter secretion. Here, we discuss how these studies have led to an improved understanding of the mechanisms responsible for autotransporter biogenesis.  相似文献   

5.
Autotransporters are a superfamily of virulence factors typified by a channel-forming C terminus that facilitates translocation of the functional N-terminal passenger domain across the outer membrane of Gram-negative bacteria. This final step in the secretion of autotransporters requires a translocation-competent conformation for the passenger domain that differs markedly from the structure of the fully folded secreted protein. The nature of the translocation-competent conformation remains controversial, in particular whether the passenger domain can adopt secondary structural motifs, such as disulfide-bonded segments, while maintaining a secretion-competent state. Here, we used the endogenous and closely spaced cysteine residues of the plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli to investigate the effect of disulfide bond-induced folding on translocation of an autotransporter passenger domain. We reveal that rigid structural elements within disulfide-bonded segments are resistant to autotransporter-mediated secretion. We define the size limit of disulfide-bonded segments tolerated by the autotransporter system demonstrating that, when present, cysteine pairs are intrinsically closely spaced to prevent congestion of the translocator pore by large disulfide-bonded regions. These latter data strongly support the hairpin mode of autotransporter biogenesis.  相似文献   

6.
The temperature-sensitive hemagglutinin (Tsh) is a representative of the growing subfamily of secreted bacterial virulence factors, known as serine protease autotransporters of the Enterobacteriaceae (SPATEs). Expressed by avian and human pathogenic strains of Escherichia coli Tsh acts as a serine protease and an adhesin to erythrocytes, hemoglobin, and extracellular matrix proteins. Mature Tsh is comprised of a 106-kDa secreted domain (Tshs) and a 33-kDa outer membrane β-domain (Tshβ). Based on the size of β-domains and functional properties of their passenger domains, all SPATEs are considered to be conventional autotransporters. However, it is unsettled if the conventional autotransporters exist as monomers, oligomers, or multimers (e.g., hexamers). To determine the quaternary structure of Tsh in vitro, we purified Tshβ from the outer membranes and showed that it is natively folded because it is heat modifiable and resistant to protease digestion. Blue-native polyacrylamide gel electrophoresis of Tshβ indicated that Tshβ exists as a monomer or a dimer. The cross-linking analysis demonstrated that purified Tshβ exists as a monomer. The size-exclusion chromatography and cross-linking analyses of purified Tshs also showed that the passenger domain of Tsh is a monomer. Overall, our data indicated that Tsh is a monomeric protein in vitro and support the concept that the SPATE autotransporters exist as monomers rather than as multimers. Implications of our findings on the mechanism of autotransporter secretion across the outer membrane are discussed.  相似文献   

7.
The autotransporter family of proteins is an important class of Gram-negative secreted virulence factors. Their secretion mechanism comprises entry to the periplasm via the Sec apparatus, followed by formation of an outer membrane beta barrel, which allows the N-terminal passenger domain to pass to the extracellular space. Several groups have identified a region immediately upstream of the beta domain that is important for outer membrane translocation, the so-called linker region. Here we characterize this region in EspP, a prototype of the serine protease autotransporters of enterobacteriaceae. We hypothesized that the folding of this region would be important in the outer membrane translocation process. We tested this hypothesis using a mutagenesis approach in conjunction with a series of nested deletions and found that in the absence of a complete passenger, mutations to the C-terminal helix, but not the upstream linker, significantly decrease secretion efficiency. However, in the presence of the passenger mutations to the amino-terminal region of the linker decrease secretion efficiency. Moreover, amino acids of hydrophobic character play a crucial role in linker function, suggesting the existence of a hydrophobic core or hydrophobic interaction necessary for outer membrane translocation of autotransporter proteins.  相似文献   

