首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrated cultivation of salmonids and seaweeds in open systems   总被引:2,自引:2,他引:0  
Bacterial abundance and production in a vertical profile in Lake Kariba (17dgS), Zimbabwe, were affected by solar irradiance. At the surface, 1.87 × 109 bacteria 1–1 were found and abundance peaked at 10 m (2.5 × 109 bacteria l-1), then decreasing with depth. Bacterial reproduction at the surface(0.145 µg C1–1 h–1) was nearly four times less than the production at 10 m although bacterial numbers were only 26% less. Thus, bacterial production per cell was lower at the surface than deeper down, suggesting that bacterial production is inhibited at the surface.Bacterial production in GF/F filtered lake water in Whirl Pack bags showed an exponential decrease down to 3 m depth. The inhibition was well in accordance with light extinction in the UV region. Phosphatase activity was low in light exposed bags compared to dark, indicating photolysis of extracellular enzymes, or phototransformation of recalcitrant DOM, which substitutes enzyme activity. Hypolimnetic enzyme activity was less affected by solar light than epilimnetic.  相似文献   

2.
Castillo  María M. 《Hydrobiologia》2000,437(1-3):57-69
Seasonal fluctuation in river stage strongly affects the ecological functioning of tropical floodplain lakes. This study was conducted to assess the influence of hydrological seasonality on bacterial production and abundance in two floodplain lakes of the Autana River, a blackwater river in the Middle Orinoco basin, Venezuela. Water samples for nutrient chemistry, chlorophyll a, and microbiological determinations were collected in two floodplain lakes and in the mainstem of the river during 1997–98. DOC and chlorophyll a concentrations were similar between mainstem and lake sites during high water when river and lakes were well connected but became different during the period of low water when the interaction was minimal. Higher values of bacterial production were observed in the floodplain lakes (0.62–1.03 g C l–1 h–1) compared to the mainstem sites (0.17–0.19 g C l–1 h–1) during the period of low water, while during the period of high water river and lake sites showed similar levels (0.04 g C l–1 h–1). Bacterial numbers followed bacterial production in the floodplain lakes, reaching higher numbers during the period of low water (1.41–2.40 × 106 cells ml–1). Availability of substrate and inorganic nutrients, pH, and inputs and losses of bacterial cells could be determining the observed seasonal patterns in bacterial production and abundance. The Autana lakes exhibited a strong seasonal pattern in the chemical and biological conditions, showing higher productivity during the lentic phase that lasted between 5 and 6 months.  相似文献   

3.
Planktonic microbial interactions in the central basin of Lake Baikal were examined on a summer day in 1999. The subsurface maxima of bacterial abundance and chlorophyll concentration were recorded at the same depth, whereas the vertical distribution of heterotrophic nanoflagellates was the inverse of those of bacteria and picophytoplankton. Release of extracellular organic car-bon (EOC) from phytoplankton was estimated by the NaH14CO3 method as 2.4µgCl–1day–1. Bacterial production (4.3µgCl–1day–1), estimated in a bottle incubation experiment using size-fractionated water samples, exceeded the EOC released. Thus, other supplying sources of organic matter are needed for the bacterial production. Grazing (2.6µgCl–1day–1) was also estimated in the experiment and accounted for 60% of the bacterial production. This is the first report on the microbial food web in the central basin of Lake Baikal.  相似文献   

