首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of insulin-like growth factor (IGF) receptors at the cell surface and the changes in IGF responsiveness during differentiation were studied in the L6 skeletal muscle cell line. Throughout the entire developmental sequence, distinct receptors for IGF I and IGF II that differed in structure and peptide specificity could be demonstrated. During differentiation, both 125I-IGF I and 125I-IGF II binding to the L6 cells decreased as a result of a 3-4-fold reduction in receptor number, whereas 125I-insulin binding increased. Under nonreducing conditions, disuccinimidyl suberate cross-linked 125I-IGF I and 125I-IGF II to two receptor complexes with apparent Mr greater than 300,000 (type I) and 220,000 (type II). Under reducing conditions, the apparent molecular weight of the type I receptor changed to Mr 130,000 (distinct from the 120,000 insulin receptor) and the type II receptor changed to 250,000. IGF I and IGF II both stimulated 2-deoxy-D-glucose and alpha-aminoisobutyric acid uptake in the L6 cells with a potency close to that of insulin, apparently through interaction with their own receptors. The stimulatory effects of IGF II correlated with its affinity for the type II but not the type I IGF receptor, as measured by inhibition of affinity labeling, whereas the effects of IGF I correlated with its ability to inhibit labeling of the type I receptor. In spite of the decrease in type I and type II receptor number, stimulation of 2-deoxy-glucose and alpha-aminoisobutyric acid uptake by the two IGFs increased during differentiation.  相似文献   

2.
The receptors for insulin and insulin-like growth factor-I (IGF-I) are closely related in primary sequence and overall structure. We have examined the immunological relationships between these receptors by testing the reactivity of anti-(insulin receptor) monoclonal antibodies with IGF-I receptors in various tissues and cell lines. Antibodies for six distinct epitopes reacted with a subfraction of IGF-I receptors, as shown by inhibition of 125I-IGF-I binding, precipitation of 125I-IGF-I-receptor complexes or immunodepletion of receptor from tissue extracts before binding assays. Both immunoreactive and non-immunoreactive subfractions displayed the expected properties of 'classical' IGF-I receptors, in terms of relative affinities for IGF-I and insulin. The proportion of total IGF-I receptors which was immunoreactive varied in different cell types, being approx. 40% in Hep G2 cells, 35-40% in placental membranes and 75-85% in IM-9 cells. The immunoreactive fraction was somewhat higher in solubilized receptors than in the corresponding intact cells or membranes. A previously described monoclonal antibody, alpha-IR-3, specific for IGF-I receptors, inhibited IGF-I binding by more than 80% in all preparations. When solubilized placental receptors were pretreated with dithiothreitol (DTT) under conditions reported to reduce intramolecular (class I) disulphide bonds, the immunoreactivity of IGF-I receptors was abolished although total IGF-I binding was little affected. Under the same conditions insulin receptors remained fully immunoreactive. When solubilized receptor preparations were fractionated by gel filtration, both IGF-I and insulin receptors ran as symmetrical peaks of identical mobility. After DTT treatment, the IGF-I receptor was partially converted to a lower molecular mass form which was not immunoreactive. The insulin receptor peak showed a much less pronounced skewing and remained fully immunoreactive in all fractions. It is concluded that the anti- (insulin receptor) antibodies do not react directly with IGF-I receptor polypeptide, and that the apparent immunoreactivity of a subfraction of IGF-I receptors reflects their physical association with insulin receptors, both in cell extracts and in intact cells. The most likely basis for this association appears to be a 'hybrid' receptor containing one half (alpha beta) of insulin receptor polypeptide and the other (alpha' beta') of IGF-I receptor polypeptide within the native (alpha beta beta' alpha') heterotetrameric structure.  相似文献   

