共查询到20条相似文献,搜索用时 15 毫秒
1.
Antonio Caretta Robert T. Sorbi Peter J. Stein Roberto Tirindelli 《The Journal of membrane biology》1991,122(3):203-213
Summary The effects of diltiazem, a drug which inhibits the calcium channels in cardiac muscle as well as the light-sensitive channels in photoreceptor cells, were studied on ionic fluxes in both membrane and intact cell preparations. Diltiazem nonselectively increased the ionic permeability to both anions and cations in photoreceptor rod outer segment and synaptic membrane vesicles as well as in intact erythrocytes. Under our conditions, the estimated threshold for the diltiazem effect varied between 12.5 and 200 m. In each case the concentration dependence exhibited the sigmoidal shape characteristic of positive cooperativity. The effect of diltiazem on ionic fluxes from phospholipid vesicles were strongly influenced by phospholipid composition and membrane charge. By contrast, diltiazem inhibited the efflux of86Rb from photoreceptor cells of intact aspartate-isolated retina, an effect opposite to that of diltiazem on ionic permeabilities in photoreceptor membrane vesicle preparations.These data raise serious doubts on the specificity of diltiazem as a calcium channel blocker or as a cGMP channel blocker when used at concentrations higher than 10 m. 相似文献
2.
The permeability-enhancing effects of the two surfactants, 1-palmitoyl-2-lyso-sn-gycero-3-phosphocholine (lysoPPC) and palmitic acid (PA), on lipid membranes that at physiological temperatures are in the gel, fluid, and liquid-ordered phases were determined using the concentration-dependent self-quenching properties of the hydrophilic marker, calcein. Adding lysoPPC to lipid membranes in the gel-phase induced a time-dependent calcein release curve that can be described by the sum of two exponentials, whereas PA induces a considerably more complex release curve. However, when lysoPPC and PA were added simultaneously in equimolar concentrations, a dramatic synergistic permeability-enhancing effect was observed. In contrast, when both lysoPPC and PA are added to liposomal membranes that are in the fluid or liquid-ordered phases, no effect on the transmembrane permeation of calcein was observed. 相似文献
3.
Influences of the salt concentration on the fatty acid composition of Ectothiorhodospira species and other phototrophic purple bacteria have been analysed. Major fatty acids in bacteria of the genera Rhodobacter, Rhodopseudomonas, Chromatium, and Ectothiorhodospira were straight chain saturated and monounsaturated C-16 and C-18 fatty acids. Salt-dependent responses of all investigated bacteria revealed relations to their salt optima. Minimum values of C-16 and saturated fatty acids and maximum values of C-18 and unsaturated fatty acids were found at or close to the salt optima. Responses of Ectothiorhodospira mobilis upon changes in salinity were nearly identical, whether cells were grown in batch culture or in continuous culture with identical dilution rates at all salt concentrations. With increasing temperature, the fatty acid composition of Ectothiorhodospira mobilis and Ectothiorhodospira halophila strains showed decreasing portions of C-18 and of unsaturated fatty acids, while the contents of C-16 and saturated fatty acids increased. The results are discussed with respect to bilayer stabilisation and membrane fluidity.Abbreviations PC
phosphatidylcholine
- PG
phosphatidylglycerol
- CL
cardiolipin
- PE
phosphatidylethanolamine 相似文献
4.
Methane formation from H2 and CO2 in methanogenic bacteria is a Na+-dependent process. In this communication the effects of Na+ ionophores, of uncouplers, and of Na+/H+ antiporter inhibitors on methane formation from H2 and CO2 were studied with Methanobacterium thermoautotrophicum.
- Na+ ionophores (the Na+/H+ antiporters monensin and lasalocid and the Na+ uniporter gramicidin) stimulated methanogenesis at lwo external Na+ concentrations when the K+ concentration was high. The ionophores had no effect at high external Na+ concentrations and were inhibitory at low external K+ concentrations.
- Uncouplers (protonophores and valinomycin plus K+) inhibited methanogenesis at low external Na+ concentration at both low and high external K+ concentrations. Inhibition by uncouplers was relieved by the addition of either Na+ or Na+ ionophores.
