首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A reconstituted heme oxygenase system which was composed of a purified heme oxygenase from pig spleen microsomes and a partially purified NADPH-cytochrome c reductase from pig liver microsomes could not catalyze the conversion of cobaltic protoporphyrin IX (Co-heme) to biliverdin, although Co-heme could bind with the heme oxygenase protein to form a complex. The heme oxygenase system in the microsomes from pig spleen, rat spleen, and rat kidney also failed to oxidize Co-heme to biliverdin. Properties of the complex of Co-heme and heme oxygenase closely resembled those of cobalt myoglobin and cobalt hemoglobin; the Co-heme bound to the heme oxygenase protein did not react with cyanide and azide, the Co-heme moiety was reduced but only slowly with sodium dithionite, and the reduced form of the Co-heme did not appear to bind carbon monoxide. The co-heme bound to heme oxygenase was not reduced with the NADPH-cytochrome c reductase system in air. These findings further support the views that heme oxygenase may have a heme-binding crevice similar to those of myoglobin and hemoglobin and that reduction of heme is the prerequisite for the oxidative degradation of heme in the heme oxygenase reaction.  相似文献   

2.
In this report we provide data, for the first time, demonstrating the conversion of the heme moiety of certain cytochrome P-450 and P-420 preparations, to biliverdin, catalyzed by heme oxygenase. We have used purified preparations of cytochromes P-450c, P-450b, P-450/P-420c, or P-450/P-420b as substrates in a heme oxygenase assay system reconstituted with heme oxygenase isoforms, HO-2 or HO-1, NADPH-cytochrome c (P-450) reductase, biliverdin reductase, NADPH, and Emulgen 911. With cytochrome P-450b or P-450/P-420b preparations, a near quantitative conversion of degraded heme to bile pigments was observed. In the case of cytochrome P-450/P-420c approximately 70% of the degraded heme was accounted for as bilirubin but only cytochrome P-420c was appreciably degraded. The role of heme oxygenase in this reaction was supported by the following observations: (i) bilirubin formation was not observed when heme oxygenase was omitted from the assay system; (ii) the rate of degradation of the heme moiety was at least threefold greater with heme oxygenase and NADPH-cytochrome c (P-450) reductase than that observed with reductase alone; and (iii) the presence of Zn- or Sn-protoporphyrins (2 microM), known competitive inhibitors of heme oxygenase, resulted in 70-90% inhibition of bilirubin formation.  相似文献   

3.
为了检测血红素加氧酶系分子间的相互作用和共固定化酶系的反应动力学,利用2′,5′-ADP-Sepharose4B柱对血红素加氧酶、NADPH-细胞色素c还原酶和胆绿素还原酶进行非膜重组,再以纤维素为载体,用重氮化法固定此重组的酶复合物和共固定非重组的3种酶,发现固定化的重组酶系比非重组酶系能更好地发挥协同作用,在室温条件下可催化血红素一步合成胆红素.共固定化酶的最适pH为7.2,最适温度为38℃,Km值为0.93μmol/L.巯基试剂和金属卟淋对固定化酶有抑制作用,共固定化酶比游离酶系稳定性提高,38℃下的操作半寿期可延长至420h,在0~4℃保存两个月其酶活力无明显变化.  相似文献   

4.
Biliverdin reductase was purified from pig spleen soluble fraction to a purity of more than 90% as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was a monomer protein with a molecular weight of about 34,000. Its isoelectric point was at 6.1-6.2. The enzyme was strictly specific to biliverdin and no other oxiodoreductase activities could be detected in the purified enzyme preparation. The purified enzyme could utilize both NADPH and NADH as electron donors for the reduction of biliverdin. However, there were considerable differences in the kinetic properties of the NADPH-dependent and the NADH-dependent biliverdin reductase activities: Km for NADPH was below 5 microM while that for NADH was 1.5-2 mM; the pH optimum of the reaction with NADPH was 8.5 whereas that of the reaction with NADH was 6.9; Km for biliverdin in the NADPH system was 0.3 microM whereas that in the NADH system was 1-2 microM. In addition, both the NADPH-dependent and NADH-dependent activities were inhibited by excess biliverdin, but this inhibition was far more pronounced in the NADPH system than in the NADH system. IX alpha-biliverdin was the most effective substrate among the four biliverdin isomers, and the dimethylester of IX alpha-biliverdin could not serve as a substrate. Biliverdin reductase was also purified about 300-fold from rat liver soluble fraction. The hepatic enzyme was also a monomer protein with a molecular weight of 34,000 and showed properties quite similar to those of the splenic enzyme as regards the biliverdin reductase reaction. The isoelectric point of the hepatic enzyme, however, was about 5.4. It was assumed that NADPH rather than NADH is the physiological electron donor in the intracellular reduction of IX alpha-biliverdin. The stimulatory effects of bovine and human serum albumins on the biliverdin reductase reactions were also examined.  相似文献   

