首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Caribbean reef-building corals Acropora palmata and Acropora cervicornis have undergone widespread declines in the past two decades, leading to their designation as candidates for listing under the United States Endangered Species Act. Whole-reef censuses in 1983 and 2000 at Looe Key National Marine Sanctuary in the Florida Keys provide estimates of areal loss of live Acropora spp. cover. Area (square meters) of live coral cover was quantified from depiction on scaled base maps of extent of coral cover observed by a snorkeler on each reef spur at each census. Certain thickets appear to have been persistent (though none expanded), but the total area of live A. palmata at Looe Key is estimated to have declined by 93% and A. cervicornis by 98% during this 17-year interval. It is likely that acroporid populations may have already undergone substantial decline prior to our initial census in 1983.  相似文献   

2.
Haliclona sp. 628 (Demospongiae, Haplosclerida, Chalinidae), a sponge found on the reef slope below 5 m depth on the Great Barrier Reef, has two unusual characteristics. It contains a symbiotic dinoflagellate, Symbiodinium sp., similar in structure to the dinoflagellate found within Acropora nobilis (S. microadriaticum), and it contains coral nematocysts randomly distributed between the ectosome and endosome and usually undischarged in intact sponge tissue. Given the unusual occurrence of nematocysts in Haliclona sp. 628, the focus of this study was to determine the distribution of this species of sponge on the reef slope at Heron Island Reef in relation to the distribution of potential coral donors. A combination of line and belt transects was used to estimate the abundance of Haliclona sp. 628 and a co-occurring congener, Haliclona sp. 1031, which does not contain nematocysts, at three widely separated sites on the reef slope at Heron Island Reef. The abundance of different types of substratum (sand, sand-covered coral rubble, dead A. nobilis, live A. nobilis, other live coral, and other dead coral) along the transects and the substratum to which each sponge colony was attached were also recorded. Despite the predominance of live A. nobilis and sand-covered rubble at all sites, between 30 and 55% of Haliclona sp. 628 colonies were attached to dead A. nobilis which comprised less than 8% of the available substratum along any transect. In contrast, Haliclona sp. 1031 was found significantly more frequently on other dead corals and less frequently on live A. nobilis than would be expected based on the availability of the different substrata in the sites. Potential explanations to account for the distribution of Haliclona sp. 628 in relation to potential coral donors are discussed.  相似文献   

3.

Sample elevations corrected for tectonic uplift and assessed relative to local modeled sea levels provide a new perspective on paleoenvironmental history at Cobbler’s Reef, Barbados. Previously, 14C-dated surface samples of fragmented Acropora palmata plotted above paleo sea level based on their present (uplifted) elevations, suggesting supratidal rubble deposited during a period of extreme storms (4500–3000 cal BP), precipitating reef demise. At several sites, however, A. palmata persisted, existing until ~370 cal BP. Uplift-corrected A. palmata sample elevations lie below the western Atlantic sea-level curve, and ~2 m below ICE-6G-modeled paleo sea level, under slow rates of sea-level rise, negating the possibility that Cobbler’s Reef is a supratidal storm ridge. Most sites show limited age ranges from corals likely damaged/killed on the reef crest, not the mixed ages of rubble ridges, strongly suggesting the reef framework died off in stages over 6500 yr. Reef crest death assemblages invoke multiple paleohistoric causes, from ubiquitous hurricanes to anthropogenic impacts. Comparison of death assemblage ages to dated regional paleotempestological sequences, proxy-based paleotemperatures, recorded hurricanes, tsunamis, European settlement, deforestation, and resulting turbidity, reveals many possible factors inimical to the survival of A. palmata along Cobbler’s Reef.

