首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. We analysed the relationship between seed traits (weight, shape and dispersal structures) and the abundance and habitat segregation of Mediterranean grassland species. To take into account possible correlations with other plant traits, the study also includes 5 vegetative traits (growth form, plant longevity, clonality, onset of flowering and plant size) of commonly accepted functional importance. Data were recorded for 85 species from dehesa grasslands in central Spain. Species abundance was measured in upper (dry and less productive, high stress) and lower (moist and more productive, low stress) slope zones in the same area. Habitat segregation was estimated using an index based on the relative frequencies of species in upper and lower slope zones. Multiple regression models were fitted using species, as well as phylogenetically independent contrasts, as data points. Annual small‐seeded species without specialised dispersal structures are over‐represented in dehesa grasslands. Abundance was negatively related to seed weight in upper slope zones. None of the recorded plant traits were related to abundance in the lower slope zones. Habitat segregation was mainly related to seed weight, but also to some vegetative traits. Annual, early flowering and small‐seeded species were relatively more abundant in the upper than the lower slope zones. This pattern is independent of phylogeny. Our results suggest that in dry Mediterranean grasslands, abundance of many species is determined by dispersal (production of numerous small seeds) rather than by competitive ability.  相似文献   

2.
Large‐scale biodiversity maps are essential to macroecology. However, between‐region comparisons can be more useful if patterns of observed species richness are supplemented by variations in dark diversity – the absent portion of the species pool. We aim to quantify and map plant diversity across Europe by using a measure that accounts for both observed and dark diversity. To do this we need to delimit suitable species pools, and evaluate the potential and limitation of a large‐scale dataset. We used Atlas Florae Europaeae (ca 20% of European plant species mapped within 50 × 50 km grid cells) and defined for each grid cell several species pools by applying various geographical and environmental filters: geographic species pool (number of species within 500 km radius), biogeographic species pool (additionally incorporating species distribution patterns, i.e. dispersion fields), site‐specific species pool (additionally integrating environmental preferences of species based on species co‐occurrence). We integrated dark diversity and observed diversity at a relative scale to calculate the completeness of site diversity: logistic expression of observed and dark diversity. We tested whether our results are robust against regional variation in data availability. We used independent regional databases to test if Atlas Florae Europaeae is a representative subset of total species richness. Environmental filtering was the most influential determinant of species pool size with more species filtered out in southern Europe. Both observed and dark diversity adhered to the well‐known latitudinal gradient, but completeness of site diversity varied throughout Europe with no latitudinal trend. Dark diversity patterns were fairly insensitive to variations in regional sampling intensity. Atlas Florae Europaeae represented well the total variation in plant diversity. In summary, dark diversity and completeness of site diversity add valuable information to broad‐scale diversity patterns since observed diversity is expressed at a relative scale.  相似文献   

3.
Meelis Prtel 《植被学杂志》2014,25(5):1154-1159
Community ecologists have so far focused mainly on species identified at a site. I suggest that we can understand better patterns and their underlying processes in ecological communities if we also examine those species absent from the sampled community. However, there are various types of absences, which all harbour different information. Hidden diversity comprises species that are absent from our sight: dormant or locally very rare species overlooked by traditional sampling. Fortunately, modern DNA‐based techniques can help us to find hidden species when analysing environmental samples. Depending on habitat type and sampling scale, a large number of co‐existing species might be hidden. Dark diversity comprises absent species that constitute the habitat‐specific species pool. Dark diversity can be determined based on data on species distribution, dispersal potential and ecological requirements. If we know both observed and dark diversity, we can estimate community completeness and infer those processes that determine which species in the species pool actually co‐exist locally. In addition, most species in the world do not actually belong to the habitat‐specific species pool of the community: their ecological requirements differ or their distribution area is elsewhere. Such other absent species are usually not directly relevant to a particular community. However, knowing ecologically suitable species from other regions can give early warning of possible future invasion of alien species (alien dark diversity). To conclude, species presences have meaning only if there are absences (and vice versa). Methods to detect absent species are rapidly developing and will soon form a standard toolbox for community ecology.  相似文献   