4.
Bacterial biovolumes of hypertrophic Humboldt Lake (total dissolved solids = 3.3 g liter-1; 6 m deep) and oligotrophic Redberry Lake (total dissolved solids = 20.9 g liter-1; 17 m deep), Saskatchewan, were measured concurrently with a variety of environmental variables to identify the major factors correlated with volume changes. There was no difference (P > 0.05) in mean bacterial volume between Redberry Lake (0.084 ± 0.034 m3 SD) and Humboldt Lake (0.083 ± 0.021 m3 SD). Statistical analyses suggested there were marked differences in the factors associated with the pronounced seasonality of bacterial cell volumes in these two lakes. Variance in bacterial volume in the epilimnion of Redberry Lake was best explained by a multivariate regression model which included ciliate abundance and chlorophyll concentration (r 2 = 0.96). The model accounting for changes in hypolimnetic bacterial volume included ciliate numbers and primary production (r 2 = 0.94), of the measured variables. Bacterial volume in Humboldt Lake was most highly correlated with primary production (r 2 = 0.59). Bacterial production (estimated as the rate of thymidine incorporation into DNA) and growth (thymidine incorporation rate normalized to cell numbers) were not correlated to cell volume, with the exception of cocci volume in Humboldt Lake. Offprint requests to: R.D. Robarts.  相似文献   

5.
Dissolved free amino acid (DFAA) concentration and composition and dissolved organic carbon (DOC) concentration were measured over 16 months at three depths in hypertrophic Hartbeespoort Dam, South Africa and in its two perenially inflowing rivers. The range of DFAA concentrations in the reservoir and both rivers were similar with dominant DFAA consisting of serine, glycine, alanine and ornithine in all three systems. The range of DOC concentrations in the rivers was 1.5–11.1 mg l–1, the major river (Crocodile) having about twice the DOC concentration of the Magalies River. The DFAA/DOC ratios ranged between 0.02–1.1% in the Crocodile River and 0.13–3.7% in the Magalies River. DFAA and DOC concentrations were positively correlated to the Magalies River flow, but for the Crocodile River, which received domestic and industrial effluents, DOC was inversely correlated to flow. The source of DFAA in both rivers was mainly terrestrial, in contrast to the main DOC source in the Crocodile River which was the effluents. The DFAA load of the Crocodile River ranged between 0.22 and 208 kg C d–1.DOC (5.0–24.8mg l–1) in Hartbeespoort Dam generally decreased with depth but DFAA (15–4800 nmol l–1) concentration showed no clear trend. The DFAA/DOC ratios varied between 0.02 and 2.9%. DFAA concentrations were correlated (r = 0.3, n = 30, p = 0.04) with bacterial numbers at 0 and 10 m only while no significant correlations were found with bacterial production, chlorophyll a concentration and phytoplankton primary and EDOC (extracellular DOC) production at any depth. The rate of bacterial utilization of DFAA was low compared with data from other lakes. Diurnal phytoplankton production of DFAA in the euphotic zone of the whole lake was calculated to vary between 268 and 30 780 t C d–1 indicating autochthonous DFAA sources were dominant to allochthonous DFAA sources. The autochthonous production of DFAA was > 2 × gross bacterial production of the euphotic zone indicating that although DFAA concentrations were frequently < 10 g C l–1, the rate of DFAA production exceeded bacterial requirements.  相似文献   

6.
Flavobacterium multivorum, a non-fermenting Gram-negative bacteria, normally produces zeaxanthin (3R, 3 R-, -carotene-3, 3 diol) as its main carotenoid. The effect of supplementation of various inorganic salts and urea on the growth, total carotenoid production, and proportion of -carotene (, -carotene), -cryptoxanthin (, -caroten-3-ol), and zeaxanthin produced by F. multivorum was investigated. Urea and several salts, such as calcium chloride, ammonium chloride, lithium chloride, and sodium carbonate, improved total carotenoid production by 1.5- to 2.0-fold. Urea and sodium carbonate had an unexpectedly strong positive effect on -carotene production at the expense of zeaxanthin formation. The effect was found to be independent of incubation time, and -carotene represented 70% (w/w) of the total carotenoid content. The cumulative effect of urea and sodium carbonate was further studied using response surface methodology. An optimum medium was found to contain 4,000 and 4,070 mg l–1 urea and sodium carbonate, respectively. The maximum -carotene level was 7.85 g ml–1 culture broth, which represented 80% (w/w) of the total carotenoid produced. Optimization resulted in 77- and 88-fold improvements in the volumetric and specific -carotene levels, respectively, accompanied by a simultaneous decrease in the zeaxanthin level as compared to the control medium. The carotenoid production profile in the optimized medium indicated that -carotene was produced maximally during the late exponential phase at 0.41 g ml–1 h–1. It is possible that this organism could be an excellent commercial source of either -carotene or zeaxanthin, depending on initial culture conditions.  相似文献   