  相似文献   

4.
5.
Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoidea-Barbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea-Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus-Pteriidae assemblage occurs on Millepora-Acropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigera-Ctenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.  相似文献   

6.
The discovery of the widespread occurrence of the remains of the reef coral Acropora palmata within the fabric of the fringing reefs on the west coast of Barbados requires a new interpretation of their Holocene development. Radiocarbon dating of the A. palmata framework suggests that reef construction by this species began as early as 2,300 years B.P. A. palmata probably flourished in Barbados into the present century but has now declined. The present fringing reefs are characterized by a core and base of A. palmata upon which subsequent colonization took place, especially by Montastrea annularis, Porites porites and coralline algae.  相似文献   

7.
Relatively little is known about how the future effects of climatic change, including increases in sea level, temperature and storm severity and frequency, will impact on patterns of biodiversity on coral reefs, with the notable exception of recent work on corals and fish in tropical reef ecosystems. Sessile invertebrates such as ascidians, sponges and bryozoans occupying intertidal rubble habitats on coral reefs contribute significantly to the overall biodiversity and ecosystem function, but there is little or no information available on the likely impacts on these species from climate change. The existing strong physical gradients in these intertidal habitats will be exacerbated under predicted climatic change. By examining the distribution and abundance of nonscleractinian, sessile invertebrate assemblages exposed to different levels of wave action and at different heights on the shore around a coral reef, we show that coral reef intertidal biodiversity is particularly sensitive to physical disturbance. As physical disturbance regimes increase due to more intense storms and wave action associated with global warming, we can expect to see a corresponding decrease in the diversity of these cryptic sessile assemblages. This could impact negatively on the future health and productivity of coral reef ecosystems, given the ecosystem services these organisms provide.  相似文献   

8.
Fringing reefs along the southwestern shores of the Caribbean islands of Curaçao and Bonaire (12°N), located outside the most frequent hurricane tracks, are rarely affected by heavy wave-action and major storms, yet have experienced disturbances such as coral bleaching, coral diseases, and mass mortalities. The last major hurricane to hit these islands occurred over 100 yr ago. In November 1999, Hurricane Lenny took an unusual west-to-east track, bisecting the Caribbean Basin and passing approximately 200 miles north of Curaçao and Bonaire. The leeward shores of both islands were pounded for 24 h by heavy waves (~3–6 m) generated while the storm was centered far to the west. Reef damage surveys at 33 sites conducted between November 1999 to April 2000, following the storm, documented occurrences of toppling, fragmentation, tissue damage, bleaching, and smothering due to the storm. Reefs were severely damaged along westward-facing shores but less impacted where the reef front was tangential to the wave direction or was protected by offshore islands. At the most severely damaged sites, massive coral colonies 2–3-m high (older than 100 yr) were toppled or overturned, smaller corals were broken loose and tumbled across the shallow reef platform and either deposited on the shore or dropped onto the deeper forereef slope. Branching and plating growth forms suffered more damage than massive species and large colonies experienced greater damage than small colonies. Toppled massive corals have a high potential of preserving the event signature even if they survive and continue to grow. Reorientation of large, long-lived coralla may provide a unique indicator of disturbance in a reef system rarely affected by hurricanes. At some locations, wave scouring removed loose sediment to reveal a cemented framework of Acropora cervicornis rubble on the shallow platform above 10-m depth. This rubble was generated in situ, not by storm processes, but rather by an earlier mass mortality of thickets of staghorn coral that covered extensive areas of the shallow platform prior to the incidence of white band disease in the early 1980s.  相似文献   

9.
Disturbance in coral reef environments commonly results in an algal community dominated by highly productive, small filamentous forms and cyanobacteria, collectively known as algal turf. Research on the types of disturbance responsible for this community structure has concentrated mainly on biological disturbance in the form of grazing, although physical and other forms of biological disturbances may be important in many coral reef areas. On the reef flat in Kaneohe Bay, Oahu, Hawaii, algal turfs grow primarily upon coral rubble that tumbles with passing swells. We manipulated the frequency of rubble tumbling in field experiments to mimic the effects of physical disturbance by abrasion and light reduction on algal biomass, canopy height, and community structure. Treatments approximated a gradient of disturbance intensities and durations that occur on the reef flat. Although sea urchins and herbivorous fishes are not widespread and abundant on the reef flat, biological disturbances to algal turf communities in the form of herbivory by small crabs and abrasion by tough macroalgae contributed significantly to the variation in algal turf biomass. Within all experiments increasing disturbance significantly reduced algal biomass and canopy heights and the community structure shifted to more disturbance-tolerant algal forms. This study shows that the chronic physical disturbances from water motion and biological disturbances other than grazing from large herbivores can control algal communities in coral reef environments.  相似文献   