4.
DarkDivNet is a global research collaboration which explores dark diversity — the set of species that are absent from a site despite being suitable under the site conditions and present in the region. Participants of the network survey vascular plant diversity both at local (10  m × 10 m) and regional scales (radius 10 km) using a standardized approach. They also measure simple plant traits and collect soil samples. Observed and dark diversity together form the site‐specific species pool, and the ratio of observed diversity and dark diversity describes community completeness. We shall explore how observed and dark diversity, site‐specific species pool and community completeness vary across natural and anthropogenic gradients. We link plant diversity measures to the information obtained from environmental DNA: soil biota and plant taxa that occurred at the site before. We will refine existing dark diversity methods and use large vegetation databases to infer species habitat suitability. We expand the dark diversity concept from a purely taxonomy‐based approach to include the functional and phylogenetic aspects of diversity. DarkDivNet currently includes 161 planned sampling areas globally, but new participants are welcome. The main vegetation sampling period is scheduled until September 2020, with the first research papers being produced after that.  相似文献   

5.
Species diversity depends on, often interfering, multiple ecological drivers. Comprehensive approaches are hence needed to understand the mechanisms determining species diversity. In this study, we analysed the impact of vegetation structure, soil properties and fragmentation on the plant species diversity of remnant calcareous grasslands, therefore, in a comparative approach.We determined plant species diversity of 18 calcareous grasslands in south eastern Germany including all species and grassland specialists separately. Furthermore, we analysed the spatial structure of the grasslands as a result of fragmentation during the last 150 years (habitat area, distance to the nearest calcareous grassland and connectivity in 1830 and 2013). We also collected data concerning the vegetation structure (height of the vegetation, cover of bare soil, grass and litter) and the soil properties (content of phosphorous and potassium, ratio of carbon and nitrogen) of the grassland patches. Data were analysed using Bayesian multiple regressions.We observed a habitat loss of nearly 80% and increasing isolation between grasslands since 1830. In the Bayesian multiple regressions the species diversity of the studied grasslands depended negatively on cover of litter and to a lower degree on the distance to the nearest calcareous grassland in 2013, whereas soil properties had no significant impact.Our study supports the observation that vegetation structure, which strongly depends on land use, is often more important for the species richness of calcareous grasslands than fragmentation or soil properties. Even small and isolated grasslands may, therefore, contribute significantly to the conservation of species diversity, when they are still grazed.  相似文献   

6.
There is a growing consensus that the relative constraints of seed limitation and establishment limitation in recruitment strongly influence abundance patterns in plant communities. Although these constraints have direct relevance to coexistence, most investigations utilize a seed addition approach that offers limited insight into these dynamics. Here we report the results of an assembly experiment with annual plant species from California grasslands to examine how propagule pool characteristics (dominant species abundance, functional diversity) influence establishment and seed limitation (density independence and density dependence across a gradient of seed supply) for each species, as well as how these constraints affect community diversity. Species were predominantly colimited by seed and establishment constraints, exhibiting saturating recruitment functions with increased seed supply. Consistent with competition-colonization trade-off predictions, recruitment constraints often depended on the degree of seed limitation of the competitive dominant, Brassica nigra; diversity was greatest in communities where Brassica was seed limited. Functional similarity within the propagule pool did not affect recruitment across a range of seed supply; likewise, functional diversity of the propagule pool was not related to community diversity. We conclude that seed limitation of the dominant species rather than niche similarity influences interspecific competition for safe sites and scales up to affect community-level diversity.  相似文献   

7.
Invasion should decline with species richness, yet the relationship is inconsistent. Species richness, however, is a product of species pool size and biotic filtering. Invasion may increase with richness if large species pools represent weaker environmental filters. Measuring species pool size and the proportion realised locally (completeness) may clarify diversity‐invasion relationships by separating environmental and biotic effects, especially if species’ life‐history stage and origin are accounted for. To test these relationships, we added seeds and transplants of 15 native and alien species into 29 grasslands. Species pool size and completeness explained more variation in invasion than richness alone. Although results varied between native and alien species, seed establishment and biotic resistance to transplants increased with species pool size, whereas transplant growth and biotic resistance to seeds increased with completeness. Consequently, species pools and completeness represent multiple independent processes affecting invasion; accounting for these processes improves our understanding of invasion.  相似文献   

