首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We quantitatively assessed edge effects associated with elevated abundance of a hyper aggressive bird species, the noisy miner Manorina melanocephala, in fragmented eucalypt forest adjoining developed land. Long‐term data from Toohey Forest, subtropical Australia, show that noisy miner colonies intensively occupy a zone of 20 m from the forest edge, with frequent use occurring up to 100 m from the edge, but little beyond 200 m. Within noisy miner colonies, the abundance and species richness of other birds were both about half those recorded at nearby transects which were outside the colonies' main activity area. Bird species smaller than noisy miners, which are also those with similar diets, were collectively 20–25 times more abundant, and their species richness tenfold greater, outside miner colonies than within them, whereas larger species, which have less dietary overlap, did not differ. Exclusion of small insectivorous birds has been hypothesised to cause elevated insect herbivore density, but we found no difference between tree crown defoliation or dieback rates within versus outside miner colonies. Aggression by noisy miners can be viewed as a mechanism of interspecific competition, since miners have a relatively large body size for their diet and are hence able to exclude virtually all potential competitors at relatively little cost. We examine evidence indicating that reduced bird diversity in eucalypt forest fragments of eastern Australia is often simply the effect of noisy miner occupancy of edges, acting directly on the densities of other species through their aggressive behaviour. With an edge effect 200 m deep, a remnant 10 ha in size is likely to become entirely occupied by noisy miners, and this is a size threshold that has been commonly reported in association with area‐standardised avian diversity reductions. Convergent patterns of species loss from small forest fragments in different continents are the result of different underlying ecological processes.  相似文献   

2.
Aim To determine the factors influencing the distribution of birds in remnants in a fragmented agricultural landscape. Location Forty‐seven eucalypt remnants and six sites in continuous forest in the subhumid Midlands region of Tasmania, Australia. Methods Sites were censused over a two‐year period, and environmental data were collected for remnants. The avifauna of the sites was classified and ordinated. The abundances of bird species, and bird species composition, richness, abundance and diversity were related to environmental variables, using simple correlation and modelling. Results There were two distinct groups of sample sites, which sharply differed in species composition, richness, diversity and bird abundance, separated on the presence/absence of noisy miner (Manorina melanocephala Latham) colonies, remnant size, vegetation structural attributes and variables that reflected disturbance history. The approximate remnant size threshold for the change from one group to another was 20–30 ha. Remnant species richness and diversity were most strongly explained by remnant area and noisy miner abundance, with contributions from structural and isolation attributes in the second case. Segment richness was explained by precipitation, logging history and noisy miner abundance. Bird abundance was positively related to precipitation and negatively related to tree dieback. The 28 individual bird species models were highly individualistic, with vegetation structural variables, noisy miner abundance, climatic variables, variables related to isolation, area, variables related to floristics, disturbance variables, the nature of the matrix and remnant shape all being components in declining order of incidence. Age of the remnant did not relate to any of the dependent variables. Main conclusions Degraded and small remnants may have become more distinct in their avifaunal characteristics than might otherwise be the case, as a result of the establishment of colonies of an aggressive native bird, the noisy miner. The area, isolation and shape of remnants directly relate to the abundance of relatively few species, compared to vegetation attributes, climate and the abundance of the noisy miner. The nature of the matrix is important in the response of some species to fragmentation.  相似文献   