10.
Henderson Island, in the Pitcairn Group, preserves a Pleistocene atoll physiography with the rim of the raised reef structure, supporting spur and groove topography, enclosing a central lagoon. Excellent preservation of coral reef communities occurs along the ancient atoll rim and within the central lagoon. The previously interpreted depositional nature of the fossil atoll structure is herein corroborated with geomorphologic and stratigraphic evidence from previously un-visited portions of the island. Stratigraphic and lateral facies relationships indicate a physiographic zonation which includes spur and grooves, outer reef flat, lagoon margin, and an interior lagoon with patch reefs. The in situ occurrence and zonation of reef coral communities around the periphery and within the interior of the island appear to reflect the original physiography of the atoll lagoon, with the most pronounced reef development on the SE side of the original atoll. Stratigraphic units which comprise the raised atoll lagoon structure represent different time intervals, so the atoll lagoon structure formed during various sea level fluctuations. The modern atolls of the Pitcairn Group, Oeno and Ducie, provide some comparisons (similarities and differences) with the fossil lagoon on top of Henderson Island.  相似文献   

11.
The distribution and abundance of sessile organisms under coral rubble has been studied at Bonaire and Curaçao, Netherlands Antilles. Species richness under rubble is extremely high with at least 367 species of which sponges, tunicates and bryozoans are the most important. Shallow sub-rubble communities can be considered refuges as the majority of these species are crypt-obligate. Sub-rubble communities may also have a preserve function for sponges, but do not harbour enough corals to ensure a quick coral recolonization of the reef surface after a major disaster. Cryptic community composition is affected by depth and pollution, and differs substantially between the two neighbouring islands, possibly as a result of different bottom characteristics. Biomass of the sub-rubble communities may contribute considerably to total reef biomass. Diversity varies inversely with increased depth and increased rubble size, possibly indicating abiotic control (e.g. physical disturbance by wave action and reef slope substrate collapse).  相似文献   

12.
Acropora palmata fragments generated by the Fortuna Reefer ship grounding (1997, Mona Island, Puerto Rico) were secured to reef substrate and to dead, standing A. palmata skeletons using stainless-steel wire (n=1,857). The purpose of this study was to assess fragment survivorship and condition 2 years after the attachment of fragments. Surviving fragments (57%) were larger than dead fragments (26%) and 17% were missing, mostly from shallow water. Live fragments had tissue covering 52% of upper branch surfaces; 23% of the live fragments experienced little or no tissue loss; 27% exhibited proto-branches; 14% had fused to the substrate; and 16% had overgrown the wire. Mortality was greatest in deeper water, especially among fragments secured to A. palmata skeletons. Mortality was attributed to overgrowth by Cliona spp. and macroalgae, predation by Coralliophila abbreviata and Hermodice carunculata, disease, and Stegastes planifrons territories. Limitations associated with the restoration technique include a low ability of coral tissue to overgrow wire and wire corrosion and breakage. Low rates of natural fusion and continued wire failure may hinder long-term recovery as storms periodically detach and remove restored fragments.  相似文献   

