首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Abstract. The thermal preferences of Alaskozetes antarcticus (Acari, Cryptostigmata) and Cryptopygus antarcticus (Collembola, Isotomidae) were investigated over 6 h within a temperature gradient (?3 to +13 °C), under 100% relative humidity (RH) conditions. After 10 days of acclimation at ?2 or +11 °C, individual supercooling points (SCP) and thermopreferences were assessed, and compared with animals maintained for 10 days under fluctuating field conditions (?6 to +7 °C). Acclimation at ?2 °C lowered the mean SCP of both A. antarcticus (?24.2 ± 9.1) and C. antarcticus (?14.7 ± 7.7) compared to field samples (?19.0 ± 9.0 and ?10.7 ± 5.2, respectively). Acclimation at +11 °C increased A. antarcticus mean SCP values (?13.0 ± 8.5) relative to field samples, whereas those of C. antarcticus again decreased (?16.7 ± 9.1). Mites acclimated under field conditions or at +11 °C selected temperatures between ?3 and +1 °C. After acclimation at ?2 °C, both species preferred +1 to +5 °C. Cryptopygus antarcticus maintained under field conditions preferred +5 to +9 °C, whereas individuals acclimated at +11 °C selected +9 to +13 °C. For A. antarcticus, thermopreference was not influenced by its cold hardened state. The distribution of field specimens was further assessed within two combined temperature and humidity gradient systems: (i) 0–3 °C/12% RH, 3–6 °C/33% RH, 6–9 °C/75% RH and 9–12 °C/100% RH and (ii) 0–3 °C/100% RH, 3–6 °C/75% RH, 6–9 °C/33% RH and 9–12 °C/12% RH. In gradient (i), C. antarcticus distributed homogeneously, but, in gradient (ii), C. antarcticus preferred 0–3 °C/100% RH. Alaskozetes antarcticus selected temperatures between 0 and +6 °C regardless of RH conditions. Cryptopygus antarcticus appears better able than A. antarcticus to opportunistically utilize developmentally favourable thermal microclimates, when moisture availability is not restricted. The distribution of A. antarcticus appears more influenced by temperature, especially during regular freeze‐thaw transitions, when this species may select low temperature microhabitats to maintain a cold‐hardened state.  相似文献   

2.
The germination requirements of sexually reproducing plants are regulated by environmental factors such as temperature. Those factors acting at the germination phase are part of the regeneration niche, which is fundamental in the processes that contribute to habitat suitability and geographic distribution. We tested the hypothesis that rarity is associated with regeneration niche in three species of plants in the family Gesneriaceae (tribe Sinningieae), Sinningia rupicola (Mart.) Wiehler, Paliavana sericiflora Benth and Sinningia allagophylla (Mart.) Wiehler, which vary in their distribution and habitat specificity but share a small zone of sympatry in rocky fields south of Belo Horizonte in Minas Gerais, Brazil. The regeneration niche was tested using a seed germination experiment under controlled light conditions at seven fixed temperatures (10–40°C at 5°C intervals). Each of the three species germinated differently at the various temperatures. The species with the smallest geographic range, S. rupicola, also had the most restricted germination: germination peaked at 15°C when relatively few seeds germinated (45%), and even fewer germinated at other temperatures. The regeneration niche was wider in P. sericiflora and wider still in S. allagophylla, with germination greater than 90% between 15–25°C and greater than 80% between 15–30°C, respectively. Our germination results provide qualified support for the hypothesis of correlation of the regeneration niche with geographic distribution of related plant taxa, with important conservation implications for rare and endangered species.  相似文献   

3.
At the present time 5 species of the genus Scopolia Jacq. are demonstrating the close relations between the distribution patterns, situations and ecology of plants. They are growing recently in broadleaved deciduous forests and mixed forests with a different part of evergreen trees, shrubs and perennial herbs. Hyoscyamus L., a genus of Hyoscyaminae has become adapted to increasing aridity and shows now a center of distribution in the mountains of the eastern Mediterranean area and Near East within a semiarid climate on the western side of Eurasia. Scopolia Jacq. may be judged as relictic genus of mixed Tertiary broadleaved forest with a special evolution center on the eastside of the Eurasian continent under humid monsoon conditions. The recent scattered and disjunct distribution with gaps in arid-semiarid areas indicates the result of a long way of plantevolution, plant dispersal and changable history of the vegetation. The important, climatical conditions for the growth of Scopolia species are sufficient rainfall and moisture in summertime. Chill and frost in winter were forcing these herbs in temperate and northern regions to survive in superficial strata of the soils.  相似文献   