5.
Heme oxygenase was purified to apparent homogeneity from liver microsomes of rats which had been treated with either cobaltous chloride or hemin to induce heme oxygenase in the liver and the purified preparations from either rats showed an apparent molecular weight of about 200,000 when estimated by gel filtration on a column of Sephadex G-200, and gave a minimum molecular weight of about 32,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hepatic heme oxygenase could bind heme to form a heme . heme oxygenase complex showing an absorption peak at 405 nm, and the extinction coefficient at 405 nm of the heme . heme oxygenase complex was 140 mM-1 cm-1. The heme bound to the hepatic heme oxygenase protein was easily converted to biliverdin when the complex was incubated with the NADPH-cytochrome c reductase system in air. The hepatic heme oxygenase appears to have characteristics essentially similar to those of the splenic heme oxygenase (Yoshida, T., and Kikuchi, G. (1978) J. Biol. Chem. 253, 4224 and 4230). The heme oxygenase preparation which was purified from the cobalt-treated rats contained a small amount of cobaltic protoporphyrin, indicating that cobalt protoporphyrin was synthesized in these rats.  相似文献   

6.
NADPH-cytochrome c reductase was purified to electrophoretic homogeneity from detergent solubilized sheep lung microsomes. The specific activity of the purified enzyme ranged from 56 to 67 mumol cytochrome c reduced/min/mg protein and the yield was 48-52% of the initial activity in lung microsomes. The reductase had Mr of 78,000 and contained 1 mol each of FAD and FMN. Km values obtained in 0.3 M phosphate buffer, pH 7.8 at 37 degrees C for NADPH and cytochrome c were 11.1 +/- 0.70 microM and 20.0 +/- 2.15 microM. Lung reductase was inhibited by its substrate, cytochrome c when its concentration was above 160 microM. The lung reductase exhibited a ping-pong type kinetic mechanism for NADPH mediated cytochrome c reduction. Purified lung reductase was biocatalytically active in supporting benzo(a)pyrene hydroxylation reaction when coupled with lung cytochrome P-450 and lipid.  相似文献   

7.
1. Reductase was purified to electrophoretic homogeneity from sheep liver and lung microsomes. The specific activity of both enzymes ranged from 55 to 66 mumol cytochrome c reduced/min/mg protein. 2. Liver and lung reductases appeared to have similar kinetic and spectral properties. Km (NADPH) and Km (cytochrome c) values were calculated to be 14.3 +/- 1.23 microM and 22.2 +/- 2.78 microM for liver and 11.1 +/- 0.70 microM and 20.0 +/- 2.15 microM for lung reductase, respectively. Kinetic studies showed that cytochrome c can bind the oxidized form of the enzyme as well as its reduced form and both reductases operated through a ping-pong type mechanism. 3. These reductases cannot be distinguished on the basis of monomer molecular weights (Mr 78,000) except that the liver reductase was found to be more susceptible to proteolytic attack. 4. Both reductases supported aniline 4-hydroxylation and ethylmorphine N-demethylation reactions to the same extent in the reconstituted systems. However, sheep lung reductase appeared only 36.5 and 14.8% as effective in catalyzing benzo[a]pyrene reaction as an equivalent amount of reductase from liver in the presence of liver cytochrome P-450 and 3MC-treated rat liver cytochrome P-448, respectively.  相似文献   

8.
A tryptic peptide of heme oxygenase obtained after solubilization of rat liver microsomes by mild trypsin treatment was purified. The purified peptide gave only a single protein band with a molecular mass of 28 kDa on SDS/PAGE. The tryptic peptide, like the native heme oxygenase, readily bound with substrate heme forming a hemeprotein transiently. The absorption spectra of the ferric, ferrous, ferrous-CO and ferrous-O2 forms of the resulting complex resembled those of the corresponding forms of the complex of heme and the native enzyme. Ferric heme bound to the tryptic peptide was quantitatively decomposed to biliverdin on incubation with a mixture of ascorbic acid and desferrioxamine, indicating that the tryptic peptide still retained catalytic activity. These observations suggest that heme oxygenase has two domains, a hydrophilic and a hydrophobic domain, and that the two domains are folded almost independently of each other. An NADPH-cytochrome-P-450 reductase system composed of NADPH and detergent-solubilized NADPH-cytochrome-P-450 reductase readily reduced the ferric heme bound to the tryptic peptide, but failed to transfer the second electron required for rapid heme degradation, suggesting that the hydrophobic domain of heme oxygenase is important for receiving the second electron from the reductase.  相似文献   