8.
Understanding the key aspects of plant regeneration from seeds is crucial in assessing species assembly to their habitats. However, the regenerative traits of seed dormancy and germination are underrepresented in this context. In the alpine zone, the large species and microhabitat diversity provide an ideal context to assess habitat‐related regenerative strategies. To this end, seeds of 53 species growing in alpine siliceous and calcareous habitats (6230 and 6170 of EU Directive 92/43, respectively) were exposed to different temperature treatments under controlled laboratory conditions. Germination strategies in each habitat were identified by clustering with k‐means. Then, phylogenetic least squares correlations (PGLS) were fitted to assess germination and dormancy differences between species’ main habitat (calcareous and siliceous), microhabitat (grasslands, heaths, rocky, and species with no specific microhabitats), and chorology (arctic–alpine and continental). Calcareous and siliceous grasslands significantly differ in their germination behaviour with a slow, mostly overwinter germination and high germination under all conditions, respectively. Species with high overwinter germination occurs mostly in heaths and have an arctic–alpine distribution. Meanwhile, species with low or high germinability in general inhabit in grasslands or have no specific microhabitat (they belong to generalist), respectively. Alpine species use different germination strategies depending on habitat provenance, species’ main microhabitat, and chorotype. Such differences may reflect adaptations to local environmental conditions and highlight the functional role of germination and dormancy in community ecology.  相似文献   

9.
Calcareous grasslands harbour a high biodiversity, but are highly fragmented and endangered in central Europe. We tested the relative importance of habitat area, habitat isolation, and landscape diversity for species richness of vascular plants. Plants were recorded on 31 calcareous grasslands in the vicinity of the city of Göttingen (Germany) and were divided into habitat specialist and generalist species. We expected that habitat specialists were more affected by area and isolation, and habitat generalists more by landscape diversity. In multiple regression analysis, the species richness of habitat specialists (n = 66 species) and habitat generalists (n = 242) increased with habitat area, while habitat isolation or landscape diversity did not have significant effects. Contrary to predictions, habitat specialists were not more affected by reduced habitat area than generalists. This may have been caused by delayed extinction of long-living plant specialists in small grasslands. Additionally, non-specialists may profit more from high habitat heterogeneity in large grasslands compared to habitat specialists. Although habitat isolation and landscape diversity revealed no significant effect on local plant diversity, only an average of 54% of habitat specialists of the total species pool were found within one study site. In conclusion, habitat area was important for plant species conservation, but regional variation between habitats contributed also an important 46% of total species richness.  相似文献   

10.
Aim Habitat loss and degradation pose a major threat to biodiversity, which can result in the extinction of habitat characteristic species. However, many species exhibit a delayed response to environmental changes because of the slow intrinsic dynamics of populations, resulting in extinction debt. We assess directly the changes in habitat characteristic species composition by comparing historical (1923) and current inventories in highly fragmented grasslands. We aim to characterize the species that constitute extinction debt in European calcareous grasslands. Location Europe, Estonia, 59–60° N, 24–25° E. Methods We related eleven life‐history traits and selected habitat preferences to local extinctions of populations in grasslands where extinction debt has been largely paid. Traits were chosen to describe species dispersal and persistence abilities and were quantified from databases. Results The studied grasslands have lost 90% of their area and 30% of their characteristic plant populations in 90 years. Species more prone to local population extinction were characterized by shorter life span, self‐pollination, a lack of clonal growth, fewer seeds per shoot, lower average height, lower soil nitrogen preference and higher requirements for light, indicating a limited ability to tolerate the range of changes in biotic and abiotic conditions of the sites. Locally extinct populations were also characterized by wind‐dispersed seeds, lower seed weight and lower terminal velocity of seeds, suggesting that species strategies for long‐distance dispersal are not favoured in highly fragmented landscapes. Thus, both increased habitat isolation and decreased habitat quality are important in determining local population extinction. Main conclusions Populations more prone to local extinction were characterized by a number of life‐history traits, demonstrating a greater extinction risk for species with poorer abilities for local persistence and competition. Our results can be applied to less degraded grasslands where the extinction debt is not yet paid to determine those species most susceptible to future extinction.  相似文献   