13.
We investigated the degree to which component grains vary with depositional environment in sediments from three reef habitats from the Pleistocene (125?ka) Hato Unit of the Lower Terrace, Curaçao, Netherlands Antilles: windward reef crest, windward back reef, and leeward reef crest. The windward reef crest sediment is the most distinctive, dominated by fragments of encrusting and branching coralline red algae, coral fragments and the encrusting foraminiferan Carpenteria sp. Windward back reef and leeward reef crest sediments are more similar compositionally, only showing significant differences in relative abundance of coral fragments and Homotrema rubrum. Although lacking high taxonomic resolution and subject to modification by transport, relative abundance of constituent grain types offers a way of assessing ancient skeletal reef community composition, and one which is not limited to a single taxonomic group. The strong correlation between grain type and environment we found in the Pleistocene of Curaçao suggests that constituent grain analysis may be an effective tool in delineating Pleistocene Caribbean reef environments. However, it will not be a sufficient indicator where communities vary significantly within reef environments or where evolutionary and/or biogeographical processes lead to different relationships between community composition and reef environment. Detailed interpretation of geological, biological, and physical characteristics of the Pleistocene reefs of Curaçao reveals that the abundance of the single coral species, Acropora palmata, is not a good predictor of the ecological structure of the ancient reef coral communities. This coral was the predominant species in two of the three reef habitats (windward and leeward reef crest), but the taxonomic composition (based on species relative abundance data) of the reef coral communities was substantially different in these two environments. We conclude that qualitative estimates of coral distribution patterns (presence of a key coral species or the use of a distinctive coral skeletal architecture), when used as a component in a multi-component analysis of ancient reef environments, probably introduces minimal circular reasoning into quantitative paleoecological studies of reef coral community structure.  相似文献   

14.
Coral rubble communities are an important yet often overlooked component of a healthy reef ecosystem. The organisms inhabiting reef rubble are primarily bioeroders that contribute to the breakdown and dissolution of carbonate material. While the effects of ocean acidification on calcifying communities have been well studied, there are few studies investigating the response of bioeroding communities to future changes in pH and calcium carbonate saturation state. Using a flow-through pH-stat system, coral rubble pieces with a naturally occurring suite of organisms, along with bleached control rubble pieces, were subjected to three different levels of acidification over an 8-week period. Rates of net carbonate loss in bleached control rubble doubled in the acidification treatments (0.02 vs. 0.04% CaCO3 d?1 in ambient vs. moderate and high acidification), and living rubble communities experienced significantly increased rates of net carbonate loss from ambient to high acidification conditions (0.06 vs. 0.10% CaCO3 d?1, respectively). Although more experimentation is necessary to understand the long-term response and succession of coral rubble communities under projected conditions, these results suggest that rates of carbonate loss will increase in coral rubble as pH and calcium carbonate saturation states are reduced. This study demonstrates a need to thoroughly investigate the contribution of coral rubble to the overall carbonate budget, reef resilience, recovery, and function under future conditions.  相似文献   

15.
Palinurid lobsters are being exploited with increasing intensity in coral reef ecosystems, but marine protected areas may play a key role in preventing overfishing and local extinctions. In order to define the spatial requirements for protection, we compared the spatial and temporal patterns in distribution, density, biomass, size structure, and reproductive seasonality of Caribbean spiny lobsters Panulirus argus and the congeneric spotted lobsters P. guttatus on coral patch reef, forereef, and deep reef habitat at Glover's Reef, Belize. The relative impact of fishing on P. argus was also examined in an isolated marine reserve and adjacent fished habitats, in comparison with the relatively unfished distribution of P. guttatus. Over a 5-year period, both species co-occurred in all major reef habitats, but aspects of their population dynamics differed markedly due to both habitat and fishing effects. All size classes of spiny lobsters P. argus occupied shallow patch reefs, but large adults were predominant on the deep wall reef. Panulirus guttatus also occupied patch reefs in the lagoon, but spur-and-groove forereef appeared to be the primary habitat of this species. Density and exploitable (adult) biomass of P. argus increased significantly over time in the protected patch reef habitat of the lagoon but remained stable on deep reef habitat. The biomass of spotted lobsters P. guttatus in all habitats was at least an order of magnitude less than that of exploitable P. argus. Reproductive activity by both species was evident most of the year in all habitats, but breeding P. argus females were concentrated on the deep reef. Commercial fisheries for spotted lobsters P. guttatus are currently being considered for development, but data from this and other studies suggest that such a fishery may be relatively unproductive and may lead to rapid localized extinctions. Spiny lobsters P. argus used a variety of coral reef habitats, but spotted lobsters P. guttatus were habitat specialists restricted to shallow reef habitat. The protection needs of both species are similar in one aspect: large protected areas. However, P. argus required large areas with heterogeneous habitats including coral reefs and seagrass beds, whereas P. guttatus required large areas of coral reef habitat.  相似文献   