9.
The present study describes the solubilization and purification of a NADPH-specific trans-2-enoyl-CoA reductase from rat liver microsomes. The final preparation was purified to near homogeneity and had a minimal molecular weight of 51,000 +/- 2,000, as judged by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis. This enzyme specifically used NADPH, as cofactor, and was chromatographically (2',5'-ADP-agarose) separated from another trans-2-enoyl-CoA reductase which utilized either NADH or NADPH as cofactor. The NADPH-specific trans-2-enoyl-CoA reductase catalyzed the reduction of trans-2-enoyl-CoAs from 4 to 16 carbon units. The Km values for crotonyl-CoA, trans-2-hexenoyl-CoA, and trans-2-hexadecenoyl-CoA were 20, 0.5, and 1.0 microM, while the Km value for NADPH was 10 microM. Although N-ethylmaleimide, heat treatment, and limited proteolysis with trypsin affected the reduction of short-chain (C4) and long-chain (C16) substrates equally, and in spite of the fact that a single protein band was observed on SDS-gels, at the present time one cannot state unequivocally that the purified preparation contained only one reductase. trans-2-Hexenoyl-CoA, for example, did not inhibit the reduction of trans-2-hexadecenoyl-CoA to palmitoyl-CoA and trans-2-decenoyl-CoA to decanoyl-CoA whereas it strongly inhibited the conversion of crotonyl-CoA to butyryl-CoA. The potential implications of this finding are discussed. Finally, the reductase preparation was shown not to contain either heme, nonheme iron, or a flavin prosthetic group.  相似文献   

10.
Ecdysone 3-epimerase was partially purified by ammonium sulfate fractionation from the 100,000 g supernate of Manduca sexta midguts. The enzyme converts ecdysone and 20-hydroxyecdysone to their respective 3-epimers, requires NADH or NADPH and O2 for this reaction, and has the following kinetic parameters: for ecdysone, Km = 17.0 +/- 1.4 microM, Vmax = 110.6 +/- 14.6 pmol min-1 mg-1; for 20-hydroxyecdysone, Km = 47.3 +/- 7.5 microM, Vmax = 131.0 +/- 3.5 pmol min-1 mg-1: for NADPH, Km = 85.4 +/- 10.6 microM; for NADH, Km = 51.3 +/- 1.3 microM. The reaction is irreversible and can be inhibited by various ecdysteroids.  相似文献   

11.
The microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the rate-limiting step in the cholesterogenic pathway and was proposed to be composed in situ of 2 noncovalently linked subunits (Edwards, P.A., Kempner, E.S., Lan, S.-F., and Erickson, S.K. (1985) J. Biol. Chem. 260, 10278-10282). In the present report, the activities and kinetic properties of HMG-CoA reductase in microsomes isolated from livers of rats fed on diets supplemented with either ground Amberlite XAD-2 ("X"), cholestyramine/mevinolin ("CM"), or unsupplemented, normal rat chow ("N"), were compared. The specific activities of HMG-CoA reductase in X and CM microsomes were, respectively, 5- and 83-fold higher than that of N microsomes. In NADPH-dependent kinetics of HMG-CoA reductase activated with 4.5 mM GSH, the concentration of NADPH required for half-maximal velocity (S0.5) was 209 +/- 23, 76 +/- 23, and 40 +/- 4 microM for the N, X, and CM microsomes, respectively. While reductase from X microsomes displays cooperative kinetics toward NADPH (Hill coefficient (nH) = 1.97 +/- 0.07), the enzyme from CM microsomes does not (nH = 1.04 +/- 0.07). Similarly to HMG-CoA reductase from CM microsomes, the freeze-thaw solubilized enzyme ("SOL") displays no cooperativity toward NADPH and its Km for this substrate is 34 microM. At 4.5 mM GSH, HMG-CoA reductase from X, CM, and SOL preparations has a similar Km value for [DL]-HMG-CoA, ranging between 13-16 microM, while reductase from N microsomes had a higher Km value (42 microM) for this substrate. No cooperativity towards HMG-CoA was observed in any of the tested enzyme preparations. Immunoblotting analyses of the different preparations demonstrated that the observed altered kinetics of HMG-CoA reductase in the microsomes is not due to preferential proteolytic cleavage of the native 97-100 kDa subunit of the enzyme to the noncooperative 50-55 kDa species. Moreover, it was found that the ratio enzymatic activity/immunoreactivity of the reductase increased in the order N less than X less than CM approximately equal to SOL, indicating that the activity per reductase molecule increases with the induction of the enzyme. These results are compatible with a model suggesting that dietary induction of hepatic HMG-CoA reductase may change the state of functional aggregation of its subunits.  相似文献   