3.
Overabundant native species can have a significant cascading effect on other components of wildlife, and those that deplete other species, often promoted by anthropogenic change to vegetation cover and habitat, are called reverse keystone species. Birds in the genus Manorina are widely reported as being such species, and in highly disturbed or fragmented environments, and some intact environments, noisy miners Manorina melanocephala can have a strong negative effect on small passerine species via hyper‐aggressive mobbing. The tropical savannas of northern Australia consist of largely unmodified woodlands, and two species of Manorina occur naturally in this region: the noisy miner and the yellow‐throated miner Manorina flavigula. Therefore, what effect do these species have on bird assemblage in predominantly continuous habitats, relative to other typical determinants of avifauna assemblage such as vegetation structure? We used data collected from bird surveys at 511 sites across northern Queensland (179 noisy miner M. melanocephala sites, 332 yellow‐throated miner M. flavigula sites) between 1998 and 2010. We examined the variation in bird composition at each site due to increasing abundance of Manorina spp. using uni‐ and multivariate techniques. We found total bird richness was significantly lower in sites where noisy and yellow‐throated miner abundances were highest, and passerine species seemed most affected. For species, 45 species varied significantly in abundance with increasing miner numbers, and the overall effect of yellow‐throated miners on other birds seemed more pronounced. However, vegetation structure was generally an equal or more important predictor of avifauna richness and abundance. We conclude that despite the superficially intact nature of northern Australian woodlands, pastoral intensification or poor land management might create disturbances that facilitate increases in the abundance of Manorina, causing localized overabundance and a compounding negative effect on other native bird species.  相似文献   

4.
Interactions between competing species may be intensified when they are restricted to small patches of remnant habitat, potentially increasing physiological stress in individuals. The effects of interspecific competition on stress in wildlife remain largely unexplored. In Australia, remnant woodlands are often dominated by aggressive honeyeaters, especially the noisy miner (Manorina melanocephala). Harassment of smaller birds by miners may result in their exclusion from suitable woodland habitat. We tested whether the presence of noisy miners is also associated with elevated stress in a model species of small passerine bird, the superb fairy‐wren (Malurus cyaneus). We sampled wrens from six sites, three remnant woodlands with noisy miners and three larger fragments of reserved habitat without noisy miners. Differential white blood cell counts were used to infer levels of chronic stress. We also assessed variation in body condition and the prevalence of blood parasites (Haemoproteus spp.) to test for associations between stress and parasitemia. The mean heterophil‐to‐lymphocyte (H:L) ratio was 1.8 × higher among superb fairy‐wrens living in miner‐dominated woodlands, suggesting higher levels of chronic stress. Individuals with higher stress appeared to be in poorer condition, as indicated by fat scores and residual body mass. Prevalence of blood parasites was generally high and was highest in reserved habitat (59%) where miners were absent. Birds with blood parasites living in these habitats had higher H:L ratios but the intensity of infection and H:L ratio was inversely related. Our results suggest that birds persisting in the presence of noisy miners might experience chronic stress, but further study is necessary to separate the relative importance of noisy miner aggression from other potential stressors in small patches of degraded woodland. Stress induced by interspecific aggression should be considered in future studies of wildlife living in remnant vegetation.  相似文献   

5.
Habitat loss and fragmentation are key processes causing biodiversity loss in human‐modified landscapes. Knowledge of these processes has largely been derived from measuring biodiversity at the scale of ‘within‐habitat’ fragments with the surrounding landscape considered as matrix. Yet, the loss of variation in species assemblages ‘among’ habitat fragments (landscape‐scale) may be as important a driver of biodiversity loss as the loss of diversity ‘within’ habitat fragments (local‐scale). We tested the hypothesis that heterogeneity in vegetation cover is important for maintaining alpha and beta diversity in human‐modified landscapes. We surveyed bird assemblages in eighty 300‐m‐long transects nested within twenty 1‐km2 vegetation ‘mosaics’, with mosaics assigned to four categories defined by the cover extent and configuration of native eucalypt forest and exotic pine plantation. We examined bird assemblages at two spatial scales: 1) within and among transects, and 2) within and among mosaics. Alpha diversity was the mean species diversity within‐transects or within‐mosaics and beta diversity quantified the effective number of compositionally distinct transects or mosaics. We found that within‐transect alpha diversity was highest in vegetation mosaics defined by continuous eucalypt forest, lowest in mosaics of continuous pine plantation, and at intermediate levels in mosaics containing eucalypt patches in a pine matrix. We found that eucalypt mosaics had lower beta diversity than other mosaic types when ignoring relative abundances, but had similar or higher beta diversity when weighting with species abundances. Mosaics containing both pine and eucalypt forest differed in their bird compositional variation among transects, despite sharing a similar suite of species. This configuration effect at the mosaic scale reflected differences in vegetation composition among transects. Maintaining heterogeneity in vegetation cover could help to maintain variation among bird assemblages across landscapes, thus partially offsetting local‐scale diversity losses due to fragmentation. Critical to this is the retention of remnant native vegetation.  相似文献   

