首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disease resistance (R) genes are found in plants as either simple (single allelic series) loci, or more frequently as complex loci of tandemly repeated genes. These different loci are likely to be under similar evolutionary forces from pathogens, but the contrast between them suggests important differences in mechanisms associated with DNA structure and recombination that generate and maintain R gene diversity. The RPP13 locus in Arabidopsis represents an important paradigm for studying the evolution of an R gene at a simple locus. The RPP13 allele from the accession Nd-1, designated RPP13-Nd, confers resistance to five different isolates of the biotrophic oomycete, Peronospora parasitica (causal agent of downy mildew), and encodes an NBS-LRR type R protein with a putative amino-terminal leucine zipper. The RPP13-Rld allele, cloned from the accession Rld-2, encodes a different specificity. Comparison of three RPP13 alleles revealed a high rate of amino acid divergence within the LRR domain, less than 80% identity overall, compared to the remainder of the protein (> 95% identity). We also found evidence for positive selection in the LRR domain for amino acid diversification outside the core conserved beta-strand/beta-turn motif, suggesting that more of the LRR structure is available for interaction with target molecules than has previously been reported for other R gene products. Furthermore, an amino acid sequence (LLRVLDL) identical in an LRR among RPP13 alleles is conserved in other LZ NBS-LRR type R proteins, suggesting functional significance.  相似文献   

2.
We have used the naturally occurring plant-parasite system of Arabidopsis thaliana and its common parasite Peronospora parasitica (downy mildew) to study the evolution of resistance specificity in the host population. DNA sequence of the resistance gene, RPP13, from 24 accessions, including 20 from the United Kingdom, revealed amino acid sequence diversity higher than that of any protein coding gene reported so far in A. thaliana. A significant excess of amino acid polymorphism segregating within this species is localized within the leucine-rich repeat (LRR) domain of RPP13. These results indicate that single alleles of the gene have not swept through the population, but instead, a diverse collection of alleles have been maintained. Transgenic complementation experiments demonstrate functional differences among alleles in their resistance to various pathogen isolates, suggesting that the extreme amino acid polymorphism in RPP13 is maintained through continual reciprocal selection between host and pathogen.  相似文献   

3.
S S Chen  C N Lee  W R Lee  K McIntosh    T H Lee 《Journal of virology》1993,67(6):3615-3619
The N-terminal region of the envelope (env) transmembrane protein of human immunodeficiency virus type 1 (HIV-1) has a leucine zipper-like motif. This highly conserved zipper motif, which consists of a heptad repeat of leucine or isoleucine residues, has been suggested to play a role in HIV-1 env glycoprotein oligomerization. This hypothesis was tested by replacing the highly conserved leucine or isoleucine residues in the zipper motif with a strong alpha-helix breaker, proline. We report here that such substitutions did not abolish the ability of env protein to form oligomers, indicating that this highly conserved zipper motif does not have a crucial role in env protein oligomerization. However, the mutant viruses all showed impaired infectivity, suggesting that this conserved zipper motif can have an important role in the virus life cycle.  相似文献   

4.
The oomycete Hyaloperonospora arabidopsidis (Hpa) is the causal agent of downy mildew on the model plant Arabidopsis thaliana and has been adapted as a model system to investigate pathogen virulence strategies and plant disease resistance mechanisms. Recognition of Hpa infection occurs when plant resistance proteins (R-genes) detect the presence or activity of pathogen-derived protein effectors delivered to the plant host. This study examines the Hpa effector ATR13 Emco5 and its recognition by RPP13-Nd, the cognate R-gene that triggers programmed cell death (HR) in the presence of recognized ATR13 variants. Herein, we use NMR to solve the backbone structure of ATR13 Emco5, revealing both a helical domain and a disordered internal loop. Additionally, we use site-directed and random mutagenesis to identify several amino acid residues involved in the recognition response conferred by RPP13-Nd. Using our structure as a scaffold, we map these residues to one of two surface-exposed patches of residues under diversifying selection. Exploring possible roles of the disordered region within the ATR13 structure, we perform domain swapping experiments and identify a peptide sequence involved in nucleolar localization. We conclude that ATR13 is a highly dynamic protein with no clear structural homologues that contains two surface-exposed patches of polymorphism, only one of which is involved in RPP13-Nd recognition specificity.  相似文献   

5.
The perception of downy mildew avirulence (Arabidopsis thaliana Recognized [ATR]) gene products by matching Arabidopsis thaliana resistance (Recognition of Peronospora parasitica [RPP]) gene products triggers localized cell death (a hypersensitive response) in the host plant, and this inhibits pathogen development. The oomycete pathogen, therefore, is under selection pressure to alter the form of these gene products to prevent detection. That the pathogen maintains these genes indicates that they play a positive role in pathogen survival. Despite significant progress in cloning plant RPP genes and characterizing essential plant components of resistance signaling pathways, little progress has been made in identifying the oomycete molecules that trigger them. Concluding a map-based cloning effort, we have identified an avirulence gene, ATR1NdWsB, that is detected by RPP1 from the Arabidopsis accession Niederzenz in the cytoplasm of host plant cells. We report the cloning of six highly divergent alleles of ATR1NdWsB from eight downy mildew isolates and demonstrate that the ATR1NdWsB alleles are differentially recognized by RPP1 genes from two Arabidopsis accessions (Niederzenz and Wassilewskija). RPP1-Nd recognizes a single allele of ATR1NdWsB; RPP1-WsB also detects this allele plus three additional alleles with divergent sequences. The Emco5 isolate expresses an allele of ATR1NdWsB that is recognized by RPP1-WsB, but the isolate evades detection in planta. Although the Cala2 isolate is recognized by RPP1-WsA, the ATR1NdWsB allele from Cala2 is not, demonstrating that RPP1-WsA detects a novel ATR gene product. Cloning of ATR1NdWsB has highlighted the presence of a highly conserved novel amino acid motif in avirulence proteins from three different oomycetes. The presence of the motif in additional secreted proteins from plant pathogenic oomycetes and its similarity to a host-targeting signal from malaria parasites suggest a conserved role in pathogenicity.  相似文献   