3.
Insulin receptors of rat skeletal muscle were purified by first extracting a plasma membrane-enriched pellet obtained from a muscle homogenate with Triton X-100, followed by WGA-Sepharose and insulin-Sepharose affinity chromatography. Routinely, 4-5 micrograms of purified receptor were obtained from 15 g of tissue. The purified receptors are composed of two major polypeptides with molecular weights of 130,000 and 95,000, respectively. The binding of [125I]insulin by the purified receptors was analyzed by a Scatchard plot. There are at least two binding components. The high-affinity component, with an apparent association constant (Ka) of 2.0 X 10(9) M-1, comprises 10% of the total insulin binding sites; while the low-affinity component, with a Ka value of 1.4 X 10(8) M-1, represents 90% of the binding sites. Assuming the insulin receptor to have a molecular weight of 300,000, the receptor binds 1.7 mol of insulin per mol at saturation. Insulin is capable of stimulating the autophosphorylation of the beta-subunit of the muscle insulin receptor (Mr 95,000) by 5-10-fold. The stoichiometry of this phosphorylation reaction was determined as 0.8 phosphate per insulin binding site after a 10 min incubation with 100 nM insulin. In a previous report, I showed that the insulin stimulation of glucose transport in diaphragms from neonatal rats was small, even although the diaphragms had normal levels of insulin receptors and glucose transporters (Wang, C. (1985). Proc. Natl. Acad. Sci. USA 82, 3621-3625). To determine whether or not receptor autophosphorylation might be related to this insensitivity to insulin, the level of receptor phosphorylation was quantitated in diaphragms from rats at different stages of development. Autophosphorylation remains unchanged from birth to 21 days of age, suggesting that the lower insulin-stimulated glucose uptake by diaphragms at early stages of postnatal development as compared to that by diaphragms of older rats, is not due to a difference in receptor kinase.  相似文献   

4.
Insulin-like growth factor (IGF)-I receptor purified from human placental membranes as previously described (LeBon, T. R., Jacobs, S., Cuatrecasas, P., Kathuria, S., and Fujita-Yamaguchi, Y. (1986) J. Biol. Chem. 261, 7685-7689) was characterized. The IGF-I receptor was similar to the insulin receptor with respect to subunit structure (beta-alpha-alpha-beta), apparent sizes of deglycosylated alpha (Mr = approximately 88,000) and beta (Mr = approximately 67,000) subunits, and amino acid composition of the subunits. Monoclonal antibody specific to each receptor recognized its own receptor whereas polyclonal anti-human insulin receptor antibody cross-reacted with the IGF-I receptor, indicating that the receptors share one or more antigenic sites. Further characterization of the purified IGF-I receptor tyrosine-protein kinase activity indicated that by analogy with the insulin receptor the monomeric alpha beta form of the IGF-I receptor appears to have higher kinase activity than the intact receptor in the alpha 2 beta 2 form. The most significant difference between the two receptors was found in the N-terminal amino acid sequences of their alpha subunits, which apparently show 60% identity. The IGF-I receptor alpha subunit lacks residues corresponding to the N-terminal 4 amino acids of the insulin receptor alpha subunit. These results provide the first direct proof that the IGF-I receptor is a molecule distinct from the insulin receptor despite numerous similarities.  相似文献   

5.
6.
The interaction between insulin and insulin-like growth factor I (IGF I) receptors was examined by determining the ability of each receptor type to phosphorylate tyrosine residues on the other receptor in intact L6 skeletal muscle cells. This was made possible through a sequential immunoprecipitation method with two different antibodies that effectively separated the phosphorylated insulin and IGF I receptors. After incubation of intact L6 cells with various concentrations of insulin or IGF I in the presence of [32P]orthophosphate, insulin receptors were precipitated with one of two human polyclonal anti-insulin receptor antibodies (B2 or B9). Phosphorylated IGF I receptors remained in solution and were subsequently precipitated by anti-phosphotyrosine antibodies. The identities of the insulin and IGF I receptor beta-subunits in the two immunoprecipitates were confirmed by binding affinity, by phosphopeptide mapping after trypsin digestion, and by the distinct patterns of expression of the two receptors during differentiation. Stimulated phosphorylation of the beta-subunit of the insulin receptor correlated with occupancy of the beta-subunit of the insulin receptor by either insulin or IGF I as determined by affinity cross-linking. Similarly, stimulation of phosphorylation of the beta-subunit of the IGF I receptor by IGF I correlated with IGF I receptor occupancy. In contrast, insulin stimulated phosphorylation of the beta-subunit of the IGF I receptor at hormone concentrations that were associated with significant occupancy of the insulin receptor but negligible IGF I receptor occupancy. These findings indicate that the IGF I receptor can be a substrate for the hormone-activated insulin receptor tyrosine kinase activity in intact L6 skeletal muscle cells.  相似文献   

