首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although 8-anilinonaphthalene-1-sulfonic acid (ANS) is frequently used in protein folding studies, the structural and thermodynamic effects of its binding to proteins are not well understood. Using high-resolution two-dimensional NMR and human interleukin-1 receptor antagonist (IL-1ra) as a model protein, we obtained detailed information on ANS-protein interactions in the absence and presence of urea. The effects of ambient to elevated temperatures on the affinity and specificity of ANS binding were assessed from experiments performed at 25 degrees C and 37 degrees C. Overall, the affinity of ANS was lower at 37 degrees C compared to 25 degrees C, but no significant change in the site specificity of binding was observed from the chemical shift perturbation data. The same site-specific binding was evident in the presence of 5.2 M urea, well within the unfolding transition region, and resulted in selective stabilization of the folded state. Based on the two-state denaturation mechanism, ANS-dependent changes in the protein stability were estimated from relative intensities of two amide resonances specific to the folded and unfolded states of IL-1ra. No evidence was found for any ANS-induced partially denatured or aggregated forms of IL-1ra throughout the experimental conditions, consistent with a cooperative and reversible denaturation process. The NMR results support earlier observations on the tendency of ANS to interact with solvent-exposed positively charged sites on proteins. Under denaturing conditions, ANS binding appears to be selective to structured states rather than unfolded conformations. Interestingly, the binding occurs within a previously identified aggregation-critical region in IL-1ra, thus providing an insight into ligand-dependent protein aggregation.  相似文献   

2.
The effect of benzyl alcohol on the transverse mobility and repartition of phospholipids in the human erythrocyte membrane was investigated using electron spin resonance and morphological modification of red blood cells. Transmembrane internalization rates and equilibrium distribution in red blood cells of short-chain spin-labeled phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine were strongly modified by treatment with 10-70 mM benzyl alcohol. A dual effect was observed: (a) at 4 degrees C and 37 degrees C there was an N-ethylmaleimide-sensitive, long lasting and fully reversible increase in the spin-labeled phosphatidylserine and phosphatidylethanolamine internalization rate; (b) at 37 degrees C, an enhancement of N-ethylmaleimide-insensitive fluxes of all the labeled phospholipids through the membrane occurred. Both effects were dose-dependent. Erythrocytes submitted to benzyl alcohol incubation also showed dose-dependent shape changes: an immediate one from discocytes to echinocytes, followed by a slower N-ethylmaleimide- and ATP-dependent change to stomatocytes. Moreover, benzyl alcohol treatment was shown to lead to enhanced hydrolysis of intracellular ATP. All the effects of benzyl alcohol can be described as an accumulation of labeled phosphatidylethanolamine (and labeled phosphatidylcholine at 37 degrees C) in the inner leaflet. This can be interpreted as a perturbation of the erythrocyte membrane, leading to an energy-consuming specific increase in aminophospholipid translocase activity, in addition to a slow and passive bidirectional flux of all phospholipids at 37 degrees C.  相似文献   

3.
Favier J  Kempf H  Corvol P  Gasc JM 《FEBS letters》1999,461(1-2):19-24
The thermodynamics of interaction of two model peptides melittin and mastoparan with bovine brain calmodulin (CAM) and a smaller CAM analogue, a calcium binding protein from Entamoeba histolytica (CaBP) in 10 mM MOPS buffer (pH 7.0) was examined using isothermal titration calorimetry (ITC). These data show that CAM binds to both the peptides and the enthalpy of binding is endothermic for melittin and exothermic for mastoparan at 25 degrees C. CaBP binds to the longer peptide melittin, but does not bind to mastoparan, the binding enthalpy being endothermic in nature. Concurrently, we also observe a larger increase in alpha-helicity upon the binding of melittin to CAM when compared to CaBP. The role of hydrophobic interactions in the binding process has also been examined using 8-anilino-1-naphthalene-sulphonic acid (ANS) binding monitored by ITC. These results have been employed to rationalize the energetic consequences of the binding reaction.  相似文献   