- Na+/H+ antiporter inhibitors (harmaline, amiloride, and NH 4 + ) inhibited methanogenesis at low external Na+ concentration. Inhibition was relieved by the addition of either Na+ or of the Na+ ionophores.
5.
Marhuenda-Egea FC Piera-Velázquez S Cadenas C Cadenas E 《Archaea (Vancouver, B.C.)》2002,1(2):105-111
Alkaline p-nitrophenylphosphate phosphatase (pNPPase) from the halophilic archaeobacterium Halobacterium salinarum (previously halobium) was solubilized at low salt concentration in reverse micelles of hexadecyltrimethyl-ammoniumbromide in cyclohexane with 1-butanol as co-surfactant. The enzyme maintained its catalytic properties under these conditions. The thermodynamic "solvation-stabilization hypothesis" has been used to explain the bell-shaped dependence of pNPPase activity on the water content of reverse micelles, in terms of protein-solvent interactions. According to this model, the stability of the folded protein depends on a network of hydrated ions associated with acidic residues at the protein surface. At low salt concentration and low water content (the ratio of water concentration to surfactant concentration; w0), the network of hydrated ions within the reverse micelles may involve the cationic heads of the surfactant. The bell-shaped profile of the relationship between enzyme activity and w0 varied depending on the concentrations of NaCl and Mn2+. 相似文献
6.
Kalyan C. Kondapalli Laura M. Kallay Melanie Muszelik Rajini Rao 《The Journal of biological chemistry》2012,287(43):36239-36250
Human NHA2, a newly discovered cation proton antiporter, is implicated in essential hypertension by gene linkage analysis. We show that NHA2 mediates phloretin-sensitive Na+-Li+ counter-transport (SLC) activity, an established marker for hypertension. In contrast to bacteria and fungi where H+ gradients drive uptake of metabolites, secondary transport at the plasma membrane of mammalian cells is coupled to the Na+ electrochemical gradient. Our findings challenge this paradigm by showing coupling of NHA2 and V-type H+-ATPase at the plasma membrane of kidney-derived MDCK cells, resulting in a virtual Na+ efflux pump. Thus, NHA2 functionally recapitulates an ancient shared evolutionary origin with bacterial NhaA. Although plasma membrane H+ gradients have been observed in some specialized mammalian cells, the ubiquitous tissue distribution of NHA2 suggests that H+-coupled transport is more widespread. The coexistence of Na+ and H+-driven chemiosmotic circuits has implications for salt and pH regulation in the kidney. 相似文献
7.
Cells of Vibrio costicola at pH 8.5 generate both membrane potential (inside negative) and delta pH (inside acidic) in the presence of a proton conductor, carbonyl cyanide m-chlorophenylhydrazone (CCCP). The generation of CCCP-resistant membrane potential was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide that is known to inhibit the Na+-motive NADH oxidase of Vibrio alginolyticus. NADH oxidase, but not lactate oxidase, of inverted membrane vesicles prepared from V. costicola required Na+ for a maximum activity and was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. By the oxidation of NADH, inverted membrane vesicles generated concentration gradients of Na+ across the membrane, whose magnitude was always larger than that of delta pH by about 50 mV. In contrast, magnitudes of delta pH and Na+ concentration gradients generated by the oxidation of lactate were similar. Na+ translocation in the presence of lactate was inhibited by CCCP but little affected by valinomycin. On the other hand, Na+ translocation in the presence of NADH was resistant to CCCP and stimulated by valinomycin. Amiloride, an inhibitor for a eucaryotic Na+/H+ antiport system, inhibited the lactate-dependent Na+ translocation but had little effect on the NADH-dependent Na+ translocation. These results indicate that a primary event of lactate oxidation is the translocation of H+, which then causes the generation of Na+ concentration gradients via the secondary Na+/H+ antiport system. We conclude that the NADH oxidase of V. costicola translocates Na+ as an immediate result of respiration, leading to the generation of Na+ electrochemical potential. 相似文献
8.
Selected classes of minimised hammerhead ribozyme have very high cleavage rates at low Mg2+ concentration.