11.
So far, seed limitation as a local process, and dispersal limitation as a regional process have been largely neglected in biodiversity–ecosystem functioning research. However, these processes can influence both local plant species diversity and ecosystem processes, such as biomass production. We added seeds of 60 species from the regional species pool to grassland communities at 20 montane grassland sites in Germany. In these sites, plant species diversity ranged from 10 to 34 species m−2 and, before manipulation, diversity was not related to aboveground biomass, which ranged from 108 to 687 g m−2. One year after seed addition, local plant species richness had increased on average by six species m−2 (29%) compared with control plots, and this increase was highest in grasslands with intermediate productivity. The increased diversity after adding seeds was associated with an average increase of aboveground biomass of 36 g m−2 (14.8%) compared with control plots. Thus, our results demonstrate that a positive relationship between changes in species richness and productivity, as previously reported from experimental plant communities, also holds for natural grassland ecosystems. Our results show that local plant communities are dispersal limited and a hump‐shaped model appears to be the limiting outline of the natural diversity–productivity relationship. Hence, the effects of dispersal on local diversity can substantially affect the functioning of natural ecosystems.  相似文献   

12.
Identifying drivers of species diversity is a major challenge in understanding and predicting the dynamics of species‐rich semi‐natural grasslands. In particular in temperate grasslands changes in land use and its consequences, i.e. increasing fragmentation, the on‐going loss of habitat and the declining importance of regional processes such as seed dispersal by livestock, are considered key drivers of the diversity loss witnessed within the last decades. It is a largely unresolved question to what degree current temperate grassland communities already reflect a decline of regional processes such as longer distance seed dispersal. Answering this question is challenging since it requires both a mechanistic approach to community dynamics and a sufficient data basis that allows identifying general patterns. Here, we present results of a local individual‐ and trait‐based community model that was initialized with plant functional types (PFTs) derived from an extensive empirical data set of species‐rich grasslands within the ‘Biodiversity Exploratories’ in Germany. Driving model processes included above‐ and belowground competition, dynamic resource allocation to shoots and roots, clonal growth, grazing, and local seed dispersal. To test for the impact of regional processes we also simulated seed input from a regional species pool. Model output, with and without regional seed input, was compared with empirical community response patterns along a grazing gradient. Simulated response patterns of changes in PFT richness, Shannon diversity, and biomass production matched observed grazing response patterns surprisingly well if only local processes were considered. Already low levels of additional regional seed input led to stronger deviations from empirical community pattern. While these findings cannot rule out that regional processes other than those considered in the modeling study potentially play a role in shaping the local grassland communities, our comparison indicates that European grasslands are largely isolated, i.e. local mechanisms explain observed community patterns to a large extent.  相似文献   

13.
Dispersal is an important factor in plant community assembly, but assembly studies seldom include information on actual dispersal into communities, i.e. the local propagule pool. The aim of this study was to determine which factors influence plant community assembly by focusing on two phases of the assembly process: the dispersal phase and the establishment phase. At 12 study sites in grazed ex-arable fields in Sweden the local plant community was determined and in a 100-m radius around the centre of each site, the regional species pool was measured. The local seed bank and the seed rain was explored to estimate the local propagule pool. Trait-based models were then applied to investigate if species traits (height, seed mass, clonal abilities, specific leaf area and dispersal method) and regional abundance influenced which species from the regional species pool, dispersed to the local community (dispersal phase) and which established (establishment phase). Filtering of species during the dispersal phase indicates the effect of seed limitation while filtering during the establishment phase indicates microsite limitation. On average 36% of the regional species pool dispersed to the local sites and of those 78% did establish. Species with enhanced dispersal abilities, e.g. higher regional abundance, smaller seeds and dispersed by cattle, were more likely to disperse to the sites than other species. At half the sites, dispersal was influenced by species height. Species establishment was however mainly unlinked to the traits included in this study. This study underlines the importance of seed limitation in local plant community assembly. It also suggests that without information on species dispersal into a site, it is difficult to distinguish between the influence of dispersal and establishment abilities, and thus seed and microsite limitation, as both can be linked to the same trait.  相似文献   