7.
The biomass and production (thymidine incorporation) of heterotrophic bacterioplankton has been assessed from July, 1988, to October, 1989. in Lake Xolotlán, Nicaraqua. Bacterial abundance was high, 2–3.1010 cells.l–1, and bacterial biomass averaged ca. 0.75 mg C.l–1, or roughly 20% of the partivculate organic carbon. Bactrial production averaged between 3.5–5 g C.l–1.h–1 and on a areal basis was 650–959 mg C.m–2.d–1 or 13–20% ofthe primary production. Although bacterial production (volumetric basis) was typical for eutrophic lakeks, the bacterial specific growth rate was low, the bacteial population doubling time was ca. 1 week, perhaps indicating that there was a low grazing pressure on the bacteria.  相似文献   

8.
UVirradiation of dissolved organic carbon (DOC) in the laboratory can producesmall, labile organic compounds utilizable by microbes, but few studies haveattempted to document this process in situ. 13Cnuclear magnetic resonance (NMR) was used to examine the bulk chemicalcomposition of natural and laboratory-irradiated high-molecular-weight DOC(HMW-DOC) from shaded (150 mol m–2s–1 average light in surface water) and open (1500mol m–2 s–1) field sitesoverone and a half years. 13C NMR revealed only small differences incarbon functional groups between laboratory irradiated and non-irradiatedHMW-DOC. However, bacterial protein productivity per cell (BPP) was enhanced innaturally irradiated samples of HMW-DOC in a field mesocosm experiment (p <0.05), suggesting that bacterial growth was enhanced by photochemicalproductionof labile DOC substrates. Absorbance characteristics such as spectral slope,absorbance at 350 nm, and the absorbance ratio 250nm/365 nm revealed that HMW-DOC was photoreactive,yetno differences in these values were found between samples irradiated with andwithout UV-B. In experiments conducted with simulated solar radiation in thelaboratory and with natural light in the field mesocosm experiment, UV-A(320–400 nm) and photosynthetically active radiation (PAR;400–700 nm) were more effective than UV-B (280–320nm) in HMW-DOC photolysis.  相似文献   

9.
A transect along the axis of the headwaters of a tidal estuary was sampled for microbial, nutrient, and physical parameters. Chlorophylla averaged 42g 1–1 and phytoplankton comprised an estimated 80% of the total microbial biomass as determined by adenosine triphosphate (ATP). Bacterial concentrations ranged from 0.3–53.9×106 cells ml–1 and comprised about 4% of the total living microbial biomass. Bacterial production, determined by3H-methyl-thymidine incorporation was about 0.05–2.09× 109 cells 1–1 h–1, with specific growth rates of 0.26–1.69 d–1. Most bacterial production was retained on 0.2m pore size filters, but passed through 1.0m filters. Significant positive correlations were found between all biomass measures and most nutrient measures with the exception of dissolved inorganic nitrogen nutrients where correlations were negative. Seasonal variability was evident in all parameters and variability among the stations was evident in most. The results suggest that bacterial production requires a significant carbon input, likely derived from autotrophic production, and that microbial trophic interactions are important.  相似文献   