下载免费PDF全文

In vitro selection was used to enrich for highly efficient RNA phosphodiesterases within a size-constrained (18 nt) ribonucleotide domain. The starting population (g0) was directed in trans against an RNA oligonucleotide substrate immobilised to an avidin-magnetic phase. Four rounds of selection were conducted using 20 mM Mg2+to fractionate the population on the basis of divalent metal ion-dependent phosphodiesterase activity. The resulting generation 4 (g4) RNA was then directed through a further two rounds of selection using low concentrations of Mg2+. Generation 6 (g6) was composed of sets of active, trans cleaving minimised ribozymes, containing recognised hammerhead motifs in the conserved nucleotides, but with highly variable linker domains (loop II-L.1-L.4). Cleavage rate constants in the g6 population ranged from 0.004 to 1.3 min-1at 1 mM Mg2+(pH 8.0, 37 degrees C). Selection was further used to define conserved positions between G(10.1) and C(11.1) required for high cleavage activity at low Mg2+concentration. At 10 mM MgCl2the kinetic phenotype of these molecules was comparable to a hammerhead ribozyme with 4 bp in helix II. At low Mg2+concentration, the disparity in cleavage rate constants increases in favour of the minimised ribozymes. Favourable kinetic traits appeared to be a general property for specific selected linker sequences, as the high rates of catalysis were transferable to a different substrate system. 相似文献
9.
The serine/threonine kinase B-Raf is the second most frequently occurring human oncogene after Ras. Mutations of B-Raf occur with the highest incidences in melanoma, and the most common mutant, V600E, renders B-Raf constitutively active. The sodium proton exchanger isoform 1 (NHE1) is a ubiquitously expressed plasma membrane protein responsible for regulating intracellular pH, cell volume, cell migration, and proliferation. A screen of protein kinases that bind to NHE1 revealed that B-Raf bound to the cytosolic regulatory tail of NHE1. Immunoprecipitation of NHE1 from HeLa and HEK cells confirmed the association of B-Raf with NHE1 in vivo. The expressed and purified C-terminal 182 amino acids of the NHE1 protein were also shown to associate with B-Raf protein in vitro. Because treatment with the kinase inhibitor sorafenib decreased NHE1 activity in HeLa and HEK cells, we examined the role of B-Raf in regulating NHE1 in malignant melanoma cells. Melanoma cells with the B-Raf(V600E) mutation demonstrated increased resting intracellular pH that was dependent on elevated NHE1 activity. NHE1 activity after an acute acid load was also elevated in these cell lines. Moreover, inhibition of B-Raf activity by either sorafenib, PLX4720, or siRNA reduction of B-Raf levels abolished ERK phosphorylation and decreased NHE1 activity. These results demonstrate that B-Raf associates with and stimulates NHE1 activity and that B-Raf(V600E) also increases NHE1 activity that raises intracellular pH. 相似文献
10.
Kelly M. Hare Shirley Pledger Michael B. Thompson John H. Miller Charles H. Daugherty 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2010,180(8):1173-1181
Ectotherms from low-temperature environments have higher metabolic rates at low temperatures than those from warm-temperature environments. We predicted that nocturnal lizards, which are active at much lower environmental temperatures than diurnal lizards, would also have higher metabolic rates at low temperatures, and by association a lower thermal sensitivity (Q 10) than diurnal and crepuscular lizards. We measured the rate of oxygen consumption ( [(V)dot]textO 2 dot{V}{text{O}}_{ 2} ) of eight cool-temperate species of lizard (four nocturnal, three diurnal, and one crepuscular) at 13 and 26°C and analyzed log transformations of these data using log mass as a covariate. As expected, [(V)dot]textO 2 dot{V}{text{O}}_{ 2} was positively correlated with temperature in all eight species, with [(V)dot]textO 2 dot{V}{text{O}}_{ 2} being two to four times higher at 26°C than at 13°C. As predicted, at 13°C (but not 26°C) the [(V)dot]textO 2 dot{V}{text{O}}_{ 2} was significantly higher in nocturnal than diurnal lizards. Species-specific differences and mass scaling factors explain the patterns of thermal sensitivity seen among these eight lizard species. Thermal sensitivity is strongly influenced by mass, with smaller species generally having higher thermal sensitivity of their metabolic rate, and this result deserves further exploration among other ectotherms. We conclude that, along with the previously reported lower cost of locomotion found in nocturnal lizards, they also partially offset the thermal handicap of activity at low body temperatures by having an elevated [(V)dot]textO 2 dot{V}{text{O}}_{ 2} at lower temperatures. 相似文献
11.