4.
As key dispersers of herbaceous seeds, Aphaenogaster ants strongly influence the distribution of woodland plants in eastern North America. Ants within this genus are difficult to distinguish and often are identified by subgroup, but emerging research suggests they occupy species-specific ecological niches. As such, distinct climatic requirements among Aphaenogaster spp. might result in transient plant interactions with climate change. We examine whether there are ecological and distributional differences among Aphaenogaster species that coincide with current taxonomic differentiations. We use occurrence records for six Aphaenogaster spp. that occur in deciduous forests in eastern North America. We associate the geographic patterning of species occurrence with temperature and precipitation data, and we examine whether unique climatic niches characterize each species. We then predict habitat suitability throughout eastern North America using species distribution models. For verification, we test how well the predicted ranges fit observed occurrences using novel data sets for each species. We find that Aphaenogaster species within this cryptic genus demonstrate unique ecological and geographic signatures. Each species within the subgroup generally responds differently to temperature, and somewhat differently to precipitation and seasonal variance, suggesting unique ecological niches for each species. Our results indicate that each ant species may respond uniquely to changes in climate. Such shifts could disrupt current community associations and biotic interactions with ant-dispersed plants.  相似文献   

5.
Species distribution models (SDMs) have been widely used in the scientific literature. The majority of SDMs use climate data or other abiotic variables to forecast the potential distribution of a species in geographic space. Biotic interactions can affect the predicted spatial distribution of a species in many ways across multiple spatial scales, and incorporating these predictors in an SDM is a current topic in the scientific literature. Constrictotermes cyphergaster is a widely distributed termite in the Neotropics. This termite species nests in plants and more frequently nests in some arboreal species. Thus, this species is an excellent model to evaluate the influence of biotic interactions in SDMs. We evaluate the influences of climate and the geographic distribution of host plants on the potential distribution of C. cyphergaster. Three correlative models (MaxEnt) were built to predict the geographic distribution of the termite: (1) climate data, (2) biotic data (i.e., the geographic distribution of host plants), and (3) climate and biotic data. The models that were generated indicate that the potential geographic distribution of C. cyphergaster is concentrated in the Cerrado and Caatinga regions. In addition, path analysis and multiple regression revealed the importance of the direct effects of biological interactions in the geographic distribution of the termite, while climate affected the distribution of the termite mainly through indirect effects by influencing the geographic distributions of host plants. The current study endorses the importance of including biological interactions in SDMs. We recommend using biotic predictors in SDM studies of insect species, mainly because insects have important environmental services and biotic interaction data can improve the macroecological studies of this group.  相似文献   

6.
The Polylepis tarapacana forests found in Bolivia are unique with respect to their altitudinal distribution (4200–5200 m). Given the extreme environmental conditions that characterize these altitudes, this species has to rely on distinct mechanisms to survive stressful temperatures. The purpose of this study was to determine low‐temperature resistance mechanisms in P. tarapacana. Tissue was sampled for carbohydrate and proline contents and micro‐climatic measurements were made at two altitudes, 4300 and 4850 m, during both the dry cold and wet warm seasons. Supercooling capacity (?3 to ?6 °C for the cold dry and ?7 to ?9 °C for the wet warm season) and injury temperatures (?18 to ?23 °C for both seasons), determined in the laboratory, indicate that P. tarapacana is a frost‐tolerant species. On the other hand, an increase in supercooling capacity, as the result of significant increase in total soluble sugar and proline contents, occurs during the wet warm season as a consequence of higher metabolic activity. Hence, P. tarapacana, a frost‐tolerant species during the colder unfavourable season, is able to avoid freezing during the more favourable season when minimum night‐time temperatures are not as extreme.  相似文献   