10.
We investigated the effect of dissolved organic carbon (DOC) on hypolimnetic metabolism (accumulation of dissolved inorganic carbon (DIC) and methane (CH4)) in 21 lakes across a gradient of DOC concentrations (308 to 1540 mol C L–1). The highly colored nature of the DOC in these lakes suggests it is mostly of terrestrial origin. Hypolimnetic methane accumulation was positively correlated with epilimnetic DOC concentration (Spearman rank correlation = 0.67; p < 0.01), an indicator of allochthonous DOC inputs, but not with photic zone chlorophyll a concentration (Spearman rank correlation = 0.30; p = 0.22). Hypolimnetic DOC concentrations declined in 19 of 21 lakes during the stratified period at rates that ranged from 0.06 to 53.9 mmol m–2 d–1. The hypolimnetic accumulation of DIC + CH4 was positively correlated with, and, in most cases of comparable magnitude to, this DOC decline suggesting that DOC was an important substrate for hypolimnetic metabolism. The percentage of surface irradiance reaching the thermocline was lower in high DOC lakes (0.3%) than in low DOC lakes (6%), reducing hypolimnetic photosynthesis (as measured by the depth and magnitude of the deep dissolved oxygen maxima) in the high DOC lakes. In June, the hypolimnia of lakes with < 400 mol L–1 DOC had high concentrations of dissolved oxygen and no CH4, while the hypolimnia of lakes with DOC > 800 mol L–1 were completely anoxic and often had high CH4 concentrations. Thus, DOC affects hypolimnetic metabolism via multiple pathways: DOC was significant in supporting hypolimnetic metabolism; and at high concentrations depressed photosynthesis (and therefore oxygen production and DIC consumption) in the hypolimnion.  相似文献   

11.
The chemical and biological conditions, and the bacteria-heterotrophic nanoflagellate (HNF) relationship were investigated in the vicinity of Funka Bay, southwest of Hokkaido, Japan during early spring 1999. At the time of sampling, chlorophyll a concentration, bacteria, phycoerythrin rich-cyanobacteria, and HNF abundance were in the following ranges: 0.3–3.6 g l–1, 2.5–5.6 × 105 cells ml–1, 0.6–1.2 × 103 cells ml–1, and 2.2–4.2 × 103 cells ml–1, respectively. Dissolved inorganic nitrogen, phosphate and silicate concentrations were in the ranges: 8.7–12.2 M, 0.9–2.0 M, and 21.6–25.5 M, respectively. Primary production ranged from 6.4 to 76.3 mg C m–3 d–1. Using water samples from regions of different productivity levels (in and outside bay), the bacteria - HNF relationship was uncoupled experimentally by the size-fractionation technique. Higher primary production (19.9 mg C m–3 d–1) in the bay supported higher bacterial growth rate (0.029 h–1). However, outside the bay both primary production (6.4 mg C m–3 d–1) and bacterial growth rate (0.007 h–1) were lower. The HNF growth rates and grazing rates were similar for both but by comparing both HNF grazing capacity and bacterial production, there was net decrease in bacterial abundance outside the bay and net increase inside the bay. The microbial parameters (rates and abundance) and the amount of carbon flow estimated through the phytoplankton – dissolved organic matter (DOM) – bacteria loop were different between the coastal station and the open ocean station. However HNF grazing and growth rates was similar for both stations.  相似文献   

12.
Estimates of bacterial production based on total trichloroacetic acid (TCA)-precipitable [methyl-3H]thymidine incorporation and frequency of dividing cell (FDC) techniques were compared to sediment respiration rates in Lake George, New York. Bacterial growth rates based on thymidine incorporation ranged from 0.024 to 0.41 day–1, while rates based on FDC ranged from 1.78 to 2.48 day–1. Respiration rates ranged from 0.11 to 1.8mol O2·hour–1·g dry weight sediment–1. Thymidine incorporation yielded production estimates which were in reasonable agreement with respiration rates. Production estimates based on FDC were 4- to 190-fold higher than those predicted from respiration rates.  相似文献   