12.
The unicellular red alga, Cyanidium caldarium, synthesizes phycocyanobilin from protoheme via biliverdin IX alpha. In vitro transformation of protoheme to biliverdin IX alpha and biliverdin IX alpha to phycobilins were previously shown to require NADPH, ferredoxin, and ferredoxin-NADP+ reductase, as well as specific heme oxygenase and phycobilin formation enzymes. The role of NADPH in these reactions was investigated in this study. The C. caldarium enzymatic activities that catalyze biliverdin IX alpha formation from protoheme, and phycobilin formation from biliverdin IX alpha, were partially purified by differential (NH4)2SO4 precipitation. The enzyme fractions, when supplemented with a light-driven ferredoxin-reducing photosystem I fraction derived from spinach leaves, catalyzed light-dependent transformation of protoheme to biliverdin IX alpha and biliverdin IX alpha to phycobilins, with or without the addition of NADPH and ferredoxin-NADP+ reductase. In the dark, neither reaction occurred unless NADPH and ferredoxin-NADP+ reductase were supplied. These results indicate that the only role of NADPH in both reactions of phycobilin biosynthesis, in vitro, is to reduce ferredoxin via ferredoxin-NADP+ reductase and that reduced ferredoxin can directly supply the electrons needed to drive both steps in the transformation of protoheme to phycocyanobilin.  相似文献   

13.
The formation of bile pigment from heme by a reconstituted heme oxygenase system containing purified bovine spleen heme oxygenase, NADPH-cytochrome P-450 reductase, and biliverdin reductase was studied under an atmosphere containing 18,18O2. The product, bilirubin, was isolated and subjected to mass spectrometry, which revealed incorporation of 18O consistent with a two-molecule mechanism, whereby the product bile pigment contains oxygen atoms derived from two different oxygen molecules.  相似文献   

14.
Objective: We have previously demonstrated that the inducible form of heme oxygenase plays a critical role in protecting against oxidative stress in mammals. To gain further insight into the functions of this enzyme in plants, we have tested its activity and expression in soybean nodules subjected to cadmium (Cd) stress.

Materials and methods: Four-weeks-old soybean nodulated plants were treated with different cadmium chloride concentrations (0, 50 and 200 μM) during 48 h. Oxidative stress parameters such as TBARS content, GSH levels and antioxidant enzyme activities were measured as well as heme oxygenase activity and expression. Besides, the effect of biliverdin and Zn-protophorphyrin IX were analized.

Results: Treatment with 200 μM Cd during 48 h caused a 67% increase in TBARS content, whereas GSH decreased 44%, and total superoxide dismutase, gluthatione reductase and guaiacol peroxidase were also inhibited 54, 20 and 60%, respectively. A total of 200 μM Cd produced the overexpression of heme oxygenase-1, as well as a 10-fold enhancement of its activity. Co-administration of biliverdin (10 μM) completely prevented the effects caused by Cd. Treatment with Zn protoporphyrin IX, a strong inhibitor of heme oxygenase, expectedly decreased heme oxygenase-1 activity to half. When the inhibitor was given together with Cd, completely prevented the enzyme induction and oxidative stress parameters were significantly enhanced.