Interaction of histone H1 with superhelical DNA. Sedimentation and electron microscopical studies at low salt concentration
下载免费PDF全文

M B?ttger C U von Mickwitz S Scherneck K Grade R Lindigkeit 《Nucleic acids research》1981,9(20):5253-5268
Complexes of histones H1 with superhelical SV40 DNA obtained by direct mixing were studied in 0.1 SSC buffer corresponding to 0.02 M Na+. Depending on the molar input ratio H1/DNA three classes of sedimenting species were observed: (1) a component sedimenting similar to superhelical DNA with a sedimentation coefficient s2o,w of 25 S observable up to 335 Mol H1/Mol DNA (w/w = 2); (2) a component with s2o,w = 120 S appearing at 135 Mol H1/Mol DNA and (3) growing amounts of heterogeneous aggregates greater than 1000 S. Electron micrographs revealed the 25 S component to consist of double-fibers formed from one DNA molecule and the 120 S component to consist of bundles of several such double-fibers. The aggregates represent cable-like structures. The addition of ethidium bromide to 25 S complexes induces the formation of bundles, if H1 is present in a quantity which alone is not sufficient to bring about this effect. This result indicates that ethidium bromide effects a redistribution of H1 molecules and that H1 is responsible for the bundle formation. 相似文献
12.
Octavian C?linescu Cristina Paulino Werner Kühlbrandt Klaus Fendler 《The Journal of biological chemistry》2014,289(19):13168-13176
Na+/H+ exchangers are essential for regulation of intracellular proton and sodium concentrations in all living organisms. We examined and experimentally verified a kinetic model for Na+/H+ exchangers, where a single binding site is alternatively occupied by Na+ or one or two H+ ions. The proposed transport mechanism inherently down-regulates Na+/H+ exchangers at extreme pH, preventing excessive cytoplasmic acidification or alkalinization. As an experimental test system we present the first electrophysiological investigation of an electroneutral Na+/H+ exchanger, NhaP1 from Methanocaldococcus jannaschii (MjNhaP1), a close homologue of the medically important eukaryotic NHE Na+/H+ exchangers. The kinetic model describes the experimentally observed substrate dependences of MjNhaP1, and the transport mechanism explains alkaline down-regulation of MjNhaP1. Because this model also accounts for acidic down-regulation of the electrogenic NhaA Na+/H+ exchanger from Escherichia coli (EcNhaA, shown in a previous publication) we conclude that it applies generally to all Na+/H+ exchangers, electrogenic as well as electroneutral, and elegantly explains their pH regulation. Furthermore, the electrophysiological analysis allows insight into the electrostatic structure of the translocation complex in electroneutral and electrogenic Na+/H+ exchangers. 相似文献
13.
Self-excitation in a porous membrane doped with sorbitan monooleate (Span-80) induced by an Na+/K+ concentration gradient 总被引:1,自引:0,他引:1
The electrical potential across a fine-pore membrane doped with sorbitan monooleate (Span-80) imposed between aqueous solutions of NaCl and KCl was studied. It was found that this system showed rhythmic and sustained oscillations of electrical potential between the two aqueous solutions. These oscillations were attributed to the change of permeability of Na+ and K+ across the membrane, which originated from the phase transition of Span-80 molecules within the fine pores. Impedance measurement across the membrane also suggested a change in permeability. It was found that this membrane exhibited the property of differential negative resistance. In relation to this, it was shown that Na+ and K+ have different effects on the aggregation of Span-80 molecules. The mechanism of oscillation is discussed in relation to the ability of Span-80 molecules to behave as a dynamic channel through the membrane. This oscillatory phenomenon is interesting because in biological nervous membranes a difference between the concentrations of Na+ and K+ across the membranes is essential for excitability. 相似文献
14.