7.
Predicting climate‐driven changes in plant distribution is crucial for biodiversity conservation and management under recent climate change. Climate warming is expected to induce movement of species upslope and towards higher latitudes. However, the mechanisms and physiological processes behind the altitudinal and latitudinal distribution range of a tree species are complex and depend on each tree species features and vary over ontogenetic stages. We investigated the altitudinal distribution differences between juvenile and adult individuals of seven major European tree species along elevational transects covering a wide latitudinal range from southern Spain (37°N) to northern Sweden (67°N). By comparing juvenile and adult distributions (shifts on the optimum position and the range limits) we assessed the response of species to present climate conditions in relation to previous conditions that prevailed when adults were established. Mean temperature increased by 0.86 °C on average at our sites during the last decade compared with previous 30‐year period. Only one of the species studied, Abies alba, matched the expected predictions under the observed warming, with a maximum abundance of juveniles at higher altitudes than adults. Three species, Fagus sylvatica, Picea abies and Pinus sylvestris, showed an opposite pattern while for other three species, such as Quercus ilex, Acer pseudoplatanus and Q. petraea, we were no able to detect changes in distribution. These findings are in contrast with theoretical predictions and show that tree responses to climate change are complex and are obscured not only by other environmental factors but also by internal processes related to ontogeny and demography.  相似文献   

8.
A palynological investigation of a Holocene profile from Lake Voulkaria, western Greece, was carried out as a contribution to the environmental history of the coastal area of northwestern Acarnania and the Classical city of Palairos. It shows that deciduous oaks dominated the natural vegetation of the area throughout the Holocene. Until ca. 7000 B.C. Pistacia occurred abundantly, while other evergreen woody taxa were rare. At ca. 6300 B.C. an expansion of Carpinus orientalis/Ostrya can be observed. Around ca. 5300 B.C. spreading of Erica indicates a change to a drier climate and/or first human impact. Since ca. 3500 B.C. an increase of evergreen shrubs now clearly indicates land-use. The foundation of the Classical city of Palairos led to a temporary expansion of Phillyrea maquis. Within this period, molluscs of brackish water indicate the use of the lake as a harbour after the construction of a connection to the sea. The deciduous Quercus woodland recovered when human impact decreased in the area, and lasted until modern times.  相似文献   

9.
Abstract 1 Based on climate data from a network of agrometeorological stations in Norway, the effects of current and future climate regimes on the spatial and temporal distribution of the Codling moth (Cydia pomonella) and the establishment potential of the Colorado potato beetle (Leptinotarsa decemlineata) were investigated. 2 The study was accomplished using climex , a dynamic climate matching‐ and climate response estimation model, which predicts potential distribution of an organism based on its known geographical distribution. 3 Validation of the climex model predictions for C. pomonella against field data on spatial distribution of the species in Norway resulted in a refined set of climate response parameters for C. pomonella. Temporal occurrence of C. pomonella seems to be affected by climate (temperature) and insecticide treatment against the Apple fruit moth (Argyresthia conjugella) in the previous season. 4 Climate change scenarios (0.1 °C increase per degree in latitude in daily maximum and minimum temperatures) indicated an extension of the potential geographical range for C. pomonella, and 23 new locations were found favourable for its long‐term survival. The abundance and pest status of C. pomonella could increase dramatically in those locations where the species is already established. 5 Leptinotarsa decemlineata would only temporarily find suitable climate conditions in Norway and hence only be able to establish interim populations in a few regions under current climate conditions. Climate change scenarios for L. decemlineata indicated that the species would be able to establish as far north as 64°N, mainly in the inland of eastern Norway. 6 In general, the methods applied support the process of decreasing the uncertainty both in our knowledge about the pests themselves and about the environment, which are crucial elements in predicting whether a species is able to establish in a new area.  相似文献   

