首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batch-grown Methanobacterium thermoautotrophicum cells grew nonexponentially in the absence of exogenous Pi until intracellular cyclic-2,3-diphosphoglycerate (cyclic DPG) had fallen below 2 mumol/g (dry weight), the limit of detection. Growth resumed immediately upon transfer to medium containing Pi Cyclic DPG levels were also below detection in Pi-limited chemostat cultures operating at a dilution rate of 0.173 h-1 (4-h doubling time), with reservoir Pi concentrations below 200 microM. At this dilution rate, the Pi concentration in the culture was 4 microM. An H2-limited steady state was achieved with 400 microM Pi in the inflowing medium (67 microM in the culture). The cyclic DPG content of these cells was 72 to 74 mumol/g, about one-third the amount in batch-grown cells. The specific growth rate accelerated immediately to 0.36 h-1 (1.9-h doubling time) under washout conditions at high dilution rate. The cellular content of cyclic DPG declined over a 2-h period, and then increased rapidly as the Pi level in the medium approached 200 microM. Expansion of the cyclic DPG pool coincided with a marked increase in Pi assimilation. These results indicated that M. thermoautotrophicum accumulated cyclic DPG only when Pi and H2 were readily available.  相似文献   

2.
2,3-Diphosphoglycerate (2,3-DPG) has been found to be the product of the enzymatic degradation of cyclic 2,3-diphosphoglycerate (cDPG) in the archaebacterium Methanobacterium thermoautotrophicum delta H. Although 2,3-DPG has not previously been detected as a major soluble component of M. thermoautotrophicum, large pools accumulated at an incubation temperature of 50 degrees C (below the optimum growth temperature of 62 degrees C). Under these conditions, cellular activity was significantly decreased; a return of the culture to the optimum growth temperature restored the 2,3-DPG pool back to original low levels and caused steady-state cDPG levels to increase again. While 13CO2-pulse/12CO2-chase experiments at 50 degrees C showed that the cDPG turned over, the appearance of 2,3-DPG at NMR-visible concentrations required at least 10 h. Production of 2,3-DPG in vivo was prevented by exposure of the cells to O2. The enzyme responsible for this hydrolysis of cDPG was purified by affinity chromatography and appears to be a 33-kDa protein. Activity was detected in the presence of oxygen and was enhanced by a solution of 1 M KCl, 25 mM MgCl2, and dithiothreitol. Both Km and Vmax have been determined at 37 degrees C; kinetics also indicate that in vitro the product, 2,3-DPG, is an inhibitor of cDPG hydrolysis. These findings are discussed in view of a proposed role for cDPG in methanogens.  相似文献   

3.
Methanobacterium thermoautotrophicum was grown in phosphate-limited chemostat cultures at a dilution rate corresponding to a doubling time of 13.2 h. The cyclic-2,3-diphospho-D-glycerate content of these cells was 8 to 10-fold lower than that of cells grown in batch cultures having a doubling time of 11.5 h. This metabolite accounted for 5% of cell dry weight during batch growth on 2 mM phosphate. In the chemostat the steady-state concentration of phosphate was 4 microM, showing that this methanogen is adapted to highly efficient growth at low phosphate concentrations. Since growth rates were similar in both cultures, the growth rate clearly does not depend on intracellular levels of cyclic-2,3-diphosphoglycerate.  相似文献   

4.
The microdetermination of 2,3-diphosphoglycerate   总被引:1,自引:0,他引:1  
A procedure for microestimation of 2,3-diphosphoglycerate, utilizing its role as coenzyme in the phosphoglycerate mutase reaction is described. The coenzymic activity was determined by assaying phosphoglycerate mutase polarimetrically without a coupled enzyme. This method is applicable to samples containing as little as 0.002 μmole of 2,3-diphosphoglycerate/ml. The content in various biological extracts was determined.  相似文献   