16.
Dr. Eric Fookes 《Facies》1995,33(1):129-149
Summary This study consists of a sedimentological and diagenetical analysis of reef facies from the Upper Kimmeridgian (sensu gallico). The investigated deposits are situated in eastern France, about fifty kilometres west of the city of Geneva (Switzerland). The reef complex is a fine example of vertical development and facies differentiation. It is subdivided into two distinct sequences by a perforated hardground horizon and sand shoals. The onset of the first reef sequence is characterized by a pioneer growth stage followed by up to 20 m of reef-core and-flank facies. Corals forming the reef-core are typically the ramose variety ofCalamophylliopsis flabellum. The second reef sequence has a reef-core with an average thickness of about 5 m. Corals, however, display much more varied morphologies, and in some areas massive rudist (Heterodiceras) build-ups occur. Development of the second reef sequence was seriously weakened by a storm which produced a 2 m thick accumulation of coral rubble. A shallowing-upwards trend gradually leads to the formation of beach deposits, followed by a newly detected black-pebble horizon. Diagenesis is an important aspect of the reef complex. Especially noteworthy is the dolomitization of certain horizons. At the base of the reef formation, the passage of the phreatic mixing zone provoked invasive dolomitization in large irregular patches (probably deposits richer in Mg-calcite). Some of the beds above the black-pebble horizon, in particular a deposit of accumulated microbial mats, are also dolomitized. In this case, dolomitization is stratiform and is interpreted as having precipitated under conditions of evaporative pumping. The sedimentary record clearly shows the imprint of eustasy. The reef complex was initiated during a transgressive cycle and the hardground found between the two reef sequences is interpreted as a maximum flooding surface (mfs). At the top of the sequence, the horizon overlain by the black-pebble conglomerate is believed to represent the new sequence boundary SB140. Other significant features identified from the St. Germain-de-Joux deposits include the discovery of a new foraminifera,Troglotella incrustans, which is only marginally covered here but is the topic of another paper (Wernli & Fookes, 1992); the subdivision of the first coralligenous level defined byPelletier (1953) into two reef sequences; and a proposition to redefine the ‘Calcaires de la Semine’ (Bernier, 1984). The investigations carried out in the past on the Kimmeridgian deposits in the area of St. Germain-de-Joux were mostly based on stratigraphy and palaeontology. These reefs are among the finest known in the Jura Mountains, but no thorough study had been made on their sedimentological aspects. The aim of this study is to fill this void and also to clarify the more confusing aspects of local stratigraphy (paper based onFookes, 1991).  相似文献   

17.

Background

Restoration is increasingly implemented to reestablish habitat structure and function following physical anthropogenic disturbance, but scientific knowledge of effectiveness of methods lags behind demand for guidelines. On coral reefs, recovery is largely dependent on coral reestablishment, and substratum stability is critical to the survival of coral fragments and recruits. Concrete is often used to immobilize rubble, but its ecological performance has not been rigorously evaluated, and restoration has generally fallen short of returning degraded habitat to pre-disturbance conditions. Fragments of erect branching sponges mediate reef recovery by facilitating rubble consolidation, yet such natural processes have been largely overlooked in restoring reefs.

Methods

On two reefs in Curacao, four treatments - coral rubble alone, rubble seeded with sponge fragments, rubble bound by concrete, and concrete “rubble” bound by concrete - were monitored over four years to investigate rubble consolidation with and without sponges and the ecological performance of treatments in terms of the number and diversity of coral recruits. Species specific rates of sponge fragment attachment to rubble, donor sponge growth and tissue replacement, and fragment survival inside rubble piles were also investigated to evaluate sponge species performance and determine rates for sustainably harvesting tissue.