7.
We have prepared by semisynthetic methods a two-chain insulin/insulin-like growth factor I hybrid that contains a synthetic peptide related to residues 22-41 of insulin-like growth factor I linked via peptide bond to ArgB22 of des-octapeptide-(B23-B30)-insulin and have applied the analog to the analysis of ligand interactions with the type I insulin-like growth factor and insulin receptors of placental plasma membranes. Relative potencies for the inhibition of 125I-labeled insulin-like growth factor I binding to type I insulin-like growth factor receptors were 1.0:0.20:0.003 for insulin-like growth factor I, the hybrid analog, and insulin, respectively. Corresponding relative potencies for the inhibition of 125I-labeled insulin binding to insulin receptors were 0.007:0.28:1 for the three respective peptides. Additional studies identified that the hybrid analog interacts with only one of two populations of insulin-like growth factor I binding sites on placental plasma membranes and permitted the analysis of insulin-like growth factor I interactions with the separate populations of binding sites. We conclude that (a) des-octapeptide-(B23-B30)-insulin can serve well as a scaffold to support structural elements of insulin-like growth factor I and insulin necessary for high affinity binding to their receptors, (b) major aspects of structure relevant to the conferral of receptor binding affinity lie in the COOH-terminal region of the insulin B chain and in the COOH-terminal region of the insulin-like growth factor I B domain and in its C domain, and (c) the evolution of ligand-receptor specificity in these systems has relied as much on restricting interactions (through the selective introduction of negative structural elements) as it has on enhancing interactions (through the introduction of affinity conferring elements of structure).  相似文献   

8.
9.
IGF-I and insulin receptors possess tyrosine-kinase enzymatic activity considered to be essential for signal transduction and thereby mediating the putative effects of these hormones on fetal growth and development. We investigated the ontogeny of IGF-I and insulin receptor tyrosine-kinase activity in at least 3 separate membrane preparations from liver of rats at 21 day of embryonic life (21ED), 1 and 5 day of postnatal life (1PD and 5PD respectively) and adult. Receptors purified by wheat germ agglutinin chromatography (WGA) were exposed to graded concentrations of IGF-I or insulin, and tyrosine-kinase activity was measured by quantifying incorporation of 32P into the exogenous substrate poly[Glu,Tyr; 4:1]. IGF-I stimulated tyrosine-kinase solely at 1 PD as documented by a maximal increase of 346 +/- 167% over basal kinase activity with 6.6 nmol/L IGF-I. While the lack of response in adult animals could be explained by a striking decrease in receptors at that age, 125I-IGF-I binding and affinity labelling of the WGA preparations indicated substantial IGF-I receptors were present in the liver at each of the perinatal ages. Furthermore, this dissociation between IGF-I binding and the tyrosine-kinase activity of these IGF-I receptors could not be attributed to the presence/absence of IGF-I binding proteins as judged by affinity labelling. In contrast, insulin-stimulated tyrosine-kinase activity was observed at all ages tested although it appeared greatest at 1PD. We conclude that (i) expression of IGF-I tyrosine-kinase activity is linked to developmental events and differs from that found for the insulin receptor tyrosine-kinase activity, (ii) during the perinatal period there is an apparent dissociation between ligand binding by the IGF-I receptor and receptor tyrosine-kinase activity. These observations suggest modulation of IGF-I receptor tyrosine-kinase activity may be an important regulator of IGF-I action during the perinatal period.  相似文献   