4.
Adenylate cyclase activation by corticotropin (ACTH), fluoride and forskolin was studied as a function of membrane structure in plasma membranes from bovine adrenal cortex. The composition of these membranes was characterized by a very low cholesterol and sphingomyelin content and a high protein content. The fluorescent probes 1,6-diphenylhexa-1,3,5-triene (DPH) and a cationic analogue 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) were, respectively, used to probe the hydrophobic and polar head regions of the bilayer. When both probes were embedded either in the plasma membranes or in liposomes obtained from their lipid extracts, they exhibited lifetime heterogeneity, and in terms of the order parameter S, hindered motion. Under all the experimental conditions tested, S was higher for TMA-DPH than for DPH but both S values decreased linearly with temperature within the range of 10 to 40 degrees C, in the plasma membranes and the liposomes. This indicated the absence of lipid phase transition and phase separation. Addition to the membranes of up to 100 mM benzyl alcohol at 20 degrees C also resulted in a linear decrease in S values. Membrane perturbations by temperature changes or benzyl alcohol treatment made it possible to distinguish between the characteristics of adenylate cyclase activation with each of the three effectors used. Linear Arrhenius plots showed that when adenylate cyclase activity was stimulated by forskolin or NaF, the activation energy was similar (70 kJ.mol-1). Fluidification of the membrane with benzyl alcohol concentrations of up to 100 mM at 12 or 24 degrees C produced a linear decrease in the forskolin-stimulated activity, that led to its inhibition by 50%. By contrast, NaF stabilized adenylate cyclase activity against the perturbations induced by benzyl alcohol at both temperatures. In the presence of ACTH, biphasic Arrhenius plots were characterized by a well-defined break at 18 degrees C, which shifted at 12.5 degrees C in the presence of 40 mM benzyl alcohol. These plots suggested that ACTH-sensitive adenylate cyclase exists in two different states. This hypothesis was supported by the striking difference in the effects of benzyl alcohol perturbation when experiments were performed below and above the break temperature. The present results are consistent with the possibility that clusters of ACTH receptors form in the membrane as a function of temperature and/or lipid phase fluidity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
A recombinant form of human rhIL-7 was overexpressed in Escherichia coli HMS174 (DE3) pLysS under the control of a T7 promoter. The resulting insoluble inclusion bodies were separated from cellular debris by cross-flow filtration and solubilized by homogenization with 6 M guanidine HCl. Attempts at refolding rhIL-7 from solubilized inclusion bodies without prior purification of monomeric, denatured rhIL-7 were not successful. Denatured, monomeric rhIL-7 was therefore initially purified by size-exclusion chromatography using Prep-Grade Pharmacia Superdex 200. Correctly folded rhIL-7 monomer was generated by statically refolding the denatured protein at a final protein concentration of 80-100 microg/ml in 100 mM Tris, 2mM EDTA, 500 mM L-arginine, pH 9.0, buffer with 0.55 g/l oxidized glutathione at 2-8 degrees C for at least 48 h. The refolded rhIL-7 was subsequently purified by low-pressure liquid chromatography, using a combination of hydrophobic interaction, cation-exchange, and size-exclusion chromatography. The purified final product was >95% pure by SDS-PAGE stained with Coomassie brilliant blue, high-pressure size-exclusion chromatography (SEC-HPLC), and reverse-phase HPLC. The endotoxin level was <0.05 EU/mg. The final purified product was biologically active in a validated IL-7 dependent pre-B-cell bioassay. In anticipation of human clinical trials, this material is currently being evaluated for safety and efficacy in non-human primate toxicology studies.  相似文献   