13.
Almeida  M.A.  Cunha  M.A.  Alcântara  F. 《Hydrobiologia》2002,(1):251-262
We intended to evaluate the relative contribution of primary production versus allochthonous carbon in the production of bacterial biomass in a mesotrophic estuary. Different spatial and temporal ranges were observed in the values of bacterioplankton biomass (31–273 g C l–1) and production (0.1–16.0 g C l–1 h–1, 1.5–36.8 mg C m–2 h–1) as well as in phytoplankton abundance (50–1700 g C l–1) and primary production (0.1–512.9 g C l–1 h–1, 1.5–512.9 mg C m–2 h–1). Bacterial specific growth rate (0.10–1.68 d–1) during the year did not fluctuate as much as phytoplankton specific growth rate (0.02–0.74 d–1). Along the salinity gradient and towards the inner estuary, bacterio- and phytoplankton biomass and production increased steadily both in the warm and cold seasons. The maximum geographical increase observed in these variables was 12 times more for the bacterial community and 8 times more for the phytoplankton community. The warm to cold season ratios of the biological variables varied geographically and according to these variables. The increase at the warm season achieved its maximum in the biomass production, particularly in the marine zone and at high tide (20 and 112 times higher in bacterial and phytoplankton production, respectively). The seasonal variation in specific growth rate was most noticeable in phytoplankton, with seasonal ratios of 3–26. The bacterial community of the marine zone responded positively – generating seasonal ratios of 1–13 in bacterial specific growth rate – to the strong warm season increment in phytoplankton growth rate in this zone. In the brackish water zone where even during the warm season allochthonous carbon accounted for 41% (on average) of the bacterial carbon demand, the seasonal ratio of bacterial specific growth rate varied from about 1 to 2. During the warm season, an average of 21% of the primary production was potentially sufficient to support the whole bacterial production. During the cold months, however, the total primary production would be either required or even insufficient to support bacterial production. The estuary turned then into a mostly heterotrophic system. However, the calculated annual production of biomass by bacterio- and phytoplankton in the whole ecosystem showed that auto- and heterotrophic production was balanced in this estuary.  相似文献   

14.
The release of dissolved organic carbon (DOC) byMysis relicta that occurs while feeding may be an important pathway in the recycling of nutrients in Lake Michigan. Laboratory experiments were conducted to determine the levels of DOC released byM. relicta from Lake Michigan while grazing on laboratory-cultured diatoms. Increasing filtering rates were observed at progressively lower chlorophyll concentrations. Higher filtering rates were accompanied by higher fragmentation of diatoms and a higher concomitant release of DOC from broken cells. While the amount of DOC release is small (0.02–3.30 g C · 1–1· h–1), it nonetheless is of importance to bacteria and possibly some algae. After assimilation by bacteria and algae, the organic carbon is then available to consumers.Contribution No. 239, Center for Great Lakes Studies, The University of Wisconsin-Milwaukee, Milwaukee, WI 53201, U.S.A.Contribution No. 239, Center for Great Lakes Studies, The University of Wisconsin-Milwaukee, Milwaukee, WI 53201, U.S.A.  相似文献   

15.
Incorporation of [14C]leucine into proteins of bacteria was studied in a temperate mesohumic lake. The maximum incorporation of [14C] leucine was reached at a concentration of 30 nm determined in dilution cultures. Growth experiments were used to estimate factors for converting leucine incorporation to bacterial cell numbers or biomass. The initially high conversion factors calculated by the derivative method decreased to lower values after the bacteria started to grow. Average conversion factors were 7.09 × 1016 cells mol–1 and 7.71 × 1015 m3 mol–1, if the high initial values were excluded. Using the cumulative method, the average conversion factor was 5.38 × 1015 m–3 mol–1 I . The empirically measured factor converting bacterial biomass to carbon was 0.36 pg C m–3 or 33.1 fg C cell–1. Bacterial production was highest during the growing season, ranging between 1.8 and 13.2 g C liter–1 day–1, and lowest in winter, at 0.2–2.9 g C liter–1 day–1. Bacterial production showed clear response to changes in the phytoplankton production, which indicates that photosynthetically produced dissolved compounds were used by bacteria. In the epilimnion bacterial production was, on average, 19–33% of primary production. Assuming 50% growth efficiency for bacteria, the allochthonous organic carbon could have also been an additional energy and carbon source for bacteria, especially in autumn and winter. In winter, a strong relationship was found between temperature and bacterial production. The measuring of [14C]leucine incorporation proved to be a simple and useful method for estimating bacterial production in humic water. However, an appropriate amount of [14C]leucine has to be used to ensure the maximum uptake of label and to minimize isotope dilution.  相似文献   

