首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Changes in different biochemical parameters like total phenolic content, protein pattern, polyphenol oxidase, peroxidase and isozymes of peroxidase were compared in sterility mosaic resistant (Hy3C) and susceptible (Type-21) pigeonpea varieties at different growth stages both under inoculated and uninoculated conditions. Resistant variety was characterized by the presence of specific isoperoxidase and proteins but only little difference was recorded between resistant and susceptible variety with respect to preformed or induced total phenolics and peroxidase activity. The activity of polyphenol oxidase increased substantially in susceptible variety following infection. Role of these changes is discussed in relation to disease resistance. Research Publication no. 3949 G.B. Pant University of Agriculture and Technology, Pantnagar, India. Deceased.  相似文献   

2.
Aceria cajani on pigeonpea (Cajanus cajan) is the vector of the agent of pigeonpea sterility mosaic disease (PSMD), a very damaging virus‐like disease in the Indian subcontinent. PCR was used to amplify A. cajani nuclear ribosomal DNA (rDNA) internal transcribed spacers (ITS) and associated rDNA genes. They were assessed for variation in this genome region by nucleotide sequencing and RFLP. A. cajani‐specific rDNA primers are described. Several A. cajani populations were collected from pigeonpea plants from various PSMD endemic locations in India, Nepal and Myanmar. No significant variation was identified in rDNA regions, or in morphological features. These results suggest strongly that A. cajani on pigeonpea across the Indian subcontinent constitutes one species and that no other Aceria species and probably no A. cajani biotypes that differ in vectoring ability are involved in the transmission of the agent of PSMD. The implications of these findings for the variability observed in PSMD‐resistant pigeonpea genotypes across various locations in India are discussed.  相似文献   

3.
Inheritance of resistance and allelic relationships were studied in three resistant pigeonpea sources for strain 2 of sterility mosaic pathogen. The resistant genotypes (ICP 7035, ICP 7349 and ICP 8850) were crossed with susceptible genotypes (BDN1 and LRG30) to determine the inheritance of resistance. The resistant and susceptible genotypes were also crossed among themselves to obtain information on their allelic relationships. Parents, F1 and F2 generations were sown in pots and screened using infector-hedge technique. Observations in parents, F1 and F2 generations, indicated dominance of resistance in certain crosses and the dominance of susceptibility in others. Disease reaction appeared to be governed by two independent non-allelic genes, with at least three multiple alleles, at one of the loci.  相似文献   

4.
一种花色突变雄性不育油菜的发现   总被引:3,自引:0,他引:3  
于澄宇  胡胜武  张春红  俞延军 《遗传》2004,26(3):330-332
在甘蓝型油菜杂交种C022(其母本为由3对基因控制育性的隐性细胞核雄性不育系9012A)不育株开放受粉的后代中,发现一种稀有的黄白双色嵌合花瓣的甘蓝型油菜突变体991S。其具有3个形态特征:(1)4片花瓣每片中央均为条带状黄色色斑,而两侧为白色,为嵌合双色花瓣;(2)4片花萼也可发生中间条带状白化;(3)目前只在不同群体的雄性不育株中出现,与同源的黄色花不育株形态相似,植株纤细矮小,花器也较小,花瓣较为平整,雌蕊弯曲,雄蕊退化,花药干缩。通过对其材料来源及后代花色表型分析,初步认为黄白双色性状由可局部表达的隐性白化基因控制。  相似文献   

5.
Identification of candidate genomic regions associated with target traits using conventional mapping methods is challenging and time‐consuming. In recent years, a number of single nucleotide polymorphism (SNP)‐based mapping approaches have been developed and used for identification of candidate/putative genomic regions. However, in the majority of these studies, insertion–deletion (Indel) were largely ignored. For efficient use of Indels in mapping target traits, we propose Indel‐seq approach, which is a combination of whole‐genome resequencing (WGRS) and bulked segregant analysis (BSA) and relies on the Indel frequencies in extreme bulks. Deployment of Indel‐seq approach for identification of candidate genomic regions associated with fusarium wilt (FW) and sterility mosaic disease (SMD) resistance in pigeonpea has identified 16 Indels affecting 26 putative candidate genes. Of these 26 affected putative candidate genes, 24 genes showed effect in the upstream/downstream of the genic region and two genes showed effect in the genes. Validation of these 16 candidate Indels in other FW‐ and SMD‐resistant and FW‐ and SMD‐susceptible genotypes revealed a significant association of five Indels (three for FW and two for SMD resistance). Comparative analysis of Indel‐seq with other genetic mapping approaches highlighted the importance of the approach in identification of significant genomic regions associated with target traits. Therefore, the Indel‐seq approach can be used for quick and precise identification of candidate genomic regions for any target traits in any crop species.  相似文献   