P H Deal 《Cryobiology》1974,11(1):13-22
A moderately halophilic bacterium was studied with respect to its ability to survive freezing and thawing as a function of sodium, potassium, and magnesium concentrations and rates of cooling and warming.Survival varied more strongly as a function of the warming rate than as a function of the cooling rate, and in general survivial increased with increasing molarity. At low overall molarity, sodium and potassium were largely interchangeable, while at high molarity, high potassium to sodium ratios improved survival. Survival at slow wanning rates was very poor, but protection by potassium was more pronounced.Magnesium proved protective, particularly where survival was otherwise poor. The protection provided by magnesium resulted in a decrease in the dependency on the cooling rate and, to a lesser extent, on the warming rate. 相似文献
15.
A water-soluble Mg2+-ATPase previously reported (White, M.D. and Ralston, G.B. (1976) Biochim. Biophys. Acta 436, 567–576) has been purified from human erythrocyte membranes. The purified enzyme has a molecular weight of 575 000; the apparent minimum molecular weight was 100 000, corresponding to a soluble protein of the component 3 region. The value for ATP was 1 mM and apparent for Mg2+ was 3.6 mM. By means of histochemical activity staining in acrylamide gels it was shown that the purified ATPase preparation could be inhibited by Cd2+ and Zn2+ salts, and , known inhibitors of membrane endocytosis. 相似文献
16.
Rabbit renal ( (EC 3.6.1.3) was purified and incorporated into phosphatidylcholine liposomes. Freeze-fracture analysis of the reconstituted system reveals intramembrane particles formed by ( molecules which are randomly distributed on concave and convex fracture faces. The reconstituted ( performs active Na+,K+-transport. The distribution of particles as well as the rate of active transport are directly proportional to the ( protein concentration used for reconstitution, while the total amount of sodium and potassium ions exchanged by ATP per volume vesicle suspension reaches maximum when each vesicle contains on the average more than two particles. ( pretreated with ouabain or vanadate yields the same particle density and vesicle size as control enzyme. However, detergent-denatured enzyme loses its ability to form intramembrane particles or to increase the vesicle size indicating that the lipids surrounding the protein part of the molecule are essential for the reconstitution process. The vesicle diameter increases as a function of the number of particles per vesicle. Histograms of the size distribution become wider with increasing intramembrane particle density and tend to show more than one maximum. 相似文献
17.
Kaouthar Feki Francisco J. Quintero Habib Khoudi Eduardo O. Leidi Khaled Masmoudi Jose M. Pardo Faiçal Brini 《Plant cell reports》2014,33(2):277-288
Key message
Expression of a truncated form of wheat TdSOS1 in Arabidopsis exhibited an improved salt tolerance. This finding provides new hints about this protein that can be considered as a salt tolerance determinant.Abstract
The SOS signaling pathway has emerged as a key mechanism in preserving the homeostasis of Na+ and K+ under saline conditions. We have recently identified and functionally characterized, by complementation studies in yeast, the gene encoding the durum wheat plasma membrane Na+/H+ antiporter (TdSOS1). To extend these functional studies to the whole plant level, we complemented Arabidopsis sos1-1 mutant with wild-type TdSOS1 or with the hyperactive form TdSOS1?972 and compared them to the Arabidopsis AtSOS1 protein. The Arabidopsis sos1-1 mutant is hypersensitive to both Na+ and Li+ ions. Compared with sos1-1 mutant transformed with the empty binary vector, seeds from TdSOS1 or TdSOS1?972 transgenic plants had better germination under salt stress and more robust seedling growth in agar plates as well as in nutritive solution containing Na+ or Li+ salts. The root elongation of TdSOS1?972 transgenic lines was higher than that of Arabidopsis sos1-1 mutant transformed with TdSOS1 or with the endogenous AtSOS1 gene. Under salt stress, TdSOS1?972 transgenic lines showed greater water retention capacity and retained low Na+ and high K+ in their shoots and roots. Our data showed that the hyperactive form TdSOS1?972 conferred a significant ionic stress tolerance to Arabidopsis plants and suggest that selection of hyperactive alleles of the SOS1 transport protein may pave the way for obtaining salt-tolerant crops. 相似文献18.
V I Sorokovo? V A Shakhlamov G M Nikitina 《Biulleten' eksperimental'no? biologii i meditsiny》1986,102(7):30-33
pH-dependence of Ca2+-activated hydrolysis of self phospholipids was studied in vesicles from the apical epitheliocyte membranes of the rabbit small intestine. It was shown that lipolysis had pH optimum at 7.0 and involved phospholipases A2 and A1 (or lysophospholipases). Marked changes in vesicle permeability for cations are observed during 40-50% phospholipid hydrolysis. 相似文献
19.