10.
11.
The phosphorylation of receptors for insulin and insulin-like growth factor I was studied by phosphoamino acid analysis and tryptic phosphopeptide maps in an attempt to determine if protein kinase C is involved in their phosphorylation in response to insulin and insulin-like growth factor I, respectively. Two cell lines were utilized, Hep G2 and IM-9 cells. sn-1,2-Dioctanoylglycerol and 12-O-tetradecanoylphorbol 13-acetate (TPA), agents known to activate protein kinase C, stimulated the phosphorylation of the beta subunits of both receptors, as did their hormones. In unstimulated cells, phosphorylation of the insulin receptor occurred on seryl and to a lesser extent on threonyl residues. TPA stimulated seryl and threonyl phosphorylation that resulted in the appearance of four major phosphoserine-containing phosphopeptides which were not detected in the basal state and an increase in phosphorylation of a phosphothreonine-containing peptide which was present in the basal state. Insulin treatment resulted in the appearance of three major phosphotyrosine-containing tryptic peptides. In IM-9 cells, insulin also increased the phosphoserine and possibly the phosphothreonine content of the beta subunit. In both cells, the major phosphoserine-containing peptides that were stimulated by TPA were not detected following treatment with insulin. Very similar results, including similar peptide maps, were obtained for the insulin-like growth factor I receptor from cells treated with TPA and insulin-like growth factor I. Although not entirely conclusive, these results suggest that the insulin- and insulin-like growth factor I-stimulated phosphorylation of their receptors does not result from activation of protein kinase C.  相似文献   

12.
Skeletal muscle satellite cells were cultured from mature rats and were treated in vitro with various combinations of transforming growth factor (TGF)-beta, fibroblast growth factor (FGF), and insulin-like growth factor I (IGF-I). In serum-free defined medium the following observations were made: TGF-beta depressed proliferation and inhibited differentiation; FGF stimulated proliferation and depressed differentiation; IGF-I stimulated proliferation to a small degree but demonstrated a more pronounced stimulation of differentiation. In evaluating combinations of these three factors, the differentiation inhibiting effect of TGF-beta could not be counteracted by any combination of IGF-I or FGF. The proliferation-depressing activity of TGF-beta, however, could not inhibit the mitogenic activity of FGF. Maximum stimulation of proliferation was observed in the presence of both FGF and IGF-I. The highest percentage fusion was also observed under these conditions, but differentiation with minimal proliferation resulted from treatment with IGF-I, alone. By altering the concentrations of TGF-beta, FGF, and IGF-I, satellite cells can be induced to proliferate, differentiate, or to remain quiescent.  相似文献   

13.
  1. Download : Download high-res image (161KB)
  2. Download : Download full-size image
  相似文献   

14.
When insulin receptors of rat skeletal muscle sarcolemmal vesicles were solubilized with Triton X-100, the specific binding of 125I-labeled insulin increased by more than 10-fold over that seen in the intact vesicles. Partial purification of the skeletal muscle insulin receptors on wheat germ agglutinin affinity columns increased the total insulin binding activity by 7-fold and reduced the Kd for insulin binding from 1.92 to 0.20 nM, suggesting that an inhibitor of insulin binding was removed by this purification step. This was confirmed when the unbound fractions of the affinity column were dialyzed and reconstituted with the insulin receptors. The inhibitory activity in the sarcolemmal extract could not be accounted for by the presence of Triton X-100. The skeletal muscle inhibitor was more potent in inhibiting insulin binding to skeletal muscle insulin receptors than to liver or adipose receptors. The inhibitor was very effective in inhibiting insulin binding to wheat germ agglutinin-purified IM-9 receptors, but had negligible effects on insulin binding to intact IM-9 cells. The properties of the alpha and beta subunits of the skeletal muscle insulin receptors appear to be the same as those of insulin receptors of other tissues: cross-linking of 125I-labeled insulin to the receptor revealed a band of 130,000 daltons, and insulin stimulated the phosphorylation of bands of 90,000 and 95,000 daltons in the receptor preparation. The skeletal muscle insulin binding inhibitor elutes from molecular sieves in a major 160,000-dalton peak and minor 75,000-dalton peak. The binding inhibitor is not inactivated by heat, by mercaptoethanol, or by trypsin, pepsin, or proteinase K. Collectively, these data suggest that the inhibitor may be a small molecule that aggregates with itself, with larger proteins, or with detergent micelles.  相似文献   