Findings/Significance

Rubble piles seeded with sponges retained height and shape to a significantly greater degree, lost fewer replicates to water motion, and were significantly more likely to be consolidated over time than rubble alone. Significantly more corals recruited to sponge-seeded rubble than to all other treatments. Coral diversity was also greatest for rubble with sponges and it was the only treatment to which framework building corals recruited. Differences in overall sponge species performance suggest species selection is important to consider. Employing organisms that jump start successional pathways and facilitate recovery can significantly improve restoration outcomes; however, best practices require techniques be tailored to each system.  相似文献   

18.

Over small spatial scales, coral reefs represent a mosaic of suitable settlement microhabitat patches of varying size for late-stage larval reef fishes. Few studies have specifically examined how variation in patch size influences density of recently settled coral reef fishes (recruits). Using standardized units of coral rubble settlement substrate deployed on sandy bottom, we monitored the concurrent settlement of three reef fish taxa onto differently sized patches (0.28–1.68 m2) at 5-d intervals during a lunar settlement peak. We found marked differences among taxa in how recruit density scaled with patch size. Recruit density of a damselfish and a parrotfish decreased and increased, respectively, with the increase in patch size, while that of a wrasse was similar among patch sizes. Our results highlight the importance of the interaction between taxon-specific settlement behaviour and patch size in establishing initial spatial differences in density within and among coral reef fish taxa in a heterogeneous landscape.

  相似文献   

19.
Wave stress and coral community structure in Hawaii   总被引:3,自引:0,他引:3  
Summary The most significant factor determining the structure of Hawaiian reef coral communities is physical disturbance from waves. Sequential analysis of community structure off the west coast of the island of Hawaii shows that variation of wave energy and storm frequency clearly affects organization in time and space. Normal conditions of low wave stress maintain four well-defined reef zones; diversity is highest at intermediate depths and decreases in physically rigorous shallow areas and stable deep reef slopes. Intermediate level storm wave events cause variable effects within the reef zones, but the zonation pattern, as a whole, is maintained. Diversity increases in zones that are dominated by a single species largely through nonlethal fragmentation and transport, but decreases in the zone of most equitable species distribution. Conversely, severe infrequent storm disturbances that cause massive mortality to all coral species wipe out the pattern of community structure and return the entire community to a low diversity early successional stage.Hawaii Institute of Marine Biology Contribution No.616  相似文献   

20.
It is widely accepted that deteriorating water quality associated with increased sediment stress has reduced calcification rates on coral reefs. However, there is limited information regarding the growth and development of reef building organisms, aside from the corals themselves. This study investigated encruster calcification on five fore-reefs in Tobago subjected to a range of sedimentation rates (1.2 to 15.9 mg cm−2 d−1). Experimental substrates were used to assess rates of calcification in sclerobionts (e.g. crustose coralline algae, bryozoans and barnacles) across key reef microhabitats: cryptic (low-light), exposed (open-horizontal) and vertical topographic settings. Sedimentation negatively impacted calcification by photosynthesising crustose coralline algae in exposed microhabitats and encrusting foram cover (%) in exposed and cryptic substrates. Heterotrophs were not affected by sedimentation. Fore-reef, turbid water encruster assemblages calcified at a mean rate of 757 (SD ±317) g m−2 y−1. Different microhabitats were characterised by distinct calcareous encruster assemblages with different rates of calcification. Taxa with rapid lateral growth dominated areal cover but were not responsible for the majority of CaCO3 production. Cryptobiont assemblages were composed of a suite of calcifying taxa which included sciaphilic cheilostome bryozoans and suspension feeding barnacles. These calcified at mean rates of 20.1 (SD ±27) and 4.0 (SD ±3.6) g m−2 y−1 respectively. Encruster cover (%) on exposed and vertical substrates was dominated by crustose coralline algae which calcified at rates of 105.3 (SD ±67.7) g m−2 y−1 and 56.3 (SD ±8.3) g m−2 y−1 respectively. Globally, encrusting organisms contribute significant amounts of carbonate to the reef framework. These results provide experimental evidence that calcification rates, and the importance of different encrusting organisms, vary significantly according to topography and sediment impacts. These findings also highlight the need for caution when modelling reef framework accretion and interpreting results which extrapolate information from limited data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号