Conclusion: Taking together, these results are indicating that heme oxygenase plays a protective role against oxidative cell damage in soybean nodules.  相似文献   

15.
We have previously demonstrated that the induction of heme oxygenase-1 (EC 1.14.99.3) plays a protective role for mammalian cells against oxidative stress. Here, we investigated for the first time the possible role of heme oxygenase-1 as an antioxidant defense in leaves of soybean plants. Treatment with 200 microM Cd during 48 h caused a 70% increase in thiobarbituric acid reactive substances, whereas GSH decreased 67%, guaiacol peroxidase and total superoxide dismutase also inhibited 49% and 46%, respectively. Two hundred micromolar of Cd produced the overexpression of heme oxygenase-1, as well as a 4.5-fold enhancement of its activity. Administration of biliverdin partially prevented the effects caused by Cd. Pretreatment with Zn protoporphyrin IX, a potent inhibitor of heme oxygenase, expectedly decreased heme oxygenase-1 activity to half. When the inhibitor was given before Cd, it completely prevented the enzyme induction increasing the levels of oxidative stress parameters. Collectively, these results indicated that although plant heme oxygenases share little homology to heme oxygenases from non-plant species, they also play an important protective role against oxidative cell damage.  相似文献   

16.
A cytochrome P-450 from neonatal pig testicular microsomes was purified to homogeneity as judged by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels and by double diffusion on agar against antiserum raised in rabbits against the protein. The enzyme shows both 17 alpha-hydroxylase (Vmax = 4.6 nmol of product/min/nmol of P-450, Km = 1.5 microM) and C17,20 lyase (Vmax = 2.6 nmol of product/min/nmol of P-450, Km = 2.4 microM) activities. Both activities require NADPH and a flavoprotein P-450 reductase; microsomal P-450 reductase from pig and rat livers was used in these studies. The enzyme possesses a single subunit of molecular weight 59,000 +/- 1,000 as determined by electrophoresis on polyacrylamide with sodium dodecyl sulfate and by chromatography on sodium dodecyl sulfate-Sephadex. The enzyme is a glycoprotein and contains 8 nmol of heme/mg of protein and 40 nmol of phospholipid/mg of protein. All heme detected by pyridine hemochromogen is accounted for as P-450 by difference spectroscopy of the reduced P-450.carbon monoxide complex. This complex shows an absorbance maximum at 448 nm with no evidence of P-420. These studies raise the possibility that one microsomal protein (cytochrome P-450) may possess two enzymatic activities (hydroxylase and lyase).  相似文献   

17.
The hepatic microsomal haem oxygenase activity of rats treated with CoCl2 was studied kinetically by measuring biliverdin, the immediate product of the reaction. Biliverdin was extracted with diethyl ether/ethanol mixture, and was determined by the difference between A690 and A800. The apparent Km value for NADPH (at 50 microM-haematin) was about 0.2 microM when an NADPH-generating system was used, whereas that for NADH was about 630 microM. Essentially the same Vmax. values were obtained for both the NADH- and NADPH-dependent haem oxygenase reactions. No synergism was observed with NADH and NADPH. The NADH-dependent reaction was competitively inhibited by NADP+, with a Ki of about 10 microM. The inhibitoin of the NADH-dependent reaction by the antibody against rat liver microsomal NADPH-cytochrome c reductase was essentially complete, with a pattern similar to that of the NADPH-dependent reaction. The immunochemical experiment and the comparison of the kinetic values with the reported data on isolated NADH-cytochrome b5 reductase and NADPH--cytochrome c reductase indicated the involvement of the latter enzyme in NADH-dependent haem oxygenation by microsomal fraction in situ.  相似文献   

18.
Adrenocortical NADPH-cytochrome P-450 reductase (EC. 1.6.2.4) was purified from bovine adrenocortical microsomes by detergent solubilization and affinity chromatography. The purified cytochrome P-450 reductase was a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being electrophoretically homogeneous and pure. The cytochrome P-450 reductase was optically a typical flavoprotein. The absorption peaks were at 274, 380 and 45 nm with shoulders at 290, 360 and 480 nm. The NADPH-cytochrome P-450 reductase was capable of reconstituting the 21-hydroxylase activity of 17 alpha-hydroxyprogesterone in the presence of cytochrome P-45021 of adrenocortical microsomes. The specific activity of the 21-hydroxylase of 17 alpha-hydroxyprogesterone in the reconstituted system using the excess concentration of the cytochrome P-450 reductase, was 15.8 nmol/min per nmol of cytochrome P-45021 at 37 degrees C. The NADPH-cytochrome P-450 reductase, like hepatic microsomal NADPH-cytochrome P-450 reductase, could directly reduce the cytochrome P-45021. The physicochemical properties of the NADPH-cytochrome P-450 reductase were investigated. Its molecular weight was estimated to be 80 000 +/- 1000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical ultracentrifugation. The cytochrome P-450 reductase contained 1 mol each FAD and FMN as coenzymes. Iron, manganese, molybdenum and copper were not detected. The Km values of NADPH and NADH for the NADPH-cytochrome c reductase activity and those of cytochrome c for the activity of NADPH-cytochrome P-450 reductase were determined kinetically. They were 5.3 microM for NADPH, 1.1 mM for NADH, and 9-24 microM for cytochrome c. Chemical modification of the amino acid residues showed that a histidyl and cysteinyl residue are essential for the binding site of NADPH of NADPH-cytochrome P-450 reductase.  相似文献   