16.
The relative contribution of autotrophic carbon sources (aquatic macrophytes, flooded forest, phytoplankton) for heterotrophic bacterioplankton was evaluated in a floodplain lake of the Central Amazon. Stable carbon isotopes (13C) were used as tracers. Values of 13C of different autotrophic sources were compared to those of dissolved organic carbon (DOC) and those of bacterially produced CO2.The percentage of carbon derived from C4 macrophytes for bacterially produced CO2 was the highest, on average 89%. The average 13C value of CO2 from bacterial respiration was –18.5 ± 3.3. Considering a fractionation of CO2 of 3 by bacterial respiration, 13C value was –15.5, near C4 macrophyte 13C value (–13.1).The average value of total DOC 13C was –26.8 ± 2.4. The percentage of C4 macrophytes carbon for total DOC was on average 17%. Considering that bacteria consume mainly carbon from macrophytes, the dominance of C3 plants for total DOC probably reflects a faster consumption of the former source, rather than a major contribution of the latter source.Heterotrophic bacterioplankton in the floodplain may be an important link in the aquatic food web, transferring the carbon from C4 macrophytes to the consumers.  相似文献   

17.
Bacterial activity along a trophic gradient   总被引:5,自引:0,他引:5  
Bacterial biomass, secondary production, and extracellular enzymatic activity [-glucosidase and leucine-aminopeptidase, measured as cleavage of artificial fluorogenic substrates 4-methyl umbelliferyl (MVF) -D-glucopyranoside and L-leucine 7-amido-4-methyl coumarin (MCA)] were measured along a trophic gradient in the Northern Adriatic Sea in four ecologically different situations. Bacterial parameters were compared with chlorophyll a and inorganic and organic nutrient concentrations. Bacterial secondary production and extracellular enzymatic activity markedly changed among different seasons and along the trophic gradient. Average bacterial secondary production increased from 0.61 to 2.09 µg Cl–1 hour–1 preceding a bloom, to 2.09 µg Cl–1 hour–1 during the bloom, decreasing again to 0.81 and 0.83 µg Cl–1 hour–1 in the post-bloom and summer periods, respectively (values from 0.5 m depth). Leucine-aminopeptidase activity showed more consistent trends than -glucosidase activity. Average values of leucine-aminopeptidase activity, measured by enzymatic release of MCA, increased from a pre-bloom value of 164.0 to 1,712.0 (nM MCA) hour–1 released during a bloom, decreasing to 298.5 and 133.7 (nM MCA) hour–1 released for the post-bloom and summer situation, respectively (values from 0.5 m depth). Average growth rates decreased during the bloom, whereas average extracellular enzymatic activity levels expressed on a cell basis increased by an average factor of 2. Along the trophic gradient, a consistent increase in bacterial secondary production could be observed in all but the summer situation (values from 0.5 m depth). Leucine-aminopeptidase activity also showed positive trends along the gradient, while -glucosidase activity did not exhibit such a clear trend. Bacterial biomass trends were less obvious considering both seasonal changes and the tropic gradient. Highly significant interrelations were detected between bacterial proteolytic activity, secondary production, chlorophyll a content, and nitrate concentrations, especially in the surface horizon. Send offprint requests to: G. J. Hemdl.  相似文献   

