首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C. Moritz 《Genetics》1991,129(1):221-230
Mitochondrial DNA (mtDNA) from triploid parthenogenetic geckos of the Heteronotia binoei complex varies in size from 17.2 to 27.6 kilobases (kb). Comparisons of long vs. short genomes using restriction endonucleases revealed a series of tandem direct duplications ranging in size from 1.2 to 10.4 kb. This interpretation was supported by transfer-hybridization experiments which also demonstrated that coding sequences were involved. Some of the duplications have been modified by deletion and restriction site changes, but no other rearrangements were detected. Analysis of the phylogenetic and geographic distribution of length variation suggests that duplications have arisen repeatedly within the parthenogenetic form of H. binoei. The parthenogens, and thus the duplications, are of recent origin; modifications of the duplicated sequences, particularly by deletion, has therefore been rapid. The absence of duplications from the mtDNA of the diploid sexual populations of H. binoei reinforces the correlation between nuclear polyploidy and duplication of mtDNA sequences reported for other lizards. In comparison to the genomes of sexual H. binoei and of most other animals, the mtDNA of these parthenogenetic geckos is extraordinarily variable in length and organization.  相似文献   

2.
Accumulating evidence for alternative gene orders demonstrates that vertebrate mitochondrial genomes are more evolutionarily dynamic than previously thought. Several lineages of parthenogenetic lizards contain large, tandem duplications that include rRNA, tRNA, and protein-coding genes, as well as the control region. Such duplications are hypothesized as intermediate stages in gene rearrangement, but the early stages of their evolution have not been previously studied. To better understand the evolutionary dynamics of duplicated segments of mitochondrial DNA, we sequenced 10 mitochondrial genomes from recently formed ( approximately 300,000 years ago) hybrid parthenogenetic geckos of the Heteronotia binoei complex and 1 from a sexual form. These genomes included some with an arrangement typical of vertebrates and others with tandem duplications varying in size from 5.7 to 9.4 kb, each with different gene contents and duplication endpoints. These results, together with phylogenetic analyses, indicate independent and frequent origins of the duplications. Small, direct repeats at the duplication endpoints imply slipped-strand error as a mechanism generating the duplications as opposed to a false initiation/termination of DNA replication mechanism that has been invoked to explain duplications in other lizard mitochondrial systems. Despite their recent origin, there is evidence for nonfunctionalization of genes due primarily to deletions, and the observed pattern of gene disruption supports the duplication-deletion model for rearrangement of mtDNA gene order. Conversely, the accumulation of mutations between these recent duplicates provides no evidence for gene conversion, as has been reported in some other systems. These results demonstrate that, despite their long-term stasis in gene content and arrangement in some lineages, vertebrate mitochondrial genomes can be evolutionary dynamic even at short timescales.  相似文献   

3.
The 12S rRNA gene was shown to be a hot spot for aminoglycoside-induced and non-syndromic hearing loss since several deafness-associated mtDNA mutations were identified in this gene. Among them, we distinguished the A1555G, the C1494T and the T1095C mutations and C-insertion or deletion at position 961. One hundred Tunisian patients with non-syndromic hearing loss and 100 hearing individuals were analysed in this study. A PCR-RFLP analysis with HaeIII restriction enzyme showed the presence of the A1555G mutation in the 12S rRNA gene in only one out of the 100 patients. In addition, PCR-RFLP and radioactive PCR revealed the presence of a new HaeIII polymorphic restriction site in the same gene of 12S rRNA site in 4 patients with non-syndromic hearing loss. UVIDOC-008-XD analyses showed the presence of this new polymorphic restriction site with a variable heteroplasmic rates at position +1517 of the human mitochondrial genome. On the other hand, direct sequencing of the entire mitochondrial 12S rRNA gene in the 100 patients and in 100 hearing individuals revealed the presence of the A750G and A1438G polymorphisms and the absence of the C1494T, T1095C and 961insC mutations in all the tested individuals. Sequencing of the whole mitochondrial genome in the 4 patients showing the new HaeIII polymorphic restriction site revealed only the presence of the A8860G transition in the MT-ATP6 gene and the A4769G polymorphism in the ND2 gene.  相似文献   