10.
Aim To contribute to the intense debate surrounding the relative influence of climate and humans on Mediterranean‐region land cover over the past 6000 years, we assess the Holocene biogeography and vegetation history of southern Europe by means of an extensive pollen record dataset. Location The Mediterranean biogeographical zone and neighbouring parts of Iberia, the Alps and Anatolia, between 30° N, 48° N, 10° W and 45° E. Methods We compiled a southern European pollen record dataset using available pollen databases (124 sites) and other sources (74 sites), with improved spatial coverage and dating control compared with earlier studies. We used only those sites that had pollen data for both 0 ka and 6 ka. We reconstructed mid‐Holocene and present‐day biomes, arboreal pollen percentages and distribution and relative abundance of 11 key woody taxa, with anomaly maps. Results Northern temperate forest biomes extended further south at the mid‐Holocene than at present, but not as far as earlier studies suggested. Sclerophyllous vegetation occurred along the Mediterranean coast throughout the region at 6 ka. Arboreal pollen percentages were up to 50% higher than at present. At 6 ka, Olea, Fagus and Juniperus had smaller distributions and/or abundances; Abies, Cedrus and both deciduous and evergreen Quercus had larger distributions and/or abundances; Phillyrea, Pistacia and Cistus showed minimal difference; and Pinus showed a cosmopolitan distribution with variable abundance. Main conclusions Temporal difference analysis is more meaningful when only sites containing samples for all time slices are analysed. During the mid‐Holocene, southern Europe was more heavily forested with temperate vegetation than it is at present, but drought‐tolerant xeric vegetation was still widespread along the southern margins of the region. Although human land use may have caused the degradation of land between the mid‐Holocene and the present, the mere presence of xeric vegetation in the Mediterranean region does not require human impact. This challenges the commonly held belief that modern Mediterranean vegetation represents a ‘degraded’ state.  相似文献   

11.
Aim Climate change has far‐reaching effects on species and ecosystems. The aims of this study were to determine how climate factors affect the growth pattern of indigenous and exotic trees in Zambia and to predict tree growth responses to a warmer climate with the use of mathematical models. Location Two savanna sites in central Zambia. Methods Diameter at breast height (1.3 m above ground, d.b.h.) of 91 permanently marked trees belonging to three indigenous and four exotic species was measured fortnightly for periods of 1–2 years from 1998 to 2003. Correlation and regression analysis was used to determine the effect of climate factors (minimum, maximum and average temperature and rainfall) on monthly daily d.b.h. increment of each species. Regression models were used to predict the growth behaviour of trees under a 0.5 °C warmer climate. Results Interactions between temperature and rainfall explained 60–98% of the variation in d.b.h. increment in all the tree species, except the exotic Eucalyptus grandis. For deciduous species, stem expansion was delayed by 2–12 weeks following leaf‐flush and d.b.h. increment peaked during the rainy season. Evergreen and deciduous species could not be separated on the basis of annual d.b.h. increment because the higher growth rates of deciduous species compensated for the shorter growing period. Mathematical models predicted slight changes in d.b.h. growth pattern under a 0.5 °C warmer climate in five of the seven species. Significant changes in d.b.h. growth patterns were predicted in the indigenous Bridelia micrantha and exotic Gmelina arborea under a warmer climate. However, models failed to adequately represent potential soil water stress that might result from changes in tree growth patterns and a warmer climate. Main conclusions Climate factors explained a large proportion of the variation in diameter growth of both indigenous and exotic trees, rendering it possible to model tree growth patterns from climate data. Tree growth models suggest that a rise in temperature of 0.5 °C is unlikely to induce significant changes in the growth behaviour of the majority of the studied species. However, because the growth behaviour of some species may be substantially affected by climate change, it is recommended that strategies for the future production of such climate‐sensitive trees should incorporate aspects of climate change.  相似文献   