6.
In Australia, the role of noisy miners Manorina melanocephala in biotic homogenization of the avifauna has been well established in modified landscapes, and is listed as a threatening process under national conservation legislation. However, less is known about the effect of the congeneric and more widely distributed yellow‐throated miner, M. flavigula. In this paper we investigate the relative roles of habitat loss and increased dominance by the yellow‐throated miner in avian homogenization and species functional group decline. We examined bird community data collected from 368 woodland sites across three bioregions. For each site there was a local and a landscape scale measure of remnant vegetation cover. We used both multivariate and regression analysis to test the relative influence of yellow‐throated miner abundance and vegetation on bird community composition. There was clear compositional change and homogenization of the avifauna where yellow‐throated miners were present and vegetation cover was low. The abundance of 40 bird species was predicted by combinations of vegetation cover or yellow‐throated miner abundance, and 31 of these regressions included the term yellow‐throated miner. Of these, there was a negative relationship with 23 species, and 19 of these were insectivores or nectarivores. We postulate that the combination of clearing and yellow‐throated miner abundance can interact to disrupt the ecological function of woodlands, by the depletion of insect‐ and nectar‐feeding species and the disturbance to mixed feeding flocks. We propose future research objectives that include a continental‐scale analysis of the determinants of yellow‐throated miner overabundance, the numerical and geographical thresholds of their potential impacts, and the ecological consequences on both avifauna and the woodlands they inhabit.  相似文献   

7.
The European rabbit, Oryctolagus cuniculus, is threatened within its native range, yet it is a highly successful colonizing pest species across its worldwide introduced range, causing large economic losses and widespread environmental degradation. To date, there has been no long‐term empirical evidence documenting the relative roles of climatic, epidemiological and biological factors in limiting life‐history determinants of rabbit range and abundance. Using 12 years of capture–mark–recapture data from their exotic range in Australia, we constructed candidate Cormack–Jolly–Seber models to test the influence of environmental, competition and disease conditions on rabbit survival and recruitment. Our results show that: (i) population‐level disease infection rate has the largest overall impact on rabbit survival, explaining 80% of variance in survival rates; (ii) environmental as well as epidemiological conditions constrain rabbit survival, especially for younger animals; (iii) temporal variation in rabbit kitten recruitment patterns are best described by a combination of climate, competition and disease settings (accounting for 68% of variance), while temperature alone has a strong negative influence on kitten recruitment; and (iv) recruitment responds positively to rabbit haemorrhagic disease, but negatively to myxomatosis – the former, probably being mediated through a disease driven effect on intraspecific competition for food. A strengthened understanding of climate change impacts on rabbit range and abundance can be achieved by accounting explicitly for potential synergisms between disease dynamics and climate. In this analysis, we provide the first step towards such an attempt for this important mammal species. Integrated approaches of this kind are essential for future forecasts of rabbit range and abundance, offsetting the conservation threat faced by O. cuniculus in its native range, and achieving effective management in exotic habitats.  相似文献   

8.
Recent theoretical studies suggest that the distribution of species in space has important implications for the conservation of communities in fragmented landscapes. Facilitation and dispersal are the primary mechanisms responsible for the formation of spatial patterns. Furthermore, disruptions in the formation of patterns arise after degradation, which can serve as an early indicator of stress in plant communities. Spatial dispersal ability and pattern formation were evaluated in 53 linear transects of 500 m in length within 14 fragments of natural vegetation within a matrix of abandoned crop fields in Cabo de Gata National Park, Almería, Spain. Fragments were classified into three size classes (< 300, 300–900, and > 900 ha). Fragment connectivity was quantified using the distances between fragments. Spatial dispersal ability was quantified for the 187 species recorded in the study. Species with restricted dispersal had the highest degree of long‐range spatial autocorrelation and, species that disperse by biotic vectors (e.g. vertebrates), the lowest. In addition, species most susceptible to fragmentation are vertebrate‐dispersed shrubs, which declined in abundance and was associated with loss of spatial organization in the smallest fragments. It is postulated that the positive feedback between abundance of recruitment and vertebrate visits influences the colonization and persistence of vertebrate‐dispersed shrubs, explaining its abundance in large fragments. Indeed, fragments lower than a certain threshold reduced spatial organization not only in shrubs with biotic dispersal, but also in species with abiotic dispersal (mainly wind) and with restricted dispersal. Fragments lower than a certain threshold may be vulnerable to a cascade of species loss because of reduced recruitment, establishment and patch biomass as a result of natural senescence, finally breaking up facilitative plant interactions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 935–947.  相似文献   