6.
植被的镶嵌体系   总被引:9,自引:0,他引:9  
植被是一个镶嵌体,其镶嵌单位具有特定的时空尺度和等级系统.在空间上构成了镶嵌群落、镶嵌生态系统的镶嵌体或镶嵌复合体等静态镶嵌.在时间上则构成了镶嵌季相、镶嵌更新和镶嵌演替等动态镶嵌.静态镶嵌和动态镶嵌是相对的并彼此密切相关.它们构成了一个完整的植被镶嵌体系.  相似文献   

7.
水稻亚种间杂种是否存在雌性不育?   总被引:3,自引:0,他引:3  
梁国华  顾铭洪 《遗传》2001,23(4):354-358
水稻亚种间杂种不育性是一种普遍现象,但其遗传基础复杂。目前在亚种间杂种不育遗传上,不同研究的结论不尽一致,即使对亚种间杂种不育性主要表现为雄性不育还是雌性不育也存在争论。本对证明水稻亚种间杂种存在和不存在雌性不育的研究进行了综述与分析。从中可以看出无论是认为水稻亚种间杂种不育性表现为雄性不育还是雌性不育的结论都有一定的片面性,尤其是Sano证明基因座S-5不存在的研究存在较大的缺陷。因此,水稻亚种间杂种雌雄配子败育对小穗育性影响的大小有待进一步研究。  相似文献   

8.
To map resistance genes for Fusarium wilt (FW) and sterility mosaic disease (SMD) in pigeonpea, sequencing‐based bulked segregant analysis (Seq‐BSA) was used. Resistant (R) and susceptible (S) bulks from the extreme recombinant inbred lines of ICPL 20096 × ICPL 332 were sequenced. Subsequently, SNP index was calculated between R‐ and S‐bulks with the help of draft genome sequence and reference‐guided assembly of ICPL 20096 (resistant parent). Seq‐BSA has provided seven candidate SNPs for FW and SMD resistance in pigeonpea. In parallel, four additional genotypes were re‐sequenced and their combined analysis with R‐ and S‐bulks has provided a total of 8362 nonsynonymous (ns) SNPs. Of 8362 nsSNPs, 60 were found within the 2‐Mb flanking regions of seven candidate SNPs identified through Seq‐BSA. Haplotype analysis narrowed down to eight nsSNPs in seven genes. These eight nsSNPs were further validated by re‐sequencing 11 genotypes that are resistant and susceptible to FW and SMD. This analysis revealed association of four candidate nsSNPs in four genes with FW resistance and four candidate nsSNPs in three genes with SMD resistance. Further, In silico protein analysis and expression profiling identified two most promising candidate genes namely C.cajan_01839 for SMD resistance and C.cajan_03203 for FW resistance. Identified candidate genomic regions/SNPs will be useful for genomics‐assisted breeding in pigeonpea.  相似文献   

9.
We have examined the genetics of systemic resistance in Phaseolus vulgaris to azuki bean mosaic virus (AzMV) and cowpea aphid-borne mosaic virus (CABMV) and the relationship of this resistance to a phenotypically similar resistance to watermelon mosaic virus (WMV) and soybean mosaic virus (SMV). In P. vulgaris cv Great Northern 1140 (GN1140), resistance to SMV and WMV has been attributed to the genes Smv and Wmv, respectively, which have been shown to segregate as a unit. Systemic resistance to AzMV is conferred by two incompletely dominant alleles, Azm1 and Azm2, at unlinked loci. At least three resistance alleles must be present at these two loci for systemic resistance to be expressed in the plant. Systemic resistance to CABMV in GN 1140 is conditioned by a dominant allele that has been designated Cam2. Under some environmental conditions, a recessive allele at an unlinked locus, cam3, also controls a resistant response to CABMV. Resistance to AzMV and CABMV does not assort independently from Wmv/Smv, but also does not consistently cosegregate, suggesting that perhaps in each case one of the factors involved in resistance is associated with Smv/Wmv.  相似文献   

10.
Summary A comparison was made of the amino acid sequences of the proteins encoded by RNAs 1 and 2 of alfalfa mosaic virus (A1MV) and brome mosaic virus (BMV), and the 126K and 183K proteins encoded by tobacco mosaic virus (TMV). Three blocks of extensive homology of about 200 to 350 amino acids each were observed. Two of these blocks are located in the A1MV and BMV RNA 1 encoded proteins and the TMV encoded 126K protein; they are situated at the N-terminus and C-terminus, respectively. The third block is located in the A1MV and BMV RNA 2 encoded proteins and the C-terminal part of the TMV encoded 183K protein. These homologies are discussed with respect to the functional equivalence of these putative replicase proteins and a possible evolutionary connection between A1MV, BMV and TMV.  相似文献   