8.
BackgroundIn Gram-negative bacteria, type Va and Vc autotransporters are proteins that contain both a secreted virulence factor (the “passenger” domain) and a β-barrel that aids its export. While it is known that the folding and insertion of the β-barrel domain utilize the β-barrel assembly machinery (BAM) complex, how the passenger domain is secreted and folded across the membrane remains to be determined. The hairpin model states that passenger domain secretion occurs independently through the fully-formed and membrane-inserted β-barrel domain via a hairpin folding intermediate. In contrast, the BamA-assisted model states that the passenger domain is secreted through a hybrid of BamA, the essential subunit of the BAM complex, and the β-barrel domain of the autotransporter.MethodsTo ascertain the models' plausibility, we have used molecular dynamics to simulate passenger domain secretion for two autotransporters, EspP and YadA.ResultsWe observed that each protein's β-barrel is unable to accommodate the secreting passenger domain in a hairpin configuration without major structural distortions. Additionally, the force required for secretion through EspP's β-barrel is more than that through the BamA β-barrel.ConclusionsSecretion of autotransporters most likely occurs through an incompletely formed β-barrel domain of the autotransporter in conjunction with BamA.General significanceSecretion of virulence factors is a process used by practically all pathogenic Gram-negative bacteria. Understanding this process is a necessary step towards limiting their infectious capacity.  相似文献   

9.
Bacterial autotransporters consist of an N-terminal 'passenger domain' that is transported into the extracellular space by an unknown mechanism and a C-terminal 'β-domain' that forms a β-barrel in the outer membrane. Recent studies have revealed that fully assembled autotransporters have an unusual architecture in which a small passenger domain segment traverses the pore formed by the β-domain. It is unclear, however, whether this configuration forms prior to passenger domain translocation or results from the translocation of the passenger domain through the β-domain pore. By examining the accessibility of tobacco etch virus protease sites and single-cysteine residues in the passenger domain of the Escherichia coli O157:H7 autotransporter EspP at different stages of protein biogenesis, we identified a novel pre-translocation intermediate whose topology resembles that of the fully assembled protein. This intermediate was isolated in the periplasm in cell fractionation experiments. The data strongly suggest that the EspP β-domain and an embedded polypeptide segment are integrated into the outer membrane as a single pre-formed unit. The data also provide indirect evidence that at least some outer membrane proteins acquire considerable tertiary structure prior to their membrane integration.  相似文献   

10.
Bacterial autotransporters are comprised of an N-terminal 'passenger domain' and a C-terminal beta barrel ('beta domain') that facilitates transport of the passenger domain across the outer membrane. Following translocation, the passenger domains of some autotransporters are cleaved by an unknown mechanism. Here we show that the passenger domain of the Escherichia coli O157:H7 autotransporter EspP is released in a novel autoproteolytic reaction. After purification, the uncleaved EspP precursor underwent proteolytic processing in vitro. An analysis of protein topology together with mutational studies strongly suggested that the reaction occurs inside the beta barrel and revealed that two conserved residues, an aspartate within the beta domain (Asp(1120)) and an asparagine (Asn(1023)) at the P1 position of the cleavage junction, are essential for passenger domain cleavage. Interestingly, these residues were also essential for the proteolytic processing of two distantly related autotransporters. The data strongly suggest that Asp(1120) and Asn(1023) form an unusual catalytic dyad that mediates self-cleavage through the cyclization of the asparagine. Remarkably, a very similar mechanism has been proposed for the maturation of eukaryotic viral capsids.  相似文献   

11.
Autotransporter proteins comprise a large family of virulence factors that consist of a β-barrel translocation unit and an extracellular effector or passenger domain. The β-barrel anchors the protein to the outer membrane of Gram-negative bacteria and facilitates the transport of the passenger domain onto the cell surface. By inserting an epitope tag into the N terminus of the passenger domain of the inverse autotransporter intimin, we generated a mutant defective in autotransport. Using this stalled mutant, we could show that (i) at the time point of stalling, the β-barrel appears folded; (ii) the stalled autotransporter is associated with BamA and SurA; (iii) the stalled intimin is decorated with large amounts of SurA; (iv) the stalled autotransporter is not degraded by periplasmic proteases; and (v) inverse autotransporter passenger domains are translocated by a hairpin mechanism. Our results suggest a function for the BAM complex not only in insertion and folding of the β-barrel but also for passenger translocation.  相似文献   