12.
Intertidal organisms are often assumed to live close to their thermal limits, and have emerged as potential early indicators of the effects of climate change. We compared our survey of the 2004–2006 geographic distribution of the barnacle Semibalanus balanoides to its distribution in 1872, 1955, 1963, 1971, and 1985, from surveys by Fischer, Crisp, Fischer-Piette, Barnes, Powell, and Southward. The southern geographic limit has retreated 300 km in France since 1872, at a rate of 15 to 50 km per decade. We compared our 2006 survey of the geographic distribution of the polychaete Diopatra neapolitana to its distribution in 1893–1923, from surveys by Saint-Joseph and Fauvel, and its distribution in 1969–1976 from surveys by Glémarec. The northern geographic limit of this species has advanced 300 km in France since 1893 at similar rates to Semibalanus. We used NOAA weather reanalysis data and our mechanistic simulation model of intertidal animal body temperatures to hindcast the thermal environmental change near historical geographic limits in Europe for the past 55 years. Results indicate that changes in the southern limit of S. balanoides are due to intolerance of winter body temperatures above 10°C, leading to reproductive failure. Results for Diopatra are ambiguous: based on the northern extension of its range, either cold winters or cool summers limit its range, while gaps in its distribution are consistent with limitation by cooler summer conditions. The parallel shifts of D. neapolitana on sedimentary shores and Semibalanus on rocky shores suggest that similar climatic factors control the geographic limits of both species. The intertidal zone is a model system for examining the effects of climate change on biogeographic change both because of the rapidity of its response, and because the rich historical record allows direct tests of hypotheses. Guest editors: J. Davenport, G. Burnell, T. Cross, M. Emmerson, R. McAllen, R. Ramsay & E. Rogan Challenges to Marine Ecosystems  相似文献   

13.
The distribution of the dinoflagellate genus Ceratium Schrank (Dinophyceae) in the North Atlantic and adjacent seas was studied by a combination of new observations on a large number of plankton samples collected from the northeastern Atlantic and North Sea, data from cruises off the east coast of North America and Caribbean Sea, and reports in the literature of the past 90 years. Seventy species were recorded, and their distribution was examined by several methods. Distribution maps were plotted for all species, and from these the ranges of temperature tolerance were derived. The 240 sets of data, which took the form of lists of species present in 5° latitude / longitude blocks obtained from the new work and the published material, were analyzed by clustering and ordination multivariate techniques using the programs Twinspan and Decorana. Analysis of the individual species showed that surface water temperature is the most important factor determining distribution and the number of species in a particular area. Warm water and /or low latitudes have many more species than cold waters and/or high latitudes. For example, at 5°N there are on average 23 species per block, whereas at 60° N there are only 8 species. On the basis of this work, the Ceratium species are divided into Group 1, Arctic-temperate species normally only found in water of less than 15°C; Group 2, cosmopolitan species, which are found virtually everywhere and are the species most likely to form blooms or “brown water”; Group 3, intermediate species, which extend into neither the coldest nor the warmest water; Group 4, temperate-tropical species, which have a lower temperature boundary of 5°–12° C; Group 5, warm-temperate-tropical species with a lower temperature boundary of 14°–15°C; and Group 6, tropical species, which are rarely found in water of less than 20° C. Analysis of the sample sites also confirmed the predominant influence of temperature, and the Atlantic Ocean was divided into four biogeographical zones of which the boundaries follow isotherms of surface water temperature. Zone 1 consists of the Arctic and subarctic area, with the southern boundary closely following the 10° mean annual temperature (MAT) line. Zone 2 is an intermediate or cold-temperate zone, of which the southern boundary follows the winter 10° C MAT isotherm or the similarly placed summer 15° isotherm. Zone 3 is the warm-temperate or subtropical zone, which is very broad. The southern boundary closely follows the 25°C summer isotherm. Zone 4 is the tropical zone, where water temperature is never likely to be much less than 23°C. These findings are discussed in relation to experimental work and environmental observations. We suggest that the genus Ceratium provides an excellent tool for defining ocean currents and temperature changes and may become of value in studies of global change.  相似文献   