15.
A membrane preparation, the R3, obtained by differential centrifugation of rat placental homogenates is enriched in receptors that bind insulin-like growth factor II (IGF-II) preferentially and with avidity (Daughaday, W.H., Mariz, I.K., and Trivedi, B. (1981) J. Clin. Endocrinol. Metab. 53, 282-288). When this preparation was incubated with 2% (w/v) octyl-beta-D-glucopyranoside for 60 min at 0-4 degrees C, 60% of the membrane protein was solubilized without loss of binding activity. The 125I-IGF-II binding properties of the detergent-solubilized receptors were found to be similar to those of the membrane-associated receptor. The rate constants for association, ka, and dissociation, kd, and equilibrium dissociation constant, KD, were 8.5 X 10(8) M-1 min-1, 7.5 X 10(-3) min-1, and 1.3 nM for the detergent-solubilized receptors and 5.3 X 10(8) M-1 min-1, 4.2 X 10(-3) min-1, and 0.6 nM for the membrane receptors. Gel chromatography on Sephacryl S-300 concentrated the solubilized receptors into a major peak of binding activity with a Stokes radius of 7.2 nm; a second peak of less specific binding had a Stokes radius of 4.3 nm. The receptors in the major peak bound 125I-IGF-II with a KD of 0.6 nM; the total binding capacity, Ro, was 21.6 pmol mg of protein-1 compared to 1.6 pmol mg of protein-1 for the membrane-associated receptor. Centrifugation of the receptors on 5-20% (w/v) gradients of sucrose in H2O or D2O disclosed a heterogeneous pattern of receptor distribution. When they were labeled with 125I-IGF-II prior to centrifugation, a major form of the receptor with a sedimentation constant, S20,w, of 9.9 X 10(13) s and other, possibly smaller, forms of the receptor were observed. However, only the 9.9 s20,w form of the receptor was observed if it was labeled with 125I-IGF-II subsequent to centrifugation. Based on these hydrodynamic measurements and a partial specific volume of 0.72 cm3/g, the IGF-II receptor was calculated to have a Mr of 290,000 and frictional ratio, f/fo, of 1.6. This value for the Mr is similar to the mass of 220,000 or 250,000 Dal determined by cross-linking 125I-IGF-II to the membrane- or detergent-solubilized receptors with disuccimidyl suberate and separating the complex by electrophoresis in sodium dodecyl sulfate-containing polyacrylamide gels in the absence or presence of dithiothreitol, respectively.  相似文献   

16.
17.
Insulin-like growth factor (IGF) I (greater than or equal to 10(-10)M, insulin-like growth factor II (greater than or equal to 10(-9) M), insulin (greater than or equal to 10(-9) M, and epidermal growth factor (EGF, greater than or equal to 10(-11) M) caused rapid membrane ruffling in KB cells. The morphological change was observed within 1 min after the addition of these growth factors and was accompanied by microfilament reorganization, but not by microtubule reorganization. IGF-I, IGF-II, and insulin induced morphologically very similar or identical membrane ruffles with the order of potency IGF-I greater than IGF-II greater than insulin, whereas EGF-induced membrane ruffles were morphologically different. KB cells possessed EGF receptors, type I IGF receptors, and insulin receptors, but few or no type II IGF receptors. Monoclonal antibody against type I IGF receptors, which completely inhibited the binding of 125I-IGF-I to the cells but did not inhibit the binding of 125I-insulin, caused marked inhibition of IGF-I (10(-8) M)-stimulated membrane ruffling. IGF-II (10(-8) M)-stimulated membrane ruffling was partially inhibited in the presence of this antibody, but insulin (10(-7) M)-stimulated membrane ruffling was only slightly inhibited. In contrast, monoclonal antibody against insulin receptors blocked insulin (10(-7) M) stimulation, but not IGF-I (10(-8) M) stimulation, of membrane ruffling. Thus, this study provides evidence that IGF-I and insulin act mostly through their own (homologous) receptors and that IGF-II acts by cross-reacting with both type I IGF and insulin (heterologous) receptors in causing rapid alterations in cytoskeletal structure.  相似文献   