4.
Craig Moritz 《Genetica》1993,90(2-3):269-280
TheHeteronotia binoei complex includes several cryptic species of sexually reproducing lizards and parthenogenetic lineages derived from them. This paper synthesizes analyses of distribution and variation of allozymes, chromosomes, mitochondrial DNA and ribosomal DNA genes in order to make inferences about the origins of the parthenogenetic lineages, the extent and source of their genetic diversity, their current and historical biogeography and their ecological properties. The parthenogens appear to have arisen recently (relative to geographic differentiation within the sexual taxa) via episodes of repetitive hybridization between two of the sexual taxa. These events probably occurred within one or two small geographic areas of western Australia, after which some of the parthenogenetic lineages rapidly expanded their ranges to central Australia. The parthenogenetic form has extraordinarily high genetic diversity, mostly derived from the repetitive origins, but with some contribution from mutation and biased gene conversion/recombination being apparent. The rapid and extensive range expansion of the parthenogenetic lineages from western to central Australia attests to the short-term success of this reproductive strategy, in this case perhaps reinforced by the parthenogenetic females having higher fecundity than their smaller sexual relatives. However, the parthenogens are orders of magnitude more susceptible to infection by ectoparasitic mites, suggesting that they could be at a long-term disadvantage. The detailed characterization of this system provides a basis for critical evaluation of hypotheses about the evolutionary advantage of sexual reproduction derived from broad comparative studies.  相似文献   

5.
6.
7.
Three Mugilid species: Mugil cephalus (Linnaeus, 1758) and Liza haematocheila (Temminck et Schlegel, 1845; syn. Mugil soiuy, M. haematocheilus, L. soiuy, Chelon haematocheilus) from the Sea of Japan, as well as M. cephalus and Liza aurata (Risso, 1810) from the Sea of Azov were investigated on the basis of PCR-RFLP analysis of mitochondrial DNA (mtDNA) fragments, which included 12S/16S rRNA, and ND3/ND4L/ND4 genes. Among 61 individuals of three Mugilid species thirteen different haplotypes were detected. Eight and thirteen restriction endonucleases were found to be species-specific in 12S/16SrRNA and ND3/ND4L/ND4 respectively. This method may be useful for species identification. M. cephalus showed the largest genetic divergence while L. haematocheila and L. aurata were closely related and clustered together. The level of mtDNA differentiation between the two M. cephalus samples from the Sea of Japan and the Sea of Azov, i.e., nucleotide substitutions of approximately 3%, appeared to be relatively high.  相似文献   

8.
Summary We have cloned and sequenced over 9 kb of the mitochondrial genome from the sea starPisaster ochraceus. Within a continuous 8.0-kb fragment are located the genes for NADH dehydrogenase subunits 1, 2, 3, and 4L (ND1, ND2, ND3, and ND4L), cytochrome oxidase subunits I, II, and III (COI, COII, and COIII), and adenosine triphosphatase subunits 6 and 8 (ATPase 6 and ATPase 8). This large fragment also contains a cluster of 13 tRNA genes between ND1 and COI as well as the genes for isoleucine tRNA between ND1 and ND2, arginine tRNA between COI and ND4L, lysine tRNA between COII and ATPase 8, and the serine (UCN) tRNA between COIII and ND3. The genes for the other five tRNAs lie outside this fragment. The gene for phenylalanine tRNA is located between cytochrome b and the 12S ribosomal genes. The genes for tRNAglu and tRNAthr are 3 to the 12S ribosomal gene. The tRNAs for histidine and serine (AGN) are adjacent to each other and lie between ND4 and ND5. These data confirm the novel gene order in mitochondrial DNA (mtDNA) of sea stars and delineate additional distinctions between the sea star and other mtDNA molecules.  相似文献   

9.
10.
The mitochondrial DNA (mtDNA) size of the terrestrial gastropod Albinaria turrita was determined by restriction enzyme mapping and found to be approximately 14.5 kb. Its partial gene content and organization were examined by sequencing three cloned segments representing about one-fourth of the mtDNA molecule. Complete sequences of cytochrome c oxidase subunit II (COII), and ATPase subunit 8 (ATPase8), as well as partial sequences of cytochrome c oxidase subunit I (COI), NADH dehydrogenase subunit 6 (ND6), and the large ribosomal RNA (IrRNA) genes were determined. Nine putative tRNA genes were also identified by their ability to conform to typical mitochondrial tRNA secondary structures. An 82-nt sequence resembles a noncoding region of the bivalve Mytilus edulis, even though it might contain a tenth tRNA gene with an unusual 5-nt overlap with another tRNA gene. The genetic code of Albinaria turrita appears to be the same as that of Drosophila and Mytilus edulis. The structures of COI and COII are conservative, but those of ATPase8 and ND6 are diversified. The sequenced portion of thelrRNA gene (1,079 nt) is characterized by conspicuous deletions in the 5 and 3 ends; this gene represents the smallest coelomate IrRNA gene so far known. Sequence comparisons of the identified genes indicate that there is greater difference between Albinaria and Mytilus than between Albinaria and Drosophila. An evolutionary analysis, based on COII sequences, suggests a possible nonmonophyletic origin of molluskan mtDNA. This is supported also by the absence of the ATPase8 gene in the mtDNA of Mytilus and nematodes, while this gene is present in the mtDNA of Albinaria and Cepaea nemoralis and in all other known coelomate metazoan mtDNAs.  相似文献   