6.
Alpha-crystallin, composed of two subunits, alphaA and alphaB, has been shown to function as a molecular chaperone that prevents aggregation of other proteins under stress conditions. The exposed hydrophobic surfaces of alpha-crystallins have been implicated in this process, but their exact role has not been elucidated. In this study, we quantify the hydrophobic surfaces of alphaA- and alphaB-crystallins by isothermal titration calorimetry using 8-anilino-1-napthalenesulfonic acid (ANS) as a hydrophobic probe and analyze its correlation to the chaperone potential of alphaA- and alphaB-crystallins under various conditions. Two ANS binding sites, one with low and another with high affinity, were clearly detected, with alphaB showing a higher number of sites than alphaA at 30 degrees C. In agreement with the higher number of hydrophobic sites, alphaB-crystallin demonstrated higher chaperone activity than alphaA at this temperature. Thermodynamic analysis of ANS binding to alphaA- and alphaB-crystallins indicates that high affinity binding is driven by both enthalpy and entropy changes, with entropy dominating the low affinity binding. Interestingly, although the number of ANS binding sites was similar for alphaA and alphaB at 15 degrees C, alphaA was more potent than alphaB in preventing aggregation of the insulin B-chain. Although there was no change in the number of high affinity binding sites of alphaA and alphaB for ANS upon preheating, there was an increase in the number of low affinity sites of alphaA and alphaB. Preheated alphaA, in contrast to alphaB, exhibited remarkably enhanced chaperone activity. Our results indicate that although hydrophobicity appears to be a factor in determining the chaperone-like activity of alpha-crystallins, it does not quantitatively correlate with the chaperone function of alpha-crystallins.  相似文献   

7.
Although freeze-induced perturbations of the protein native fold are common, the underlying mechanism is poorly understood owing to the difficulty of monitoring their structure in ice. In this report we propose that binding of the fluorescence probe 1-anilino-8-naphthalene sulfonate (ANS) to proteins in ice can provide a useful monitor of ice-induced strains on the native fold. Experiments conducted with copper-free azurin from Pseudomonas aeruginosa, as a model protein system, demonstrate that in frozen solutions the fluorescence of ANS is enhanced several fold and becomes blue shifted relative free ANS. From the enhancement factor it is estimated that, at -13 degrees C, on average at least 1.6 ANS molecules become immobilized within hydrophobic sites of apo-azurin, sites that are destroyed when the structure is largely unfolded by guanidinium hydrochloride. The extent of ANS binding is influenced by temperature of ice as well as by conditions that affect the stability of the globular structure. Lowering the temperature from -4 degrees C to -18 degrees C leads to an apparent increase in the number of binding sites, an indication that low temperature and /or a reduced amount of liquid water augment the strain on the protein tertiary structure. It is significant that ANS binding is practically abolished when the native fold is stabilized upon formation of the Cd(2+) complex or on addition of glycerol to the solution but is further enhanced in the presence of NaSCN, a known destabilizing agent. The results of the present study suggest that the ANS binding method may find practical utility in testing the effectiveness of various additives employed in protein formulations as well as to devise safer freeze-drying protocols of pharmaceutical proteins.  相似文献   

8.
Tubulin is an unstable protein when stored in solution and loses its ability to form microtubules rapidly. We have found that D2O stabilizes the protein against inactivation at both 4 and 37 degrees C. In H2O-based buffer, tubulin was completely inactivated after 40 h at 4 degrees C, but in buffer prepared in D2O, no activity was lost after 54 h. Tubulin was completely inactivated at 37 degrees C in 8 h in H2O buffer, but only 20% of the activity was lost in D2O buffer. Tubulin also lost its colchicine binding activity at a slower rate in D2O. The deuterated solvent retarded an aggregation process that occurs during incubation at both temperatures. Inactivation in H2O buffer was partially reversed by transferring the protein to D2O buffer; however, aggregation was not reversed. The level of binding of BisANS, a probe of exposed hydrophobic sites in proteins, increases during the inactivation of tubulin. In D2O, the rate of this increase is slowed somewhat. We propose that D2O has its stabilizing effect on a conformational step or steps that involve the disruption of hydrophobic forces. The conformational change is followed by an aggregation process that cannot be reversed by D2O. As reported previously [Ito, T., and Sato, H. (1984) Biochim. Biophys. Acta 800, 21-27], we found that D2O stimulates the formation of microtubules from tubulin. We also observed that the products of assembly in D2O/8% DMSO consisted of a high percentage of ribbon structures and incompletely folded microtubules. When these polymers were disassembled and reassembled in H2O/8% DMSO, the products were microtubules. We suggest that the combination of D2O and DMSO, both stimulators of tubulin assembly, leads to the rapid production of nuclei that lead to the formation of ribbon structures rather than microtubules.  相似文献   