19.
Enzymatic heme oxygenase activity has been partially purified from extracts of the unicellular red alga Cyanidium caldarium, and the macromolecular components have been separated into three protein fractions, referred to as Fractions I, II, and III, by serial column chromatography through DEAE-cellulose and Reactive Blue 2-Sepharose. Fraction I is retained by DEAE-cellulose at low salt concentration and eluted by 1 M NaCl. Fraction II is retained by Blue Sepharose at low salt concentration and eluted by 1 M NaCl. Fraction III is retained on 2',5'-ADP-agarose and eluted by 1 mM NADPH, while Fraction II is not retained on ADP-agarose. Fractions I-III, have Mr values of 22,000, 38,000, and 37,000, respectively (all +/- 2,000), as determined by Sephadex gel filtration chromatography. In vitro heme oxygenase activity requires the presence of all three fractions, plus substrate, O2, reduced pyridine nucleotide, and another reductant. Ascorbate, isoascorbate, and phenylenediamine serve equally well as the second reductant, but hydroquinone can also be used, with lower activity resulting. Fractions I-III are heat sensitive and inactive by Pronase digestion. Fraction I has a visible absorption spectrum similar to that of ferredoxin and is bleached by dithionite reduction or incubation with p-hydroxymercuribenzoate. Fraction I can be replaced by commercially available ferredoxin derived from the red alga Porphyra umbilicalis, and to a smaller extent, by spinach ferredoxin. Fraction III contains ferredoxin-linked cytochrome c reductase activity and can be partially replaced by spinach ferredoxin-NADP+ oxidoreductase. Reconstituted heme oxygenase and ferredoxin-linked cytochrome c reductase activities are both abolished if Fraction I or III is preincubated with 0.1 mM p-hydroxymercuribenzoate, but heme oxygenase activity is only slightly affected if Fraction II is preincubated with p-hydroxymercuribenzoate. Preincubation of Fraction II with 0.5 mM diethylpyrocarbonate inactivates heme oxygenase in the reconstituted system, and 10 microM mesohemin partially protects this Fraction against diethylpyrocarbonate inactivation. Algal heme oxygenase is inhibited 80% by 2 microM Sn-protoporphyrin even in the presence of 20 microM mesohemin. Fraction II is rate limiting in unfractionated and reconstituted incubation mixtures. None of the three cell fractions could be replaced by bovine spleen microsomal heme oxygenase or NADPH-cytochrome P450 reductase.  相似文献   

20.
Heme oxygenase has been considered to be involved in the predominant pathway of heme degradation in vivo. However, alternative pathways involving cytochrome P-450 reductase, and lipid peroxidation, have previously been demonstrated in vitro, and studies with cultured rat hepatocytes were interpreted to show a majority of endogenous hepatic heme breakdown by non-heme oxygenase pathways. To clarify the pathway of heme breakdown in hepatocytes and the role of heme oxygenase in this process, cultured hepatocytes were pre-labelled with 5-[5-14C]aminolevulinate [( 14C]ALA). Radioactivity in heme, carbon monoxide, and bile pigments was measured for 8-24 h after the removal of [14C]ALA. In cultured chick embryo hepatocytes, which lack biliverdin reductase, the rate of production of biliverdin IXa was closely similar to the rate of catabolism of exogenous heme and radioactivity in carbon monoxide and biliverdin IXa was similar to the loss of radioactivity from endogenous heme. These results support the conclusion that heme breakdown occurred predominantly, if not solely, by heme oxygenase. Also, no evidence of non-heme oxygenase pathways was found in the presence of tin protoporphyrin, an inhibitor of heme oxygenase or mephenytoin, an inducer of both cytochrome P-450 and heme oxygenase. Similarly, in untreated cultured rat hepatocytes, radioactivity in carbon monoxide corresponded with loss of radioactivity in endogenous heme. In other experiments with chick hepatocyte cultures, rates of heme synthesis and breakdown were measured, and data were fitted to various models of hepatic heme metabolism. The results observed were consistent only with models in which an appreciable fraction (control cells, 17%, mephenytoin treated cells, 41%) of the newly synthesized heme was degraded rapidly to biliverdin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号