11.
Deleted mitochondrial DNA in the skeletal muscle of aged individuals.   总被引:4,自引:0,他引:4  
Human mitochondrial DNA deletions occur mainly in the major region between the origins of replication of the heavy and light strands both in mitochondrial myopathy and in the ageing process. To determine whether deletions in the minor region also contribute to the ageing process, we analyzed a 3,610-basepair deletion (nucleotide position 1,837-5,447, from the 16S rRNA gene to the ND2 gene) in the skeletal muscle from individuals of various ages. The direct repeated sequence at each boundary of the deletion was identified as 5'-CCCC-3'. This minor-region deletion was detected in one of five individuals of the sixth decade, two of five in the seventh decade, and all of five in the eighth decade, but not in individuals below age 60. These results indicate that age-related accumulation of mtDNA deletions occurs not only in the major region but also in the minor region.  相似文献   

12.

Background

Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses.

Results

Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions.

Conclusions

Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.
  相似文献   

13.
The mitochondrial DNA (mtDNA) of Candida albicans contains a large inverted duplication. As is the case with most chloroplast DNAs and one other mtDNA, the nonduplicated regions of the molecule occur in two orientations with respect to each other, indicating that internal recombination occurs. Like some other mtDNAs, the C. albicans mtDNA contains a single SalI restriction site located near one end of the large rRNA gene. In contrast to other cases, however, the inverted duplication does not appear to contain any sequences coding for rRNA.  相似文献   

14.
Parthenogenesis often evolves in association with hybridization, but the associated ecological consequences are poorly understood. The Australian gecko Heteronotia binoei is unusual because triploid parthenogenesis evolved through reciprocal crosses between two sexual lineages, resulting in four possible cytonuclear genotypes. In this species complex, we compared the performance of these parthenogenetic genotypes with their sexual progenitors for a suite of physiological traits (metabolic rate, thermal tolerance, locomotor performance, and in vitro activity and gene sequence divergence of a cytonuclear metabolic pathway, cytochrome C oxidase). Mass‐specific metabolic rate scaled differently with body mass for parthenogens and sexuals, while heat tolerance provided the only evidence for cytonuclear incompatibility in hybrid parthenogens. The most prominent phenotypic effects were attributable to nuclear genome dosage. Overall, our results suggest that the hybrid/polyploidy origin of parthenogenetic H. binoei has had surprisingly few negative fitness consequences and may have produced a broader overall niche for the species.  相似文献   

15.
Summary Variation in mitochondrial genome organization and expression between male fertile and sterile nuclear-cytoplasmic combinations of sorghum has been examined. Cytoplasmic genotypes were classified into eleven groups on the basis of restriction endonuclease digestion of mitochondrial DNA (mtDNA) and five groups on the basis of mitochondrial translation products. These cytoplasms were further characterized by hybridization of specific gene probes to Southern blots of EcoRI digested mtDNA, and identification of the fragment location of four mitochondrial genes. Variation was observed in the genomic location and copy number of the F1 ATPase -subunit gene, as well as the genomic location and gene product of the cytochrome c oxidase subunit I gene. The effect of nuclear genotype on mitochondrial genome organization, expression and the presence of two linear plasmid-like mtDNA molecules was examined. Our results indicate that nuclear-mitochondrial interactions are required for regulation of mitochondrial gene expression. When a cytoplasm is transferred from its natural to a foreign nuclear background some changes in the products of in organello mitochondrial protein synthesis occur. In a number of cytoplasmic genotypes these changes correlate with the expression of cytoplasmic male sterile phenotype, suggesting a possible molecular basis for this mutation.  相似文献   

16.
Restriction enzyme analysis of aberrant mtDNA molecules in restored strains of Saccharomyces cerevisiae that displays an elevated level of petite formation has shown the occurrence of novel junction fragments and nonstoichiometric amounts for some unaltered bands. Five aberrant mitochondrial genomes from high-frequency petite-forming (hfp) strains (greater than 60% petites per generation) contain like-oriented duplications and single copy regions. High-frequency petite formation is postulated to arise from increased intramolecular recombination between duplicated segments. Mitochondrial DNA structures in two other hfp strains cannot be easily interpreted and might arise from intramolecular recombination. Mitochondria DNA from moderate-frequency petite-forming (mfp) strains (5-16% petites per generation) contains inverted duplications in two cases. The elevated petite formation is postulated to arise from homologous recombination between directly repeated sequences. In mtDNA from one mfp strain, deletion end-points have been shown to overlap. Such deletion endpoint overlap is postulated to be required for the maintenance of the tandem duplication in hfp strains. Two regions of the wild-type mtDNA (between cyb and oli2 and between SrRNA and oxi2) appear to be dispensable for mitochondrial function.  相似文献   