9.
Bell miners (Manorina melanophrys; Meliphagidae) are a highly social and very aggressive honeyeater. They are despotic and cooperate in the defence of their territories against other bird species, leading to the almost complete exclusion of other avifauna from miner‐occupied regions. This study aimed to resolve some of the fine‐scale effects of bell miner aggression on avian diversity both within and adjacent to colonies to determine the true impact of a colony on local avifaunal abundance. Three areas, distributed throughout the range of the bell miner, were surveyed across both non‐breeding and breeding seasons to assess the temporal and spatial impacts of bell miner aggression on other bird species. Bell miner colonies were found to occupy very clearly defined areas and had the expected negative impact on avian diversity within their colony. The effects of bell miner colony presence on abundance and richness of avian species were found to cease at the colony boundary, with both recovering to normal levels immediately outside the bell miner colony. Whether bell miners were breeding or not, and irrespective of the amount of vegetation coverage, bell miner colonies were found to have relatively marginal impacts on avian richness and abundance. No impact of colony presence/absence was found on the richness or abundance of the avian species that dwell in the undergrowth, with some evidence that these species were actually more common at the colony edge. Our results demonstrate that the influence of bell miner colony presence upon avian biodiversity is restricted to the confines of the colony and does not radiate outwards into the surrounding habitat. Colony presence influences, therefore, have implications when considering the impact of bell miner behaviour on the diversity of insectivorous birds and processes, most notably the propagation of Bell Miner Associated Dieback.  相似文献   

10.
We explored how a woody plant invader affected riparian bird assemblages. We surveyed 15 200‐m‐long transects in riparian zones in a much‐changed landscape of eastern Victoria, Australia. Abundance, species‐richness, foraging‐guild richness and composition of birds were compared in transects in three habitat types: (i) riparian zones dominated by the invasive willow Salix × rubens; (ii) riparian zones lined with native woody species; and (iii) riparian zones cleared of almost all woody vegetation. We also measured abundance and richness of arthropods and habitat structure to explore further the effects of food resources and habitat on the avifauna. We observed 67 bird species from 14 foraging guilds. Native riparian transects had more birds, bird species and foraging guilds than willow‐invaded or cleared transects. Habitat complexity increased from cleared to willow‐invaded to native riparian transects, as did abundance of native and woodland‐dependent birds. Native shrub and trees species had more foliage and branch‐associated arthropods than did willows, consistent with a greater abundance and variety of foraging guilds of birds dependent on this resource. Willow spread into cleared areas is unlikely to facilitate greatly native bird abundance and diversity even though habitat complexity is increased. Willow invasion into the native riparian zone, by decreasing food resources and altering habitat, is likely to reduce native bird biodiversity and further disrupt connectivity of the riparian zone.  相似文献   

11.
Understanding the effects of anthropogenic disturbances on biodiversity is important for conservation prioritization. This study examined the effects of vegetation degradation on bird diversity in Abiata‐Shalla Lakes National Park, Ethiopia. We surveyed birds and vegetation structure between January and March 2015 in disturbed (impacted by settlement and agriculture) and undisturbed (not impacted) transects of two vegetation types (savannah woodland and gallery forest). We compared between disturbed and undisturbed transects at local (within vegetation types) and landscape (across vegetation types) levels: (a) avian species richness of the entire assemblage and feeding guilds and (b) species assemblage composition. We found significantly greater mean and total bird species richness of the entire assemblage and insectivore and granivore feeding guilds in the undisturbed transects, while the nectarivore guild was totally absent in the disturbed transects. We also found significant differences in bird species assemblage composition between the disturbed and undisturbed transects both within and across the vegetation types, and bird species assemblage composition at the landscape level was positively correlated with tree abundance and understorey vegetation height. In conclusion, our results demonstrate and add to the increasing body of evidence concerning the adverse effects of human‐induced vegetation change on bird diversity.  相似文献   