9.
It has been shown earlier that the interactions of the isolated rat peritoneal mast cells with cationic protein from rabbit neutrophil lysosomes (band 2 protein) can be studied using anilinonaphthalene sulfonate (ANS) as a fluorescent probe. In the present communication, binding of ANS dye to the mast cells interacting of histamine release by metabolic inhibitors was found to have no effect on enhancement of ANS fluorescence. On the other hand, inhibition of histamine release at high concentration of Ca2+ (14.4 mM) was accompanied by the decrease in enhance fluorescence. In the presence of 7.2 mM of Sr2+, the release of histamine was enhanced with small but significant increase in ANS fluorescence. The cells heated to 42 degrees C partially lost their capacity to release histamine without the loss of enhanced fluorescence. The mast cells interacting with B2 at 10 degrees C for various time intervals showed time-dependent loss in histamine releasing capacity with concomitant loss in enhanced fluorescence. These studies suggest that the enhancement of ANS fluorescence is associated with the early events of the cell membrane caused by interaction of B2 with the cells. The extracellular cations significantly influence this early event.  相似文献   

10.
We have studied the thermal stability of the triglyceride-hydrolyzing enzyme cutinase from F. solani pisi at pH values straddling the pI (pH 8.0). At the pI, increasing the protein concentration from 5 to 80 microM decreases the apparent melting temperature by 19 degrees C. This effect vanishes at pH values more than one unit away from pI. In contrast to additives such as detergents and osmolytes, the hydrophobic fluorophore 1,8-ANS completely and saturably suppresses this effect, restoring 70% of enzymatic activity upon cooling. ANS binds strongly to native cutinase as a noncompetitive inhibitor with up to 5 ANS per cutinase molecule. Only the first ANS molecule stabilizes cutinase; however, the last 4 ANS molecules decrease Tm by up to 7 degrees C. Similar pI-dependent aggregation and suppression by ANS is observed for T. lanuginosus lipase, but not for lysozyme or porcine alpha-amylase, suggesting that this behavior is most prevalent for proteins with affinity for hydrophobic substrates and consequent exposure of hydrophobic patches. Aggregation may be promoted by a fluctuating ensemble of native-like states associating via intermolecular beta-sheet rich structures unless blocked by ANS. Our data highlight the chaperone activity of small molecules with affinity for hydrophobic surfaces and their potential application as stabilizers at appropriate stoichiometries.  相似文献   

11.
Highly concentrated human recombinant interleukin-1 receptor antagonist (IL-1ra) aggregates at elevated temperature without perturbation in its secondary structure. The protein aggregation can be suppressed depending on the buffer ionic strength and the type of anion present in the sample solution. Phosphate is an approximately 4-fold weaker suppressant than either citrate or pyrophosphate on the basis of the measured protein aggregation rates. This is in agreement with the strength of protein-anion interactions at the IL-1ra single anion-binding site as judged by the estimated dissociation constant values of 2.9 mM, 3.8 mM, and 13.7 mM for pyrophosphate, citrate, and phosphate, respectively. The strength of binding also correlates with the anion size and with the number of ionized groups available per molecule at a given pH. Affinity probing of IL-1ra with methyl acetyl phosphate (MAP) in combination with proteolytic digestion and mass spectral analysis show that an anion-binding site location on the IL-1ra surface is contributed by lysine-93 and lysine-96 of the loop 84-98 as well as by lysine-6 of the unstructured N-terminal region 1-7. The replacement of lysine-93 with alanine by site-directed mutagenesis results in dramatically suppressed IL-1ra aggregation. Furthermore, when the unstructured N-terminal region of IL-1ra is removed by limited proteolysis, a 2-fold increase in the time course of the aggregation lag phase is observed for the truncated protein. An anion-controlled mechanism of IL-1ra aggregation is proposed by which the anion competition for the protein cationic site prevents formation of intermolecular cation-pi interactions and, thus, interferes with the protein asymmetric self-association pathway.  相似文献   