11.
一个引起长豇豆黄花叶的病毒分离物生物学性质的研究   总被引:2,自引:0,他引:2  
近几年来,长豇豆(Vigna sesquiqedalis)上发生的病毒病害日渐严重,已成为长豇豆生产上的一大威胁。表现的症状主要有花叶、黄化、脉带、矮化、畸形及丛枝等。1985年我们已经报道,在山东省长豇豆上分离到黑眼豇豆花叶病毒,继此之后,我们在山东省  相似文献   

12.
Several begomovirus species and strains causing Cassava mosaic disease (CMD) have been reported from cassava in Africa. In Nigeria, African cassava mosaic virus (ACMV) was the predominant virus in this important crop, and East African cassava mosaic virus (EACMV), first reported from eastern Nigeria in 1999, was also found occasionally. A survey was conducted in 2002 to resolve the diversity of the virus types present in cassava in Nigeria and to further understand the increasing complexity of the viruses contributing to CMD. A total of 234 leaf samples from cassava with conspicuous CMD symptoms were collected in farmers’ fields across different agroecological zones of Nigeria and subjected to polymerase chain reaction (PCR) with type‐specific primers. In addition and, to provide a full characterization of the viruses present, DNA‐A genome components of several viruses and informative genome fragments were sequenced. In Nigeria, ACMV proved to be the dominant virus with 80% of all samples being positive for ACMV. The East African cassava mosaic Cameroon virus (EACMCV) prevalent in Cameroon and Ivory Coast was detected in single infections (2%) and in mixed infections (18%) with ACMV. There was no indication for other virus strains of EACMV present in the country. The EACMCV samples collected showed a high nucleotide sequence identity >98% and resembled the described sequence of a Cameroon isolate (EACMCV‐CM) more than an Ivory Coast isolate, EACMCV‐CM[CI]. Evidence is provided that the EACMCV has reached epidemiological significance in Nigeria.  相似文献   

13.
应用斑点法检测了病叶粗汁液中的芜菁花叶病毒(TuMV)、大豆花叶病毒(sMV)和黄瓜花叶病毒(CMV),病叶粗汁液可被检测的最大稀释度分别为1:5120、1:2560和1:1280。提纯的大豆花叶病毒和黄瓜花叶病毒可检测的最低限量分别为1.7ng和1.2ng。以牛血清白蛋白、吐温和聚乙烯吡咯啉酮作封闭液,均可获得满意的结果。应用斑点法检测芜菁花叶病毒和大豆花叶病毒时,其抗血清稀释1:500倍可获得满意效果,稀释2000倍仍可用于检测。  相似文献   

14.
Anther dehiscence is very important for pollen maturation and release.The mutants of anther dehiscence in rice (Oryza sativa L.) arefew,and related research remains poor.A male sterility mutant of anther dehiscence in advance,add(t),has been found in Minghui 63 and its sterility is not sensitive to thermo-photo.To learn the character of sterilization and the function of the add(t) gene,the morphological and cytological studies on the anther and pollen,the ability of the pistil being fertilized,inheritance of the mutant,and mapping of add(t)gene have been conducted.The anther size is normal but the color is white in the mutant against the natural yellow in the wild-type.The pollen is malformed,unstained,and small in the KI-I2 solution.The anther dehiscence is in advance at the bicellular pollen stage.A crossing test indicated that the grain setting ratio of the add(t) is significantly lower than that of the CMS line 2085A.The ability of the pistil being fertilized is most probably decreased by the add(t) gene.The male sterility is controlled by a single recessive gene of add(t).This gene is mapped between the markers of R02004 (InDel) and RM300 (SSR) on chromosome 2,and the genetic distance from the add(t) gene to these markers is 0.78 cM and 4.66 cM,respectively.  相似文献   

15.
A study was carried out to assess the effect of different cassava mosaic geminiviruses (CMGs) occurring in Uganda on the growth and yield of the susceptible local cultivar ‘Ebwanateraka’. Plants infected with African cassava mosaic virus (ACMV), ‘mild’ and ‘severe’ strains of East African cassava mosaic virus‐Uganda (EACMV‐UG2) and both ACMV and EACMV‐UG2 were grown in two experiments in Kabula, Lyantonde in western Uganda. The most severe disease developed in plants co‐infected with ACMV and EACMV‐UG2 and in those infected with the ‘severe’ form of EACMV‐UG2 alone; disease was least severe in plants infected with the ‘mild’ strain of EACMV‐UG2. ACMV‐infected plants and those infected with the ‘mild’ strain of EACMV‐UG2 were tallest in the 1999–2000 and 2000–2001 trials, respectively; plants dually infected with ACMV and EACMV‐UG2 were shortest in both trials. Plants infected with ‘mild’ EACMV‐UG2 yielded the largest number and the heaviest tuberous roots followed by ACMV and EACMV‐UG2 ‘severe’, respectively, whilst plants dually infected with ACMV and EACMV‐UG2 yielded the least considering the two trials together. Reduction in tuberous root weight was greatest in plants dually infected with ACMV and EACMV‐UG2, averaging 82%. Losses attributed to ACMV alone, EACMV‐UG2 ‘mild’ and EACMV‐UG2 ‘severe’ were 42%, 12% and 68%, respectively. Fifty percent and 48% of the plants infected with both ACMV and EACMV‐UG2 gave no root yield in 1999–2000 and 2000–2001, respectively. These results indicate that CMGs, whether in single or mixed infections, reduce root yield and numbers of tuberous roots produced and that losses are substantially increased following mixed infection.  相似文献   