12.
Tree health is often negatively linked with the localized abundance of parasitic invertebrates. One group, the sap‐sucking psyllid insects (Homoptera: Psyllidae) are well known for their negative impact upon vegetation, an impact that often culminates in the defoliation and even death of hosts. In Australia, psyllid‐infested forest in poor health is also frequently occupied by a native honeyeater, the bell miner (Manorina melanophrys; Meliphagidae), so much so that the phenomenon has been dubbed ‘bell miner‐associated dieback’ (BMAD). Bell miners are thought to be the causative agent behind BMAD, in part because the species may selectively forage only upon the outer covering (lerp) exuded by psyllid nymphs, leaving the insect underneath to continue parasitizing hosts. As bell miners also aggressively exclude all other avian psyllid predators from occupied areas, these behavioural traits may favour increases in psyllid populations. We examined bell miner foraging behaviour to determine if non‐lethal foraging upon psyllid nymphs occurred more often than in a congener, the noisy miner (M. melanocephala; Meliphagidae). This was indeed the case, with bell miners significantly more likely to remove only the lerp covering during feeding, leaving the insect intact underneath. This arose from bell miners using their tongue to pry off the lerp cases, whereas noisy miners used their mandibles to snap at both the lerp and insect underneath. Furthermore, psyllids left behind following a bell miner foraging event were significantly more likely to be viable and regrow a lerp covering than those exposed by noisy miners. Together, this behaviour supports the theory that non‐lethal foraging behaviour of bell miners may contribute to high psyllid abundance, consistent with the mechanisms by which BMAD is thought to develop.  相似文献   

13.
The impact of forest management on diurnal bird assemblages and abundance was investigated in contiguous tracts of eucalypt forest in the Brigalow Belt Bioregion, south central Queensland. Sites were located across three levels of livestock grazing intensity and three levels of selective logging intensity within the most extensive habitat type, Corymbia citriodora‐dominant forest. We recorded a high rate of incidence and large numbers of the hyper‐aggressive noisy miner Manorina melanocephala (Passeriformes: Meliphagidae) at the majority of our survey sites, a phenomenon rarely reported in non‐cleared landscapes. As shown by numerous studies in fragmented landscapes, the distribution of this species in our study had a substantial negative effect upon the distribution of small passerine species. Noisy miners exerted the strongest influence upon small passerine abundance, and masked any forest management effects. However, key habitat features important for small passerines were identified, including a relatively high density of large trees and stems in the midstorey. Selective logging appeared to exert a minimal effect upon noisy miner abundance, whereas grazing intensity had a profound, positive influence. Noisy miners were most abundant in intensively grazed forest with minimal midstorey and a low volume of coarse woody debris. Higher road density in the forest landscape also corresponded with increased numbers of noisy miners. Reduction in grazing pressure in Brigalow Belt forests has the potential to benefit small passerine assemblages across large areas through moderating noisy miner abundance. The strong relationship between noisy miners and small passerines suggests that noisy miner abundance could act as an easily measured indicator of forest condition, potentially contributing to monitoring of forest management outcomes.  相似文献   