12.
Increased visualization of microtubules by an improved fixation procedure.   总被引:10,自引:0,他引:10  
We have found that when a buffer utilized for in vitro polymerization of microtubules, i.e., 1 mM guanosine triphosphate, 1 mM MgSO4, 2 mM ethylene glycol bis(beta-aminoethyl ether)-N, N'-tetraacetic acid 100 mM piperazine-N,N'-bis(2-ethanesulfonic acid), pH 6.9 polymerization mix, was used in the glutaraldehyde prefixation regimen instead of classical fixative buffers, i.e., isotonic cacodylate or phosphate buffer, the following features were observed in thin-sections of the cytoplasm of interphase HeLa cells: (a) a greater than 2-fold increase in total microtubule contour length, (b) a 2-fold increase in a number of microtubules greater than or equal to 1 mu long, (c) an enhanced association of microtubules with cytoplasmic organelles, and (d) an increased clustering of 100 A filaments located in a perinuclear region of the cell. Furthermore, we found that after we incubated purified chick brain microtubules on a Sephadex G-25 column pre-equilibrated with polymerization mix, cacodylate or phosphate buffer at 37 degrees C, and then eluted the microtubules at 37 degrees C, the exposure to cacodylate or phosphate buffer caused extensive depolymerization, but exposure to polymerization mix buffer allowed reisolation of highly polymerized microtubules. Our results imply that prefixation with cacodylate or phosphate buffered glutaraldenyde destabilizes microtubules leading to the decreased visualization of microtubules.  相似文献   

13.
Reduced apo-alpha-lactalbumin (r-LA) in the pre-molten globule state is soluble in neutral and reduced buffer at 25 degrees C but becomes aggregated when aggregates of various proteins are added. However, protein aggregates do not induce the aggregation of apo-alpha-lactalbumin in the molten globule state. The presence of the molecular chaperone protein disulfide isomerase or the "chemical chaperone" polyethyleneglycol inhibits the induced aggregation. Native proteins, aggregation-free folding intermediates, and soluble aggregates do not induce the aggregation. The interaction between r-LA and protein aggregates is hydrophobic in nature. These findings suggest that pre-molten globule state of LA is the target not only for chaperones but also for protein aggregates.  相似文献   

14.
To gain more insight into the mechanisms of heating-induced irreversible macroscopic aggregation of the tobacco mosaic virus (TMV) coat protein (CP), the effects of pH and ionic strength on this process were studied using turbidimetry, CD spectroscopy, and fluorescence spectroscopy. At 42 degrees C, the TMV CP passed very rapidly (in less than 15s) into a slightly unfolded conformation, presumably because heating disordered a segment of the subunit where the so-called hydrophobic girdle of the molecule resides. We suppose that the amino acid residues of this girdle are responsible for the aberrant hydrophobic interactions between subunits that initiate macroscopic protein aggregation. Its rate increased by several thousands of times as the phosphate buffer molarity was varied from 20 to 70 mM, suggesting that neutralization of strong repulsive electrostatic interactions of TMV CP molecules at high ionic strengths is a prerequisite for amorphous aggregation of this protein.  相似文献   