14.
Focusing on the southern green stink bug, Nezara viridula (Pentatomidae), in central Japan the effects of climate change on true bugs (Insecta: Heteroptera) are reviewed. In the early 1960s, the northern edge of the species's distribution was in Wakayama Prefecture (34.1°N) and distribution was limited by the +5°C coldest month (January) mean temperature isothermal line. By 2000, N. viridula was recorded 70 km further north (in Osaka, 34.7°N). Historical climate data were used to reveal possible causes of the northward range expansion. The increase of mean and lowest winter month temperatures by 1–2°C in Osaka from the 1950s to the 1990s improved potential overwintering conditions for N. viridula. This promoted northward range expansion of the species. In Osaka, adult diapause in N. viridula is induced after mid‐September, much later than in other local seed‐feeding heteropterans. This late diapause induction results in late‐season ineffective reproduction: some females start oviposition in autumn when the progeny have no chance of attaining adulthood and surviving winter. Both reproductive adults and the progeny die. A period from mid‐September to early November represents a phenological mismatch: diapause is not yet induced in all adults, but it is already too late to start reproduction. Females that do not start reproduction but enter diapause in September have reduced postdiapause reproductive performance: they live for a shorter period, have a shorter period of oviposition and produce fewer eggs in smaller egg masses compared with females that emerge and enter diapause later in autumn. To some extent, N. viridula remains maladapted to Osaka environmental conditions. Ecological perspectives on establishment in recently colonized areas are discussed. A review of available data suggests that terrestrial and aquatic Heteroptera species respond to climate change by shifting their distribution ranges, changing abundance, phenology, voltinism, physiology, behaviour, and community structure. Expected responses of Heteroptera to further climate warming are discussed under scenarios of slight (<2°C) and substantial (>2°C) temperature increase.  相似文献   

15.
The temperature dependence of NADH:NR activity was examined in several marine phytoplankton species and vascular plants. These species inhabit divergent thermal environments, including the chromophytes Skeletonema costatum (12–15° C), Skeletonema tropicum (18–25° C), Thalassiosira antarctica (?2 to 4° C), and Phaeocystis antarctica (?2 to 4° C), the green alga Dunaliella tertiolecta (14–28° C), and the vascular plants Cucurbita maxima (20–35° C) and Zea mays (20–25° C). Despite the difference in growth habitats, similar temperature response curves were observed among the chromophytic phytoplankton, with temperatures optimal for NR activity being between 10–20° C. In contrast, the chlorophyll b‐containing alga and vascular plants exhibited optimal temperatures for NR activity above 30° C. Such dramatic differences in NR thermal characteristics from the two taxonomic groups reflect a divergence in NR structure that may be associated with the evolutionary diversification of chromophytes and chlorophytes. Further, it suggests a potential contribution of the thermal performance of NR to the geographic distributions, seasonal abundance patterns, and species composition of phytoplankton communities. NR partial activities, which assess the individual functions of Mo‐pterin and FAD domains, were evaluated on NR purified from S. costatum to determine the possible causes for high temperature (>20° C) inactivation of NR from chromophytes. It was found that the FAD domain and electron transport among redox centers were sensitive to elevated temperatures. S. costatum cells grown at 5, 15, and 25° C exhibited an identical optimal temperature (15° C) for NADH:NR activity, whereas the maximal NR activity and NR protein levels differed and were positively correlated with growth temperature and growth rate. These findings demonstrate that thermal acclimation of NO3? reduction capacity is largely at the level of NR protein expression. The consequences of these features on NO3? utilization are discussed.  相似文献   

16.
狭义蛇葡萄属(Ampelopsis s. str.)是葡萄科的落叶木质藤本植物,主要分布在北半球温带地区,特别是东亚为其重要的分布和演化中心。该研究选取了狭义蛇葡萄属15个种的37个样本,对其5个叶绿体基因片段(trnL-F、rps16、psbA-trnH、atpB-rbcL和trnK-petN)和2个核基因标记(ITS和GAI1)进行了分子测序;利用测序获得的分子数据探讨属内的系统发生关系,叶的性状演化以及生物地理起源演化。结果表明:(1)狭义蛇葡萄属是一个单系类群,属内东亚地区的物种聚成一支。(2)叶绿体基因数据分析结果表明,狭义蛇葡萄属东亚支系分为两支系,这两支系的分布范围大致与东亚植物区系的中国-日本森林和中国-喜马拉雅森林亚区范围相一致。(3)形态演化分析表明,掌状复叶为祖征,叶形态性状存在多次的独立起源和演化,其变化与系统进化没有明显的关系。(4)生物地理分析结果表明,狭义蛇葡萄属起源于北美,渐新世晚期至中新世早期迁移扩散至欧洲,中新世中期随着全球气温回暖迁移至东亚,并进一步在东亚地区快速分化形成多样化中心,这可能与中新世时期的气候温暖、受第四纪冰川影响较少以及东亚地区复杂...  相似文献   