14.
The conservation of dry calcareous grasslands in the French Prealps strongly depends on the maintenance of low-intensity farming systems supported by agri-environmental schemes. An experimental assessment of the effect of current agro-pastoral management on the biodiversity of plant communities was conducted during a six-year permanent plot survey in four sites with contrasting habitat conditions (mesic to xeric). Analyses of species changes showed: (i) a strong increase in species richness and open grassland species frequencies four years after shrub-clearing, and (ii) a noticeable recovery of rare annuals and perennial species of conservation interest establishing in gaps created by grazing. At the community level, the restoration effect was evaluated by a between-year Correspondence Analysis, explaining 10.9% of the total floristic variability versus 29.5% for the site effect (between-site CA). Species ordination by between-year CA showed similar trajectories of vegetation changes during restoration despite different habitat conditions and grazing regimes between sites. The successful restoration of prealpine calcareous grasslands was explained by the availability of seed sources during the study in adjacent grazed or mown grasslands. Thus, restoration assessment should focus on dispersal possibilities and functional roles of species rather than species richness only. Finally, the spatial (i.e. the area of patches that need to be restored) and temporal (i.e. the frequency of shrub-clearing) implications for the large-scale conservation of prealpine calcareous grasslands by current agro-pastoral management are discussed.  相似文献   

15.
  • Meta‐communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species‐assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant‐community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting.We used a system of 46 small wetlands (kettle holes)—natural small‐scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flat‐sloped, ephemeral, frequently plowed kettle holes vs. steep‐sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes.Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant‐community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non‐perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep‐sloped, more permanent kettle holes that had a higher percentage of wind‐dispersed species. In the flat kettle holes, plant‐species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes.Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant‐community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta‐ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity.
  相似文献   

16.
Dispersal limitation between habitat fragments is a known driver of landscape-scale biodiversity loss. In Europe, agricultural intensification during the twentieth century resulted in losses of both grassland habitat and traditional grassland seed dispersal vectors such as livestock. During the same period, populations of large wild herbivores have increased in the landscape. Usually studied in woodland ecosystems, these animals are found to disperse seeds from grasslands and other open habitats. We studied endozoochorous seed dispersal by roe deer (Capreolus capreolus) in fragmented grasslands and grassland remnants, comparing dispersed subcommunities of plant species to those in the established vegetation and the seed bank. A total of 652 seedlings of 67 species emerged from 219 samples of roe deer dung. This included many grassland species, and several local grassland specialists. Dispersal had potentially different effects on diversity at different spatial scales. Almost all sites received seeds of species not observed in the vegetation or seed bank at that site, suggesting that local diversity might not be dispersal limited. This pattern was less evident at the landscape scale, where fewer new species were introduced. Nonetheless, long-distance dispersal by large wild herbivores might still provide connectivity between fragmented habitats within a landscape in the areas in which they are active. Finally, as only a subset of the available species were found to disperse in space as well as time, the danger of future biodiversity loss might still exist in many isolated grassland habitats.  相似文献   

17.
This paper evaluates the long‐term effect of an ecological network of calcareous grasslands, a habitat type that experienced dramatic habitat loss and fragmentation during the 20th century, on species richness of habitat specialist plants. Calcareous grasslands are of special conservation concern as the habitat type with the highest diversity in plant and invertebrate species in central Europe. A baseline survey in 1989 established complete vascular plant species lists for all 62 previously abandoned calcareous grassland patches in the study area and assessed the presence of 48 habitat specialist plant species. An ecological network was initiated in 1989 to reconnect these patches with existing grazed pastures (core areas) through large flock sheep herding where feasible, as sheep are thought to be the primary dispersal vectors for calcareous grassland plants. An evaluation survey in 2009 showed significant increase in species richness of habitat specialist plants in patches reconnected by sheep herding, indicating successful colonizations by habitat specialist plants, while ungrazed patches showed no significant change. Observed increase in species richness between 1989 and 2009 was related to connectivity by sheep herding and the presence of a diversity of structural elements providing microsites for establishment. Baseline species richness of the patches, which had been abandoned since at least 1960, was associated with patch area, supporting the effect of ecological drift, and with vegetation type, which suggests that delays in extinction may be related to site factors governing the strength of competition with later seral species. The implementation of this ecological network represents a long‐term ‘natural experiment’ with baseline data, manipulation, and evaluation of hypothesized effects on a clearly defined target variable. It thus provides much needed empirical evidence that species loss in fragmented calcareous grassland communities can be counteracted by restoring functional connectivity among remnant patches.  相似文献   