5.
6.
The levels of cyclic 2,3-diphosphoglycerate (cDPG) in methanogenic bacteria are governed by the antagonistic activities of cDPG synthetase and cDPG hydrolase. In this paper we focus on the synthetase from Methanobacterium thermoautotrophicum. The cytoplasmic 150 kDa enzyme catalyzed cDPG synthesis from 2,3-diphosphoglycerate (apparent Km=21 mM), Mg2+ (Km=3.1 mM) and ATP (Km=1–2 mM). In batch-fed cultures, the enzyme was constitutively present (6–6.5 nmol per min per mg protein) during the different growth phases. In continuous cultures, activity decreased in response to phosphate limitation. The synthetase reaction proceeded with maximal rate at pH 6 and at 65° C and was specifically dependent on high (>0.3M) K+ concentrations. The reaction conditions remarkably contrasted to those of cDPG degradation catalyzed by the previously described membrane-bound cDPG hydrolase.Abbreviations cDPG Cyclic 2,3-diphosphoglycerate - 2,3-DPG 2,3-Diphosphoglycerate - 2-PG 2-Phosphoglycerate - 3-PG 3-Phosphoglycerate  相似文献   

7.
A unique compound, cyclic 2,3-diphosphoglycerate (cDPG), is the major soluble carbon and phosphorus solute in Methanobacterium thermoautotrophicum delta H under optimal conditions of cell growth. It is a component of an unusual branch in gluconeogenesis in these bacteria. [U-13C]acetate pulse-[12C]acetate chase methodology was used to observe the relationship between cDPG and other metabolites (2-phosphoglycerate and 2,3-diphosphoglycerate [2-PG and 2,3-DPG, respectively]) of this branch. It was demonstrated that cells could grow exponentially under conditions in which 2-PG and 2,3-DPG, rather than cDPG, were the major solutes. While the total concentration of these three phosphorylated molecules was maintained, rapid interconversion of 13C label among them was observed. Label flow from 2-PG to 2,3-DPG to cDPG to polymer is the usual direction in this pathway in exponentially growing cells, while the reverse reactions sometimes predominate in the stationary phase. Evidence of the presence of a polymeric compound in this pathway was provided by 13C nuclear magnetic resonance (one-dimensional and two-dimensional INADEQUATE) studies of solubilized cell debris.  相似文献   

8.
Direct determination of 2,3-diphosphoglycerate   总被引:9,自引:0,他引:9  
  相似文献   

9.
We have compared the efficiency of four methods to remove 2,3-diphosphoglycerate (DPG) from hemoglobin (Hb), comprising dialysis, repeated ultrafiltration, gel filtration, and ion-exchange chromatography. All the methods eventually yielded hemoglobin solutions with a ratio of <0.002 mol of DPG/mol of Hb4 and identical oxygen-binding properties but differed with respect to duration and versatility. Considering these factors, we found the combination of an ion-retardation resin and a mixed-bed resin to be most satisfactory.  相似文献   

10.
The intrinsic pKa values of protons of 2,3-diphosphoglycerate (DPG) which titrate in the physiologically significant range (i.e., pH 6.8-7.8) have been determined by measuring the changes in chemical shifts of the two phosphate resonances of the molecule as a function of pH using 31P-NMR spectroscopy. While conventional acid-base titration techniques resulted in apparent pKa values of 6.39 and 7.39 for these protons, analysis of the 31P-NMR data by statistical thermodynamic methods yielded intrinsic pKa values of 6.99 +/- 0.07 and 7.28 +/- 0.04, for protons associated with the phosphates bound to carbon-3 (C-3) and carbon-2 (C-2), respectively, with an interaction energy of +0.77 kcal/mol. The free energies for the binding of protons to the C-2 and C-3 phosphates and the associated interaction energies determined by 31P-NMR were used to generate a theoretical titration curve which was essentially identical to that determined by conventional acid-base titration. The physiological implications of this work are briefly discussed.  相似文献   