12.
Bacterial autotransporters are proteins that contain a small C-terminal 'beta domain' that facilitates translocation of a large N-terminal 'passenger domain' across the outer membrane (OM) by an unknown mechanism. Here we used EspP, an autotransporter produced by Escherichia coli 0157:H7, as a model protein to gain insight into the transport reaction. Initially we found that the passenger domain of a truncated version of EspP (EspPDelta1-851) was translocated efficiently across the OM. Blue Native polyacrylamide gel electrophoresis, analytical ultracentrifugation and other biochemical methods showed that EspPDelta1-851 behaves as a compact monomer and strongly suggest that the channel formed by the beta domain is too narrow to accommodate folded polypeptides. Surprisingly, we found that a folded protein domain fused to the N-terminus of EspPDelta1-851 was efficiently translocated across the OM. Further analysis revealed that the passenger domain of wild-type EspP also folds at least partially in the periplasm. To reconcile these data, we propose that the EspP beta domain functions primarily to target and anchor the protein and that an external factor transports the passenger domain across the OM.  相似文献   

13.
Intimin and Invasin are prototypical inverse (Type Ve) autotransporters and important virulence factors of enteropathogenic Escherichia coli and Yersinia spp. respectively. In addition to a C‐terminal extracellular domain and a β‐barrel transmembrane domain, both proteins also contain a short N‐terminal periplasmic domain that, in Intimin, includes a lysin motif (LysM), which is thought to mediate binding to peptidoglycan. We show that the periplasmic domain of Intimin does bind to peptidoglycan both in vitro and in vivo, but only under acidic conditions. We were able to determine a dissociation constant of 0.8 μM for this interaction, whereas the Invasin periplasmic domain, which lacks a LysM, bound only weakly in vitro and failed to bind peptidoglycan in vivo. We present the solution structure of the Intimin LysM, which has an additional α‐helix conserved within inverse autotransporter LysMs but lacking in others. In contrast to previous reports, we demonstrate that the periplasmic domain of Intimin mediates dimerisation. We further show that dimerisation and peptidoglycan binding are general features of LysM‐containing inverse autotransporters. Peptidoglycan binding by the periplasmic domain in the infection process may aid in resisting mechanical and chemical stress during transit through the gastrointestinal tract.  相似文献   

14.
Bacterial autotransporters consist of an N-terminal 'passenger domain' that is transported into the extracellular space by an unknown mechanism and a C-terminal 'beta-domain' that forms a beta-barrel in the outer membrane. Recent studies have revealed that fully assembled autotransporters have an unusual architecture in which a small passenger domain segment traverses the pore formed by the beta-domain. It is unclear, however, whether this configuration forms prior to passenger domain translocation or results from the translocation of the passenger domain through the beta-domain pore. By examining the accessibility of tobacco etch virus protease sites and single-cysteine residues in the passenger domain of the Escherichia coli O157:H7 autotransporter EspP at different stages of protein biogenesis, we identified a novel pre-translocation intermediate whose topology resembles that of the fully assembled protein. This intermediate was isolated in the periplasm in cell fractionation experiments. The data strongly suggest that the EspP beta-domain and an embedded polypeptide segment are integrated into the outer membrane as a single pre-formed unit. The data also provide indirect evidence that at least some outer membrane proteins acquire considerable tertiary structure prior to their membrane integration.  相似文献   