18.
Hyperandrogenism observed in a variety of hyperinsulinemic states is thought to be due to an effect of insulin mediated through the type I insulin-like growth factor (IGF) receptors. These receptors, however, have not yet been demonstrated in normal human ovarian cells capable of androgen production. We now report the presence of type I IGF receptors in membrane preparations of human ovarian stroma. The ovarian stromal tissue was obtained from women undergoing indicated oophorectomy. Stromal plasma membranes were prepared. Specific 125I-IGF-I binding was 6.6 +/- 0.2%/100 micrograms protein. The affinity constant estimated by Scatchard analysis was 4.6 X 10(-9) M. 50% inhibition of 125I-IGF-1 binding was observed at 5 ng/ml of IGF-1. Specificity of the 125I-IGF-I-binding sites was confirmed by analogue specificity studies and in experiments utilizing monoclonal antibody to the IGF-I receptor, alpha-IR-3. IGF-II and insulin competed with 125I-IGF-I for the binding sites, but with an affinity significantly lower than that of IGF-I: 50% inhibition was observed at approximately 60 ng/ml of IGF-II or insulin. alpha-IR-3, a monoclonal antibody with high specificity for the type I IGF receptor, effectively inhibited 125I-IGF-I binding in a dose-dependent manner, confirming that the 125I-IGF-I binding was indeed to the type I IGF receptor. We conclude that type I IGF receptors are present in human ovarian stroma. These receptors may mediate effects of insulin on the ovary in hyperinsulinemic insulin-resistant states.  相似文献   

19.
Using iodinated insulin-like growth factors (IGFs) we have detected receptors for IGF-I at the cell surface of the clonally derived human embryonal carcinoma cell line Tera 2 clone 13. Affinity crosslinking of IGFs to Tera 2 clone 13-derived membrane preparations revealed the presence of proteins with features of both type-I and type-II IGF receptors. Treatment of Tera 2 clone 13 cells with retinoic acid to induce differentiation results in an increased number of cell surface receptors, apparently without altering the ratio of type-I and type-II receptors. In addition, Tera 2 clone 13 IGF-I receptors catalyze (auto)phosphorylation at tyrosine upon IGF-I and insulin binding. These findings suggest that type-I IGF receptors might be involved in mediating the effects of IGFs and insulin upon the proliferation of Tera 2 clone 13 cells.  相似文献   

20.
The ability of plant lectins to modify the interactions of the insulin receptor (IR) and insulin-like growth factor (IGF) receptors (IGFRs) with their ligands was investigated. The lectins profoundly affected the competition-binding curves for (125)I-labelled IGF-I and insulin, causing an increase in the affinity of placental IGF1R and IR towards their ligands. This increment was of such a magnitude that it could affect the receptors' specificity towards these ligands. The lower the ligand concentration, the greater was the lectin-induced affinity shift, which suggests potential physiological significance of the effect. The affinity modulation occurred in a lectin-specific and dose-dependent manner. In contrast to IGF1R and IR, the binding of (125)I-labelled IGF-II to its receptors resisted lectin modulation. Here we provide evidence of the possibility of external modulation of the affinity of placental IGF1R and IR via interactions of the receptors' carbohydrate moieties with lectins. The existence of modulators that would selectively inhibit or enhance the binding of IGFs or insulin to their corresponding receptors may have important implications for placental cell responses to these molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号