17.
Summary Five accessions of members of the C group of male sterile maize cytoplasms (BB, C, ES, PR, and RB) in two nuclear backgrounds (A619 and A632) were examined to elucidate the nature of mitochondrial genome diversity within a related group of cytoplasms. Cosmid and plasmid clones carrying single copy and recombinationally active sequences from N and S cytoplasms of maize were used as probes. Although restriction patterns are quite similar, each of the five could be discriminated by evidence of sequence duplication and recombination, deletion of recombinationally active sequences of N, normal cytoplasm, population of mini-circular DNAs, and by restriction patterns. Each member of the group carried a 1,913 bp minicircular mtDNA, while all entries but RB carried a 1,445 bp minicircular mtDNA. Members of the C group clearly are not molecularly identical; evolution of the group included principal genome reorganization involving sequence duplication/deletion events, apparently independent of the cms trait.Cooperative Investigations of Agricultural Research Service, U.S. Department of Agriculture, and Institute of Food and Agricultural Sciences, University of FloridaMention of trademark, proprietary product, or vendor does not constitute a guarantee of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   

18.
Mitochondrial DNAs (mtDNAs) from nine morphologically distinct unisexual species and five bisexual species of lizards, all from the sexlineatus species-group of Cnemidophorus, were compared using restriction endonucleases. The unisexual lizards have mtDNAs that are identical at all or nearly all of the 128 sites cleaved. Although differing little in sequence, some mtDNAs differed in size due to the presence of tandem sequence duplications. Phylogenetic analysis of cleavage maps indicates that the mtDNAs of the unisexuals are most similar to that of the bisexual species C. inornatus. Considerable mtDNA diversity exists among C. inornatus populations, and one geographically restricted subspecies, C. i. arizonae, was identified as the most probable maternal ancestor of all nine unisexuals. All but one of these are triploid, and all have at least one C. inornatus gene complement. This, together with the homogeneity of their mtDNAs, suggests that all stem from one or a small number of allodiploid females (presumably parthenogenetic) that originated in a restricted geographic area in the recent past. These data, when combined with those from allozyme studies, preclude the possibility that most of the triploid unisexuals could have arisen via fertilization of an unreduced diploid ovum from one species by a haploid sperm from a different species.  相似文献   

19.
Eight highly polymorphic dinucleotide microsatellite loci were developed for the Bynoe's gecko, Heteronotia binoei. Across the species as a whole, expected heterozygosities for the loci range from 0.59 to 0.92, with observed numbers of alleles ranging from 13 to 27. All eight loci successfully amplify in each of the three most widespread sexual chromosome races of Heteronotia binoei, and with the exception of one locus in one race all are polymorphic. All eight loci also amplify in hybrid parthenogenetic Bynoe's geckos, in several other sexual chromosome races, and in related Heteronotia species.  相似文献   

20.
It has proven remarkably difficult to obtain a well-resolved and strongly supported phylogeny for horned lizards (Phrynosoma) because of incongruence between morphological and mitochondrial DNA sequence data. We infer the phylogenetic relationships among all 17 extant Phrynosoma species using >5.1 kb of mtDNA (12S rRNA, 16S rRNA, ND1, ND2, ND4, Cyt b, and associated tRNA genes), and >2.2kb from three nuclear genes (RAG-1, BDNF, and GAPD) for most taxa. We conduct separate and combined phylogenetic analyses of these data using maximum parsimony, maximum likelihood, and Bayesian methods. The phylogenetic relationships inferred from the mtDNA data are congruent with previous mtDNA analyses based on fewer characters and provide strong support for most branches. However, we detected strong incongruence between the mtDNA and nuclear data using comparisons of branch support and Shimodaira-Hasegawa tests, with the (P. platyrhinos+P. goodei) clade identified as the primary source of this conflict. Our analysis of a P. mcalliixP. goodei hybrid suggests that this incongruence is caused by reticulation via introgressive hybridization. Our preferred phylogeny based on an analysis of the combined data (excluding the introgressed mtDNA data) provides a new framework for interpreting character evolution and biogeography within Phrynosoma. In the context of this improved phylogeny we propose a phylogenetic taxonomy highlighting four clades: (1) Tapaja, containing the viviparous short-horned lizards P. ditmarsi, P. hernandesi, P. douglasii, and P. orbiculare; (2) Anota, containing species with prominent cranial horns (P. solare, P. mcallii, and the P. coronatum group); (3) Doliosaurus, containing three species lacking antipredator blood-squirting (P. modestum, P. platyrhinos, and P. goodei); and (4) Brevicauda, containing two viviparous species with extremely short tails that lack blood-squirting (P. braconnieri and P. taurus).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号