15.
An artificial chaperone, which can decrease the protein aggregation and increase the reactivation yield of denatured protein in a fashion similar to natural chaperone, was newly developed using stimuli-responsive polymers. It has previously been reported that the addition of poly(propylene oxide)-phenyl-poly(ethylene glycol) (PPOn-Ph-PEG) with the unit number of PPO (n) 33 could enhance the refolding of bovine carbonic anhydrase (Kuboi et al. J. Chromatogr. B 2000, 243, 213). PPO-Ph-PEG with a large PPO chain (n = 50) was synthesized and the surface properties were characterized by both the relative fluorescence intensity of 1-anilino-8-naphthalene sulfonate (ANS) and the fluidity determined by diphenylhexatriene (DPH). The variation of ANS intensity and DPH fluidity is shown in a diagram as functions of temperature and polymer concentration. The high values of ANS intensity and fluidity of PPO50-Ph-PEG were obtained in a relatively wide conditional range (more than 0.08 mM and more than 15 degrees C) although the conditions showing the high values of PPO33-Ph-PEG were restricted (more than 0.1 mM and more than 40 degrees C). It was also found that molecular assemblies of PPOn-Ph-PEG with diameters of 7-18 nm were formed in the above conditions. On the basis of the surface properties of their polymer self-assemblies, the possibility of using them as an artificial chaperone was investigated. The effect of the addition of PPOn-Ph-PEG on the reactivation yield of a model protein, carbonic anhydrase from bovine (CAB), and the optical density of the solution was examined at various temperatures and concentrations. The reactivation yield of CAB was strongly enhanced and the aggregate formation (the optical density) was suppressed by adding PPOn-Ph-PEG in the above conditions, which show high ANS intensity and DPH fluidity. Especially in the presence of 0.1 mM PPO50-Ph-PEG, the reactivation yield of CAB reached approximately 100% at 40-55 degrees C. It was thus found that self-assemblies of the present polymer could be utilized as an artificial chaperone by selecting suitable stimuli conditions.  相似文献   

16.
J R Schullek  I B Wilson 《Peptides》1989,10(2):431-434
Phosphate, borate, and Tris inhibit angiotensin converting enzyme (ACE), but HEPES buffer is inert. Measurements of substrate inhibition were made in HEPES buffer at pH 7.0 and 25 degrees C and 37 degrees C. Substrate inhibition was marked and goes to completion. A new equation for substrate inhibitions enables one, under favorable circumstances, to determine whether there is cooperativity in the binding of substrate to the inhibitory and active sites. Cooperativity does occur with ACE using Hipp-His-Leu as substrate. The kinetic parameters were measured (Km = 0.21 mM, K* = 0.65 mM at 37 degrees C). The enzyme concentration (1.94 X 10(-8) M) was determined by titration with lisinopril so that kcat (5 X 10(3) at 37 degrees C) could be determined. Using this value and the molecular weight the specific activity of ACE was calculated for different common buffers. The specific activity in HEPES calculated from Vmax was 33.7 units/mg at 37 degrees C.  相似文献   

17.
Recent data indicate that cells may acquire thermotolerance via more than one route. In this study, we observed differences in thermotolerance development in HeLa S3 cells induced by prior heating (15 minutes at 44 degrees C) or pretreatment with sodium-arsenite (1 hour at 37 degrees C, 100 microM). Inhibition of overall protein and heat shock protein (HSP) synthesis (greater than 95%) by cycloheximide (25 micrograms/ml) during tolerance development nearly completely abolished thermotolerance induced by arsenite, while significant levels of heat-induced thermotolerance were still apparent. The same dependence of protein synthesis was found for resistance against sodium-arsenite toxicity. Toxic heat, but not toxic arsenite treatments caused heat damage in the cell nucleus, measured as an increase in the protein mass of nuclei isolated from treated cells (intranuclear protein aggregation). Recovery from this intranuclear protein aggregation was observed during post-heat incubations of the cells at 37 degrees C. The rate of recovery was faster in heat-induced tolerant cells than in nontolerant cells. Arsenite-induced tolerant cells did not show an enhanced rate of recovery from the heat-induced intranuclear protein aggregation. In parallel, hyperthermic inhibition of RNA synthesis was the same in tolerant and nontolerant cells, whereas post-heat recovery was enhanced in heat-induced, but not arsenite-induced thermotolerant cells. The more rapid recovery from heat damage in the nucleus (protein aggregation and RNA synthesis) in cells made tolerant by a prior heat treatment seemed related to the ability of heat (but not arsenite) to induce HSP translocations to the nucleus.  相似文献   