15.
Urinary tract infection (UTI) is a very common extraintestinal infection, and Escherichia coli is by far the most common causative organism. Uropathogenic E. coli possess traits that distinguish them from commensal strains of E. coli, such as secretion systems that allow virulence factors to be targeted to extracytoplasmic compartments. One of at least five characterized secretion mechanisms is the autotransporter system, which involves translocation of a protein across the inner membrane, presumably via the sec system, and across the outer membrane through a beta-barrel porin structure formed by the carboxy-terminus autotransporter domain. We identified a 107 kDa protein that was expressed significantly more often by E. coli strains associated with the clinical syndrome of acute pyelonephritis than by faecal strains (P = 0.029). We isolated the protein from E. coli CFT073, a strain cultured from the blood and urine of a patient with acute pyelonephritis. The N-terminal amino acid sequence showed highest similarity to two known SPATE (serine protease autotransporters of Enterobacteriaceae) proteins, Pet and EspC. Using a 509 bp probe from the 5' region of pet, 10 cosmid clones of an E. coli CFT073 gene library were positive for hybridization. From one cosmid clone, a 7.5 kb EcoRI restriction fragment, which reacted strongly with the probe, was shown to include the entire 3885 bp gene. The predicted 142 kDa protein product possesses the three domains that are typical of SPATE autotransporters: an unusually long signal sequence of 49 amino acids; a 107 kDa passenger domain containing a consensus serine protease active site (GDSGSG); and a C-terminal autotransporter domain of 30 kDa. The protein exhibited serine protease activity and displayed cytopathic activity on VERO primary kidney, HK-2 bladder and HEp-2 cell lines; the name Sat (secreted autotransporter toxin) was derived from these properties. In addition, Sat antibodies were present in the serum of mice infected with E. coli CFT073. Based upon its association with pathogenic isolates, its cytopathic phenotype and its ability to elicit a strong antibody response after infection, we postulate that Sat represents a novel virulence determinant of uropathogenic E. coli.  相似文献   

16.
Autotransporters are a superfamily of virulence factors produced by Gram-negative bacteria that are comprised of an N-terminal extracellular domain (passenger domain) and a C-terminal β barrel domain (β domain) that resides in the outer membrane (OM). The β domain promotes the translocation of the passenger domain across the OM by an unknown mechanism. Available evidence indicates that an α-helical segment that spans the passenger domain-β domain junction is embedded inside the β domain at an early stage of assembly. Following its secretion, the passenger domain of the serine protease autotransporters of the Enterobacteriaceae (SPATEs) and the pertactin family of Bordetella pertussis autotransporters is released from the β domain through an intrabarrel autoproteolytic cleavage of the α-helical segment. Although the mutation of conserved residues that surround the cleavage site has been reported to impair both the translocation and cleavage of the passenger domain of a SPATE called Tsh, we show here that the mutation of the same residues in another SPATE (EspP) affects only passenger domain cleavage. Our results strongly suggest that the conserved residues are required to position the α-helical segment for the cleavage reaction and are not required to promote passenger domain secretion.  相似文献   

17.

Background

Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in developing countries, where it accounts for millions of infections and hundreds of thousands of deaths annually. While vaccine development to prevent diarrheal illness due to ETEC is feasible, extensive effort is needed to identify conserved antigenic targets. Pathogenic Escherichia coli, including ETEC, use the autotransporter (AT) secretion mechanism to export virulence factors. AT proteins are comprised of a highly conserved carboxy terminal outer membrane beta barrel and a surface-exposed amino terminal passenger domain. Recent immunoproteomic studies suggesting that multiple autotransporter passenger domains are recognized during ETEC infection prompted the present studies.

Methodology

Available ETEC genomes were examined to identify AT coding sequences present in pathogenic isolates, but not in the commensal E. coli HS strain. Passenger domains of the corresponding autotransporters were cloned and expressed as recombinant antigens, and the immune response to these proteins was then examined using convalescent sera from patients and experimentally infected mice.

Principal Findings

Potential AT genes shared by ETEC strains, but absent in the E. coli commensal HS strain were identified. Recombinant passenger domains derived from autotransporters, including Ag43 and an AT designated pAT, were recognized by antibodies from mice following intestinal challenge with H10407, and both Ag43 and pAT were identified on the surface of ETEC by flow cytometry. Likewise, convalescent sera from patients with ETEC diarrhea recognized Ag43 and pAT, suggesting that these proteins are expressed during both experimental and naturally occurring ETEC infections and that they are immunogenic. Vaccination of mice with recombinant passenger domains from either pAT or Ag43 afforded protection against intestinal colonization with ETEC.