18.
Species establishment within a community depends on their interactions with the local environment and resident community. Such environmental and biotic filtering is frequently inferred from functional trait and phylogenetic patterns within communities; these patterns may also predict which additional species can establish. However, differentiating between environmental and biotic filtering can be challenging, which may complicate establishment predictions. Creating a habitat‐specific species pool by identifying which absent species within the region can establish in the focal habitat allows us to isolate biotic filtering by modeling dissimilarity between the observed and biotically excluded species able to pass environmental filters. Similarly, modeling the dissimilarity between the habitat‐specific species pool and the environmentally excluded species within the region can isolate local environmental filters. Combined, these models identify potentially successful phenotypes and why certain phenotypes were unsuccessful. Here, we present a framework that uses the functional dissimilarity among these groups in logistic models to predict establishment of additional species. This approach can use multivariate trait distances and phylogenetic information, but is most powerful when using individual traits and their interactions. It also requires an appropriate distance‐based dissimilarity measure, yet the two most commonly used indices, nearest neighbor (one species) and mean pairwise (all species) distances, may inaccurately predict establishment. By iteratively increasing the number of species used to measure dissimilarity, a functional neighborhood can be chosen that maximizes the detection of underlying trait patterns. We tested this framework using two seed addition experiments in calcareous grasslands. Although the functional neighborhood size that best fits the community's trait structure depended on the type of filtering considered, selecting these functional neighborhood sizes allowed our framework to predict up to 50% of the variation in actual establishment from seed. These results indicate that the proposed framework may be a powerful tool for studying and predicting species establishment.  相似文献   

19.
Questions: The relationship between fire, aridity and seed banks is poorly understood in plant community ecology. We tested whether there was a close correspondence between the seed bank and standing vegetation composition with time‐since‐fire in a desert. We also examined whether longer‐lived species showed seed limitation relative to more ephemeral species, as this could influence grass‐woody ratios in a major biome. Location: Dune hummock grasslands/shrublands of central Australia. Methods: The effects of time‐since‐fire on floristic and functional group composition were examined by comparing plots unburned since 1984 against plots that had been burned in 2002. Three methods were used to quantify seed abundances: a germination trial using heat and smoke application, a flotation method, and a sieving method. Results: Seed bank densities were very low (<3000 m?2). Species similarity between the seed bank and standing vegetation was high at sites recently burned (0.86) and low in sites long‐since burned (0.52). The relative abundance of ephemeral species in the seed bank peaked in recently burned plots, but the relative abundance of seeds of woody species did not match the pattern of abundance in the standing vegetation. Remarkably, the dominant perennial grasses and woody species were either absent from the seed bank or present at extremely low abundances. Discussion: Differences in the relative abundance of ephemeral species between standing vegetation and seed bank relate to the post‐fire succession process. The small soil pool of seed from woody species may be explained by allocation to belowground carbohydrate storage over seed production. Field observations suggest, however, that production of strongly dormant seed can be prolific and that high levels of seed predation make this system strongly seed‐limited. The discovery of this seed bank syndrome indicates that shifts in grass‐woody ratios can be driven by the juxtaposition of unpredictable seed rain and fire events in these desert dunes. However, estimates of grass‐woody ratios due to changing fire regimes will be difficult to predict.  相似文献   

20.
Background: Species-rich Nardus stricta grasslands are a priority habitat for conservation in Europe. They typically occur on siliceous substrates and less frequently are found on calcareous bedrock.

Aims: The present paper aimed to identify the environmental factors (i.e. bedrock type, topographic, and climatic factors) that are related with community diversity and to assess if differences in plant diversity between N. stricta communities on calcareous and siliceous bedrock occur. We hypothesised that Nardus grasslands on calcareous bedrock hosted a higher vascular plant diversity than those on siliceous bedrock.

Methods: Based on 579 vegetation surveys carried out in the south-western Alps, we assessed vascular plant diversity (species richness, Shannon diversity, and Pielou’s equitability index) of species-rich Nardus grasslands and compared it between N. stricta communities on calcareous and siliceous bedrock.

Results: Elevation was identified as the main factor related to species composition, while species diversity was mostly related to mean annual precipitation and bedrock type. Species richness, Shannon diversity, and Pielou’s equitability index were higher within the communities on calcareous rather than on siliceous bedrock and a total of 89 and 34 indicator species were detected, respectively.

Conclusions: Based on our results, we suggest to protect primarily, as a habitat of priority interest, N. stricta grasslands on calcareous substrates for the higher vascular plant diversity hosted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号