17.
  • By the year 2100, temperatures are predicted to increase by about 6 °C at higher latitudes and about 3 °C in the tropics. In spite of the smaller increase in the tropics, consequences may be more severe because the climatic niches of tropical species are generally assumed to be rather narrow due to a high degree of climate stability and higher niche specialisation. However, rigorous data to back up this notion are rare.
  • We chose the megadiverse genus Anthurium (Araceae) for study. Considering that the regeneration niche of a species is crucial for overall niche breadth, we focused on the response of germination and early growth through a temperature range of 24 °C of 15 Anthurium species, and compared the thermal niche breadth (TNB) with the temperature conditions in their current range, modelled from occurrence records.
  • Surprisingly, an increase of 3 °C would lead to a larger overlap of TNB of germination and modelled in situ temperature conditions, while the overlap of TNB of growth with in situ conditions under current and future conditions is statistically indistinguishable.
  • We conclude that future temperatures tend to be closer to the thermal optima of most species. Whether this really leads to an increase in performance depends on other abiotic and biotic factors, most prominently potentially changing precipitation patterns.
  相似文献   

18.
Climate change driven ocean warming and acidification is potentially detrimental to the sensitive planktonic life stages of benthic marine invertebrates. Research has focused on the effects of acidification on calcifying larvae with a paucity of data on species with alternate developmental strategies and on the interactive effects of warming and acidification. To determine the impact of climate change on a conspicuous component of the intertidal fauna of southeast Australia, the development of the noncalcifying lecithotrophic larvae of the sea star Meridiastra calcar was investigated in the setting of predicted ocean warming (+2 to 4 °C) and acidification (?0.4 to 0.6 pH units) for 2100 and beyond in all combinations of stressors. Temperature and pH were monitored in the habitat of M. calcar to place experiments in context with current environmental conditions. There was no effect of temperature or pH on cleavage stage embryos but later development (gastrula‐larvae) was negatively effected by a +2 to 4 °C warming and there was a negative effect of ?0.6 pH units on embryos reaching the hatched gastrula stage. Mortality and abnormal development in larvae increased significantly even with +2 °C warming and larval growth was impaired at +4 °C. For the range of temperature and pH conditions tested, there were no interactive effects of stressors across all stages monitored. For M. calcar, warming not acidification was the dominant stressor. A regression model incorporating data from this study and projected increasing SST for the region suggests an increase in larval mortality to 70% for M. calcar by 2100 in the absence of acclimation and adaptation. The broad distribution of this species in eastern Australia encompassing subtropical to cold temperate thermal regimes provides the possibility that local M. calcar populations may be sustained in a warming world through poleward migration of thermotolerant propagules, facilitated by the strong southward flow of the East Australian Current.  相似文献   

19.
Accelerated climate change represents a major threat to the health of the planet's biodiversity. Particularly, lizards of the genus Xenosaurus might be negatively affected by this phenomenon because several of its species have restricted distributions, low vagility, and preference for low temperatures. No study, however, has examined the climatic niche of the species of this genus and how their distribution might be influenced by different climate change scenarios. In this project, we used a maximum entropy approach to model the climatic niche of 10 species of the genus Xenosaurus under present and future suitable habitat, considering a climatic niche conservatism context. Therefore, we performed a similarity analysis of the climatic niche between each species of the genus Xenosaurus. Our results suggest that a substantial decrease in suitable habitat for all species will occur by 2070. Among the most affected species, Xtzacualtipantecus will not have suitable conditions according to its climatic niche requirements and Xphalaroanthereon will lose 85.75% of its current suitable area. On the other hand, we found low values of conservatism of the climatic niche among species. Given the limited capacity of dispersion and the habitat specificity of these lizards, it seems unlikely that fast changes would occur in the distribution of these species facing climate change. The low conservatism in climatic niche we found in Xenosaurus suggests that these species might have the capacity to adapt to the new environmental conditions originated by climate change.  相似文献   

20.
Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open‐air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal‐temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear‐cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7 °C, +3.4 °C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72‐7.0 m2 plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (?Tbelow) of +1.84 °C and +3.66 °C at 10 cm soil depth and (?Tabove) of +1.82 °C and +3.45 °C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small‐statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号