11.
12.
The archaebacterium Methanobacterium thermoautotrophicum was grown at 65 degrees C in H2- and Pi-limited chemostat cultures at dilution rates corresponding to 3- and 4-h doubling times, respectively. Under these conditions the steady state concentration of cyclic 2,3-diphosphoglycerate was 44 mM in the H2-limited cells and 13 mM in the cells grown under Pi limitation. Flux of Pi into the cyclic pyrophosphate pool was estimated by two 32P-labeling procedures: approach to isotopic equilibrium and replacement of prelabeled cyclic diphosphoglycerate with unlabeled compound. The results unequivocally demonstrate turnover of the phosphoryl groups; either both phosphoryl groups of the cyclic pyrophosphate leave together or the second leaves at a faster rate. The half-life of the rate-determining step for loss of the phosphoryl groups was approximately equal to the culture doubling time. The Pi flowing into the cyclic diphosphoglycerate pool accounted for 19% of the total Pi flux into Pi-limited cells and 43% of the total for H2-limited cells. The high phosphate flux through the large cyclic diphosphoglycerate pool suggests that this molecule plays an important role in the phosphorus metabolism of this methanogen.  相似文献   

13.
14.
Enzymes controlling 2,3-diphosphoglycerate in human erythrocytes   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
17.
Summary Gradual osmotic hemolysis of human erythrocytes reduces the cell content of whole protein, hemoglobin, 2,3-diphosphoglycerate and triosephosphate isomerase extensively, but not that of membrane protein and 2,3-diphosphoglycerate phosphatase. After the refilling of the ghosts with 2,3-diphosphoglycerate and reconstitution of the membrane, the 2,3-diphosphoglycerate phosphatase activity equals that of intact red cells. The membrane-bound 2,3-diphosphoglycerate phosphatase can be activated by sodium hyposulfite. The enzyme system of ghosts seems to differ from that of intact red cells with regard to the optima of pH and temperature. It remains to be elucidated if the membrane binding of the 2,3-diphosphoglycerate phosphatase is related to the transfer of inorganic phosphate across the red cell membrane.  相似文献   

18.
19.
BackgroundAerobic organisms have to overcame the dangerous species derived from the unquestionable favorable effects due to the utilization of oxygen in the cellular respiration. 2,3-Diphosphoglycerate (DPG) could be one of the molecules able to perform different role inside the cells and (from the data obtained from our experimental work) may help cellular components, in particular hemoglobin, to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS).MethodsTherefore, we have investigated the kinetic and antioxidant properties of this molecule against the main biological reactive species and the protective role of this molecules on hemoglobin treated with strong oxidant.ResultsDPG, at the physiological concentration is able to scavenge hydroxyl radical, peroxyl radical, cation radicals and to chelate iron in the reduced state. Moreover it is able to avoid oxidation of iron inside the hemoglobin following treatment with nitrite and tert-butyl hydroperoxide (t-BOOH). On the other side, it is not able to protect membrane components from oxidative burning. This different behavior towards radical species is probably linked to the polarity of the molecule and also the high levels of charged groups present on the surface of DPG, that avoid the possibility to act in an environment almost completely hydrophobic, as inside the membrane, where reactive species produce the main damages during the reactions of peroxidation.ConclusionsThis is the first paper dealing with the potential role of DPG not only as a modulator of oxygen affinity in hemoglobin, but also as a scavenger of radicals.  相似文献   

20.
Myocytes, hepatocytes and adipocytes were prepared from heart, liver and epididymal fat pad of the rat. No detectable level of 2,3-diphosphoglycerate was found. Evidence is also present which indicates the absence from these cells of 2,3-diphosphoglycerate mutase and 2,3-diphosphoglycerate phosphatase. Previous findings by others of the presence of 2,3-diphosphoglycerate and 2,3-diphosphoglycerate mutase probably resulted from erythrocytes sequestered in the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号