18.
In order to determine the relative importance of autotrophic and heterotrophic activities in both bacterial and phytoplanktonic communities in an oligomesotrophic lake, the size fractionation by differential filtration and the use of a bacterial inhibitor (gentamycin) were combined. The study was carried out at Lake Pavin during the spring planktonic bloom. Photosynthetic and photo- and chemoheterotrophic activities were measured from the assimilation of NaH14CO3 and glucose-3H, using a double labeling technique. The bacterial community was at low cell concentration (0.6 to 7 × 105 cells ml) and represented very low biomass values (0.9 to 11.5 gC liter–1). The abundance of the phytoplankton varied between 0.5 and 1.8 × 106 cells liter–1, and biomass values ranged between 19 and 118 gC liter–1. The diatom Melosira italica sp. subarctica (O. Mueller) was the largely dominant species in the meta- and hypolimnion. Inorganic fixation by photolithotrophy (mean value: 1.66 mg C m–3 hour–1) largely predominates over assimilation by photoheterotrophy (mean value: 0.93 g C m–3 hour–1) or chemoheterotrophy (mean value: 2.42 g C m–3 hour–1). However, because of the considerable underestimation of heterotrophic assimilation due to the experimental methods used, and because of the spatial and temporal separation of photolithotrophic and photo- and chemoheterotrophic activities, it is likely that the fixation of organic carbon by microalgae plays an important role in the survival of species and/or in competitive interactions, as the results with Monoraphidium contortum (Pasch. et Korschik.), the prevailing species in the epilimnion, would suggest. Send offprint requests to: C. Amblard.  相似文献   

19.
Goedkoop  Willem  Pettersson  Kurt 《Hydrobiologia》2000,431(1):41-50
Surficial sediment and sedimenting material were sampled during spring and summer 1991 in Lake Erken. Sediment was analyzed for redox potential, P concentrations and bacterial biomass. Sedimentation and chlorophyll a concentrations of sedimenting matter were determined. Additionally, different phosphorus forms in surficial sediment were quantified using sequential fractionation. The resulting dataset was used to study the effects of sedimentation events following phytoplankton blooms and benthic bacterial biomass on the size of the various phosphorus pools in the sediment.Sedimentation of spring diatoms caused a rapid increase in the NH4Cl- and NaOH-extractable P (NH4Cl–P and NaOH–rP) in the sediment. During sedimentation, NaOH–rP and NH4Cl–P increased within 3 days from 422 ± 17 g g–1 DW to 537 ± 8.0 g g–1 DW and from 113 ± 13 g g–1 DW to 186 ± 26 g g–1 DW, respectively. The NaOH–nrP (non-reactive P) fraction made up about 17% of Tot-P in sediment samples, whereas NaOH–rP and HCl–P made up 25% each. All P forms showed considerable seasonal variation. Significant relationships were found between bacterial biomass and the NaOH–nrP and NH4Cl–P fractions in the sediment, respectively. Also regressions of NaOH–nrP and NH4Cl–P versus the chlorophyll a concentration of sedimenting matter were highly significant. These regressions lend support to the conjecture that NaOH–nrP is a conservative measure of bacterial poly-P.  相似文献   

20.
A series of experiments were conducted to address the fate of dissolved organic carbon (DOC) in the peat–stream interface zone linking a minerotrophic poor fen and an ombrotrophic mire with surrounding stream water in the drainage area of Lake Örträsket in northern Sweden. Transport and mineralisation of DOC were quantified in peat–stream interface cores in response to variations in pore water velocity, DOC concentration and the molecular size and source of DOC. Mineralisation and CH4 production were positively correlated with pore water velocity at rates between 0.08 and 0.20cmh–1 and negatively correlated at rates between 0.20 and 0.40cmh–1. The DOC concentration of the effluent from the peat cores was independent of the pore water velocity but proportional to the DOC concentration of the source water. Higher concentrations of DOC were exported from than imported to the peat cores, and the cores exported DOC molecules of smaller average molecular size than received. Carbon mineralisation in the peat, assessed in a static system, was independent of the concentration of DOC. DOC with a nominal cutoff at 100Da was mineralised faster by streamwater bacteria than DOC dialysed with a cutoff at 3500Da, and their mineralisation rate was positively correlated with the DOC concentration. Streamwater bacteria mineralised streamwater DOC at a lower rate than the peat–stream interface zone pore water DOC. The pattern of velocity dependence of mineralisation was the same for both sources of peat DOC but the mineralisation rates, average molecular size, and bioavailability of DOC were different, emphasising the importance of the compositional heterogeneity of the peat–stream interface zone for the DOC budget of streamwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号