14.
Habitat loss and fragmentation can have severe negative and irreversible effects on biodiversity. We investigated the effects of forest fragmentation on frog diversity in Singapore because of its high rates of deforestation and the demonstration that frogs are some of the most sensitive species to habitat degradation. We surveyed frog species in 12 forest fragments varying from 11 to 935 ha. We compared differences in species richness, abundance, and Shannon's index in relation to forest fragment size, connectivity (distance between fragments), and breeding habitat heterogeneity. A total of 20 species from 12 genera and five families were encountered in 12 fragments. Larger fragments and those closer to larger fragments had higher species richness. Abundance, however, was not correlated with forest area or connectivity, but we found fewer individual frogs in the larger fragments. We also found that breeding habitat heterogeneity best explained frog species diversity and abundance in forest fragments. Fragments with a high diversity of breeding habitats had more species. We found no evidence to suggest that abundance and diversity are strongly correlated, particularly in disturbed areas, but that breeding habitat heterogeneity is an under-appreciated factor that should be considered when prioritizing areas for anuran conservation. Enriching breeding habitat heterogeneity, creating corridors between fragments, and reforesting degraded areas are some of the most beneficial strategies for preserving urban frog biodiversity.  相似文献   

15.
Human activities often cause habitat fragmentation and how forest fragments affect species range distributions has implications for ecology and conservation. However, few studies have considered communities within the same landscape. Here, we analyzed metacommunity structure to determine the range distributions for species in four taxonomic groups (amphibians, birds, social wasps, and trees) in a patchy landscape of semi‐deciduous Atlantic forest in southwestern Brazil. Although trees are a key component of the environment for animals in forested patches, the ranges of bird, wasp, and amphibian species did not change in concert with the species ranges of trees. The species ranges of amphibians and social wasps were unaffected by fragmentation gradients and exhibited independent distribution patterns (i.e., random structure). In contrast, birds and trees exhibited range turnover along different fragmentation gradients, indicating that species show idiosyncratic responses to abiotic factors (i.e., Gleasonian structure). For birds, some less‐resilient species occurred only in fragments with a large area of native vegetation at a radius of 5 km from the center of the sampled forest fragments, whereas other more stress‐tolerant species occurred only in sites with small areas of native vegetation. For trees, some later succession species (e.g., animal‐dispersed seeds) occurred only in fragments with high connectivity, whereas earlier‐recruiting species (e.g., wind‐dispersed seeds) occurred in fragments with low connectivity. Thus, determining the effects of human‐modified landscapes on species range distributions, even within the same landscape, might not be a trivial task.  相似文献   

16.
Interspecific interactions are crucial in determining species occurrence and community assembly. Understanding these interactions is thus essential for correctly predicting species' responses to climate change. We focussed on an avian forest guild of four hole‐nesting species with differing sensitivities to climate that show a range of well‐understood reciprocal interactions, including facilitation, competition and predation. We modelled the potential distributions of black woodpecker and boreal, tawny and Ural owl, and tested whether the spatial patterns of the more widespread species (excluding Ural owl) were shaped by interspecific interactions. We then modelled the potential future distributions of all four species, evaluating how the predicted changes will alter the overlap between the species' ranges, and hence the spatial outcomes of interactions. Forest cover/type and climate were important determinants of habitat suitability for all species. Field data analysed with N‐mixture models revealed effects of interspecific interactions on current species abundance, especially in boreal owl (positive effects of black woodpecker, negative effects of tawny owl). Climate change will impact the assemblage both at species and guild levels, as the potential area of range overlap, relevant for species interactions, will change in both proportion and extent in the future. Boreal owl, the most climate‐sensitive species in the guild, will retreat, and the range overlap with its main predator, tawny owl, will increase in the remaining suitable area: climate change will thus impact on boreal owl both directly and indirectly. Climate change will cause the geographical alteration or disruption of species interaction networks, with different consequences for the species belonging to the guild and a likely spatial increase of competition and/or intraguild predation. Our work shows significant interactions and important potential changes in the overlap of areas suitable for the interacting species, which reinforce the importance of including relevant biotic interactions in predictive climate change models for increasing forecast accuracy.  相似文献   