16.
Cowpea plays a key nutritional role in the diet of the Nigerian people. Viral diseases are a major limitation to cowpea production worldwide, and thus, constant viral surveillance is crucial for monitoring and management purposes. In this study, cowpea leaf samples from fields in three northern Nigeria states, Kano, Kaduna and Niger, were tested to determine the status of six common viruses previously reported in these cowpea-producing states following the release of virus-resistant varieties. Cowpea aphid-borne mosaic virus (CABMV), Blackeye cowpea mosaic virus (BICMV), Cowpea mottle virus, Southern bean mosaic virus and Cucumber mosaic virus (CMV) were detected. Cowpea yellow mosaic virus, which was previously reported in all three states, was not detected in any of the samples tested, while CMV that was previously regarded as unimportant to cowpea production in Nigeria had the highest incidence in all three states, and the overall highest incidence of 58.8%, while CABMV had the lowest incidence (7.5%). CMV was also present in seven of the ten mixed infection combinations detected. Dual infection of CMV and BICMV, which often results in cowpea stunt, the most devastating cowpea disease in the USA, was the most frequently detected mixed infection (28.1%) and was detected in all three states. This observed elevation in CMV infection in cowpea must be closely monitored and swiftly managed to avert possible devastating crop yield losses.  相似文献   

17.
The amino acid sequences of the non-structural protein (molecular weight 35,000; 3a protein) from three plant viruses — cucumber mosaic, brome mosaic and alfalfa mosaic have been systematically compared using the partial genomic sequences for these three viruses already available. The 3a protein of cucumber mosaic virus has an amino acid sequence homology of 33.7% with the corresponding protein of brome mosaic virus. A similar protein from alfalfa mosaic virus has a homology of 18.2% and 14.2% with the protein from brome mosaic virus and cucumber mosaic virus, respectively. These results suggest that the three plant viruses are evolutionarily related, although, the evolutionary distance between alfalfa mosaic virus and cucumber mosaic virus or brome mosaic virus is much larger than the corresponding distance between the latter two viruses.  相似文献   

18.
程晔  陈炯 《Virologica Sinica》2001,16(2):170-174
从杭州地区呈现玉米矮花叶典型症状的玉米病组织中提纯得到大量线状病毒粒子,大多数长度为750nm。病组织中含有大量风轮状内含体和板状集结体,病毒外壳蛋白为33.6kD。病毒RNA1 3'端序列(1.8kb)与甘蔗茶花经叶病毒(SCMV)同源性最高,达71.5%-99.1%,与高梁花叶病毒(SrMV)同源性次之,为67.8%-68.5%,与玉米矮花叶病毒(MDMV)同泊性最低,仅为38.4%-48.4%,从而初步认为此病害由SCMV引起。根据已发表的SCMV外壳蛋白氨基酸序列作亲缘性分析,表明SCMV可分为美国、南非、澳大利亚、德国和中国三大类。  相似文献   

19.
Comparative Analysis of Tissue Tropism of Bipartite Geminiviruses   总被引:5,自引:0,他引:5  
Abutilon mosaic virus (AbMV), a bipartite geminivirus of the genus Begomovirus, has been vegetatively propagated for many years in Abutilon sellovianum in which it is strictly phloem-restricted. Using in situ hybridization and immunological analyses, the tissue tropism of AbMV in the laboratory host Nicotiana benthamiana was compared with that of two other bipartite begomoviruses, African cassava mosaic virus (ACMV) and tomato golden mosaic virus (TGMV). Analysis of the first systemically infected leaves and longitudinal sections of axillary and flower buds revealed that all three viruses are initially confined to the vascular traces, although both ACMV and TGMV are later detectable in nearly all tissue types. In contrast, AbMV remained strictly phloem-limited in this host throughout the course of infection. The ability of ACMV and TGMV to move out of N. benthamiana phloem tissues is correlated with the development of severe symptoms in comparison with the mild symptoms associated with AbMV infection. It was also demonstrated that Sida micrantha mosaic virus, a virus that is closely related to AbMV, is phloem-limited in Malva parviflora even though it induces severe leaf curl, stunting and necrosis in this host. The present data demonstrate that bipartite begomoviruses can exhibit strikingly different patterns of tissue tropism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号