18.
Singh SK  Kishore N 《Biopolymers》2006,83(3):205-212
Isothermal titration calorimetry has been used to demonstrate that the heat profile associated with the binding of 8-anilino-1-naphthalene sulfonic acid (ANS) with the acid induced molten globule state (A-state) of alpha-lactalbumin (alpha-LA) is different from that with the native and denatured states of the protein. The results corroborate the spectroscopic observations that ANS binds more strongly to the partially folded states of the protein compared to that with the native and denatured states. ANS binds to the A-state of alpha-LA at two independent binding sites that remain nearly the same in the temperature range of 10-35 degrees C. The number of moles of ANS binding at site 1 at 10 degrees C is 14.0+/-0.2 and remains nearly the same with rise in temperature. However, the number of moles of ANS molecules binding at site 2 show an increase from 1.6+/-0.2 at 10 degrees C to 4.1+/-0.1 at 35 degrees C. The deviation of the slope of enthalpy-entropy compensation plot from unity and nonadherence to van't Hoff dictates implies that the binding sites on the A-state of alpha-LA for ANS are not well defined and specific; rather, these binding sites are formed due to greater exposure of hydrophobic clusters in the A-state of the protein. The results for the first time demonstrate the use of isothermal titration calorimetry in characterizing the A-state of alpha-LA both qualitatively and quantitatively.  相似文献   

19.
The hydrophobic photosensitive probe 1-azido-4-[125I]iodobenzene (AIB) partitioned preferentially into photoreceptor disc membranes and, upon u.v. irradiation, became covalently bound to opsin and phospholipid. The labelling of both protein and phospholipid was linearly related to AIB concentration. The amount of probe incorporated into protein was not significantly different when membranes were irradiated at -100 degrees, 4 degrees or 25 degrees C, but irreversible aggregation of monomeric opsin was dramatically reduced by performing the photolysis at -100 degrees C. Labelling of opsin after irradiation at -100 degrees or 4 degrees was not significantly reduced by the presence of lysine in the aqueous buffer, indicating that significant amounts of reactive species did not enter the aqueous phase. The incorporation into phospholipid, unlike that into opsin, decreased as the temperature of irradiation increased. Some labelling of opsin occurred on incubation with pre-photoactivated AIB, indicating that reaction may also occur with reactive species of longer lifetimes than the nitrene. Proteolysis of labelled opsin with Staphylococcus aureus V8 proteinase yielded two radiolabelled membrane-bound fragments. The location of the modified sites (cysteine, tryptophan, tyrosine, lysine and histidine residues: all nucleophiles) in the smaller fragment was entirely consistent with putative models for the protein derived from other studies.  相似文献   

20.
The head of the P22 bacteriophage is interrupted by a unique dodecameric portal vertex that serves as a conduit for the entrance and exit of the DNA. Here, the in vitro unfolding/refolding processes of the portal protein of P22 were investigated at different temperatures (1, 25, and 37 degrees C) through the use of urea and high hydrostatic pressure (HHP) combined with spectroscopic techniques. We have characterized an intermediate species, IU, which forms at 25 degrees C during unfolding or refolding of the portal protein in 2-4 M urea. IU readily forms amorphous aggregates, rendering the folding process irreversible. On the other hand, at 1 degrees C, a two-state process is observed (DeltaGf = -2.2 kcal/mol). When subjected to HHP at 25 or 37 degrees C, the portal monomer undergoes partial denaturation, also forming an intermediate species, which we call IP. IP also tends to aggregate but, differently from IU, aggregates into a ring-like structure as seen by size-exclusion chromatography and electron microscopy. Again, at 1 degrees C the unfolding induced by HHP proved to be reversible, with DeltaGf = -2.4 kcal/mol and DeltaV = 72 mL/mol. Interestingly, at 25 degrees C, the binding of the hydrophobic probe bis-ANS to the native portal protein destabilizes it and completely blocks its aggregation under HHP. These data are relevant to the process by which the portal protein assembles into dodecamers in vivo, since species such as IP must prevail over IU in order to guarantee the proper ring formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号