17.
The effect of isolation and the importance of dispersal in establishing and maintaining populations in fragments of remnant habitat remain poorly understood. Nevertheless, environmental connectivity is likely to be important for ensuring the long‐term preservation of biodiversity in extensively cleared landscapes. In this study, we compared reptile communities in large conservation parks with those in small woodland remnants 6.5–12 km from the parks, on the Eyre Peninsula, South Australia, Australia. We assessed the impact of fragmentation on the abundance, richness and habitat preferences of reptiles, and examined whether connection to linear roadside vegetation altered reptile communities in small woodland remnants. Of the 31 reptile species, 12 were restricted to conservation parks and six to habitat fragments in farmland. There was a substantial reduction in reptile species richness and abundance in farmland fragments. Direct connection of remnant vegetation to roadside corridors did not affect abundance of common species in the farmland fragments, although species richness was lower in isolated remnants in one of our two study regions. The habitat preference of the scincid lizard Menetia greyii differed between farmland fragments, where they were regularly found on dunes and roadsides, and conservation parks, where they were rare and not detected on dunes. We suggest that habitat fragmentation may have altered interspecific interactions, enabling an expansion of habitat use in the farming landscape. Significantly lower abundance of four common species in farmland settings compared with reserves indicated that existing corridors and small fragments provide inadequate connectivity over larger distances. To counter this effect, large reserves may need to be less than 10 km apart.  相似文献   

18.
Anthropogenic fragmentation of habitat and populations is recognized as one of the most important factors influencing loss of biodiversity. Since it is difficult to quantify demographic parameters in small populations, we need alternative methods to elucidate important factors affecting the viability of local populations. The Fennoscandian arctic fox inhabits a naturally fragmented alpine tundra environment, but historic anthropogenic impacts have further fragmented its distribution. After almost 80 yr of protection, the population remains critically endangered. Both intrinsic factors (related to the isolation and size of sub‐populations) and extrinsic factors (related to environmental conditions influencing patch quality and interspecific competition) have been proposed as explanations for the lack of population growth. To distinguish between these hypotheses, we conducted a spatially explicit analysis that compares areas where the species has persisted with areas where it has become locally extinct. We used characteristics of the fragments of alpine tundra habitat and individual arctic fox breeding dens (including both currently active dens and historically active dens) within the fragments to evaluate the importance of habitat characteristics and connectivity in explaining variation in persistence within a fragment. The number of reproductive events in a fragment was related to the size of the fragment, but not more than expected following a 1:1 relationship, suggesting little effect of fragment size on the relative number of reproductions. The likelihood of a den being used for breeding was positively associated with factors minimising interspecific competition as well as increasing within‐fragment connectivity. These results support the idea that the failure of Fennoscandian arctic fox to recover is caused by demographic factors that can be related to fine‐scale Allee or Allee‐like effects, as well as environmental influences related to increased competition and exclusion by red foxes.  相似文献   

19.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

20.
Abstract The conservation of biodiversity is dependent on protecting ecosystem‐level processes. We investigated the effects of fragment size and habitat edge on the relative functioning of three ecological processes – decomposition, predation and regeneration of trees – in small Afromontane forests in KwaZulu‐Natal, South Africa. Ten sampling stations were placed in each of four forest categories: the interior of three large indigenous forest fragments (100 m from the edge), the edges of these large fragments, 10 small indigenous fragments (<1 ha) and 10 small exotic woodlands (<0.5 ha). Fragment size and edge effects did not affect the abundance of the amphipod Talitriator africana, a litter decomposer, and overall dung beetle abundance and species richness significantly. Bird egg predation was marginally greater at large patch edges compared with the other forest categories, while seed predation did not differ among forest categories. Tree seedling assemblage composition did not differ significantly among large patch interiors and edges, and small indigenous fragments. Sapling and canopy assemblage composition each differed significantly among these three indigenous forest categories. Thus, while tree recruitment was not negatively affected by patch size or distance from the edge, conditions in small fragments and at edges appear to affect the composition of advanced tree regeneration. These ecological processes in Afromontane forests appear to be resilient to fragmentation effects. We speculate that this is because the organisms in these forests have evolved under fragmented conditions. Repeated extreme changes in climate and vegetation over the Pleistocene have acted as significant distribution and ecological extinction filters on these southern hemisphere forest biota, resulting in fauna and flora that are potentially resilient to contemporary fragmentation effects. We argue that because small patches and habitat edges appear to be ecologically viable they should be included in future conservation decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号