Conclusions

Passenger domains of conserved autotransporter proteins could contribute to protective immune responses that develop following infection with ETEC, and these antigens consequently represent potential targets to explore in vaccine development.  相似文献   

18.
Bacterial biofilms are complex microbial communities that are common in nature and are being recognized increasingly as an important determinant of bacterial virulence. However, the structural determinants of bacterial aggregation and eventual biofilm formation have been poorly defined. In Gram‐negative bacteria, a major subgroup of extracellular proteins called self‐associating autotransporters (SAATs) can mediate cell–cell adhesion and facilitate biofilm formation. In this study, we used the Haemophilus influenzae Hap autotransporter as a prototype SAAT to understand how bacteria associate with each other. The crystal structure of the H. influenzae HapS passenger domain (harbouring the SAAT domain) was determined to 2.2 Å by X‐ray crystallography, revealing an unprecedented intercellular oligomerization mechanism for cell–cell interaction. The C‐terminal SAAT domain folds into a triangular‐prism‐like structure that can mediate Hap–Hap dimerization and higher degrees of multimerization through its F1–F2 edge and F2 face. The intercellular multimerization can give rise to massive buried surfaces that are required for overcoming the repulsive force between cells, leading to bacterial cell–cell interaction and formation of complex microcolonies.  相似文献   

19.
Members of the protein family of immunoglobulin A1 protease-like autotransporters comprise multidomain precursors consisting of a C-terminal autotransporter domain that promotes the translocation of N-terminally attached passenger domains across the cell envelopes of gram-negative bacteria. Several autotransporter domains have recently been shown to efficiently promote the export of heterologous passenger domains, opening up an effective tool for surface display of heterologous proteins. Here we report on the autotransporter domain of the Escherichia coli adhesin involved in diffuse adherence (AIDA-I), which was genetically fused to the C terminus of the periplasmic enzyme beta-lactamase, leading to efficient expression of the fusion protein in E. coli. The beta-lactamase moiety of the fusion protein was presented on the bacterial surface in a stable manner, and the surface-located beta-lactamase was shown to be enzymatically active. Enzymatic activity was completely removed by protease treatment, indicating that surface display of beta-lactamase was almost quantitative. The periplasmic domain of the outer membrane protein OmpA was not affected by externally added proteases, demonstrating that the outer membranes of E. coli cells expressing the beta-lactamase AIDA-I fusion protein remained physiologically intact.  相似文献   

20.
Autotransporters are a superfamily of proteins secreted by Gram-negative bacteria including many virulence factors. They are modular proteins composed of an N-terminal signal peptide, a surface-exposed ‘passenger’ domain carrying the activity of the protein, and a C-terminal ‘translocator’ domain composed of an α-helical linker region and a transmembrane β-barrel. The translocator domain plays an essential role for the secretion of the passenger domain across the outer membrane; however, the mechanism of autotransport remains poorly understood. The whooping cough agent Bordetella pertussis produces an autotransporter serine-protease, SphB1, which is involved in the maturation of an adhesin at the bacterial surface. SphB1 also mediates the proteolytic maturation of its own precursor. We used SphB1 as a model autotransporter and performed the first comparisons of the biochemical and biophysical properties of an isolated translocator domain with those of the same domain preceded by the C-terminal moiety of its natural passenger. By using cross-linking and dynamic light scattering, we provide evidence that the passenger domain promotes the auto-association of SphB1, although these interactions appear rather labile. Electrophysiological studies revealed that the passenger domain of the autotransporter appears to maintain the translocator channel in a low-conductance conformation, most likely by stabilizing the α-helix inside the pore. That the passenger may significantly influence AT physicochemical properties is likely to be relevant for the in vivo maturation and stability of AT proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号