Summary We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Na
i
and H
l
were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Na
o
-stimulated Na+ efflux and Na+/H+ EXC as Na
o
-stimulated H+ efflux and pH
o
-stimulated Na+ influx into acid-loaded cells.The activation of Na+/Na+ EXC by Na
o
at pH
i
7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (K
m
2.2 mM) and low affinity (K
m
108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Na
o
(pH
i
6.6, Na
i
<1 mM) also showed high (K
m
11 mM) and low (K
m
248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Na
o
site (K
H
52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Na
i
and allosteric activators (pK 7.0) at high Na
i
.Na+/H+ EXC was also inhibited by acid pH
o
and allosterically activated by H
i
(pK 6.4). We also established the presence of a Na
i
regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Na
o
of both pathways. At low Na
i
, Na+/Na+ EXC was inhibited by acid pH
i
and Na+/H+ stimulated but at high Na
i
, Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Na
o
sites,cis-inhibited by external H
o
, allosterically modified by the binding of H+ to a H
i
regulatory site and regulated by Na
i
. These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger.Na+/H+ EXC was partially inhibited (80–100%) by dimethyl-amiloride (DMA) but basal or pH
i
-stimulated Na+/Na+ EXC (pH
i
6.5, Na
i
80 mM) was completely insensitive indicating that Na+/Na+ EXC is an amiloride-insensitive component of Na+/H+ EXC. However, Na+ and H+ efflux into Na-free media were stimulated by cell acidification and also partially (10 to 40%) inhibited by DMA: this also indicates that the Na+/H+ EXC might operate in reverse or uncoupled modes in the absence of Na+/Na+ EXC.In summary, the observed kinetic properties can be explained by a model of Na+/H+ EXC with several conformational states, H
i
and Na
i
regulatory sites and loaded/unloaded internal and external transport sites at which Na+ and H+ can compete. The occupancy of the H+ regulatory site induces a conformational change and the occupancy of the Na
i
regulatory site modulates the flow through both pathways so that it will conduct Na+/H+ and/or Na+/Na+ EXC depending on the ratio of internal Na+:H+. 相似文献
20.
Abiotic stress tolerance of plants is a very complex trait and involves multiple physiological and biochemical processes. Thus, the improvement of plant stress tolerance should involve pyramiding of multiple genes. In the present study, we report the construction and application of a bicistronic system, involving the internal ribosome entry site (IRES) sequence from the 5'UTR of the heat-shock protein of tobacco gene NtHSF-1, to the improvement of salt tolerance in transgenic tobacco plants. Two genes from wheat encoding two important vacuolar ion transporters, Na(+)/H(+) antiporter (TNHXS1) and H(+)-pyrophosphatase (TVP1), were linked via IRES to generate the bicistronic construct TNHXS1-IRES-TVP1. Molecular analysis of transgenic tobacco plants revealed the correct integration of the TNHXS1-IRES-TVP1construct into tobacco genome and the production of the full-length bicistronic mRNA from the 35S promoter. Ion transport analyses with tonoplast vesicles isolated from transgenic lines confirmed that single-transgenic lines TVP1cl19 and TNHXS1cl7 had greater H(+)-PPiase and Na(+)/H(+) antiport activity, respectively, than the WT. Interestingly, the co-expression of TVP1 and TNHXS1 increased both Na(+)/H(+) antiport and H(+)-PPiase activities and induced the H(+) pumping activity of the endogenous V-ATPase. Transgenic tobacco plants expressing TNHXS1-IRES-TVP1 showed a better performance than either of the single gene-transformed lines and the wild type plants when subjected to salt treatment. In addition, the TNHXS1-IRES-TVP1 transgenic plants accumulated less Na(+) and more K(+) in their leaf tissue than did the wild type and the single gene-transformed lines. These results demonstrate that IRES system, described herein, can co-ordinate the expression of two important abiotic stress-tolerance genes and that this expression system is a valuable tool for obtaining transgenic plants with improved salt tolerance. 相似文献