6.
The RPP13 [recognition of Hyaloperonospora arabidopsidis (previously known as Peronospora parasitica )] resistance ( R ) gene in Arabidopsis thaliana exhibits the highest reported level of sequence diversity among known R genes. Consistent with a co-evolutionary model, the matching effector protein ATR13 ( A. thaliana -recognized) from H. arabidopsidis reveals extreme levels of allelic diversity. We isolated 23 new RPP13 sequences from a UK metapopulation, giving a total of 47 when combined with previous studies. We used these in functional studies of the A. thaliana accessions for their resistance response to 16 isolates of H. arabidopsidis . We characterized the molecular basis of recognition by the expression of the corresponding ATR13 genes from these 16 isolates in these host accessions. This allowed the determination of which alleles of RPP13 were responsible for pathogen recognition and whether recognition was dependent on the RPP13/ATR13 combination. Linking our functional studies with phylogenetic analysis, we determined that: (i) the recognition of ATR13 is mediated by alleles in just a single RPP13 clade; (ii) RPP13 alleles in other clades have evolved the ability to detect other pathogen ATR protein(s); and (iii) at least one gene, unlinked to RPP13 in A. thaliana, detects a different subgroup of ATR13 alleles.  相似文献   

7.
The alphavirus nucleocapsid core is formed through the energetic contributions of multiple noncovalent interactions mediated by the capsid protein. This protein consists of a poorly conserved N-terminal region of unknown function and a C-terminal conserved autoprotease domain with a major role in virion formation. In this study, an 18-amino-acid conserved region, predicted to fold into an alpha-helix (helix I) and embedded in a low-complexity sequence enriched with basic and Pro residues, has been identified in the N-terminal region of the alphavirus capsid proteins. In Sindbis virus, helix I spans residues 38 to 55 and contains three conserved leucine residues, L38, L45, and L52, conforming to the heptad amino acid organization evident in leucine zipper proteins. Helix I consists of an N-terminally truncated heptad and two complete heptad repeats with beta-branched residues and conserved leucine residues occupying the a and d positions of the helix, respectively. Complete or partial deletion of helix I, or single-site substitutions at the conserved leucine residues (L45 and L52), caused a significant decrease in virus replication. The mutant viruses were more sensitive to elevated temperature than wild-type virus. These mutant viruses also failed to accumulate cores in the cytoplasm of infected cells, although they did not have defects in protein translation or processing. Analysis of these mutants using an in vitro assembly system indicated that the majority were defective in core particle assembly. Furthermore, mutant proteins showed a trans-dominant negative phenotype in in vitro assembly reactions involving mutant and wild-type proteins. We propose that helix I plays a central role in the assembly of nucleocapsid cores through coiled coil interactions. These interactions may stabilize subviral intermediates formed through the interactions of the C-terminal domain of the capsid protein and the genomic RNA and contribute to the stability of the virion.  相似文献   

8.
In plants, specific recognition of pathogen effector proteins by nucleotide-binding leucine-rich repeat (NLR) receptors leads to activation of immune responses. RPP1, an NLR from Arabidopsis thaliana, recognizes the effector ATR1, from the oomycete pathogen Hyaloperonospora arabidopsidis, by direct association via C-terminal leucine-rich repeats (LRRs). Two RPP1 alleles, RPP1-NdA and RPP1-WsB, have narrow and broad recognition spectra, respectively, with RPP1-NdA recognizing a subset of the ATR1 variants recognized by RPP1-WsB. In this work, we further characterized direct effector recognition through random mutagenesis of an unrecognized ATR1 allele, ATR1-Cala2, screening for gain-of-recognition phenotypes in a tobacco hypersensitive response assay. We identified ATR1 mutants that a) confirm surface-exposed residues contribute to recognition by RPP1, and b) are recognized by and activate the narrow-spectrum allele RPP1-NdA, but not RPP1-WsB, in co-immunoprecipitation and bacterial growth inhibition assays. Thus, RPP1 alleles have distinct recognition specificities, rather than simply different sensitivity to activation. Using chimeric RPP1 constructs, we showed that RPP1-NdA LRRs were sufficient for allele-specific recognition (association with ATR1), but insufficient for receptor activation in the form of HR. Additional inclusion of the RPP1-NdA ARC2 subdomain, from the central NB-ARC domain, was required for a full range of activation specificity. Thus, cooperation between recognition and activation domains seems to be essential for NLR function.  相似文献   

9.
Sohn KH  Lei R  Nemri A  Jones JD 《The Plant cell》2007,19(12):4077-4090
The downy mildew (Hyaloperonospora parasitica) effector proteins ATR1 and ATR13 trigger RPP1-Nd/WsB- and RPP13-Nd-dependent resistance, respectively, in Arabidopsis thaliana. To better understand the functions of these effectors during compatible and incompatible interactions of H. parasitica isolates on Arabidopsis accessions, we developed a novel delivery system using Pseudomonas syringae type III secretion via fusions of ATRs to the N terminus of the P. syringae effector protein, AvrRPS4. ATR1 and ATR13 both triggered the hypersensitive response (HR) and resistance to bacterial pathogens in Arabidopsis carrying RPP1-Nd/WsB or RPP13-Nd, respectively, when delivered from P. syringae pv tomato (Pst) DC3000. In addition, multiple alleles of ATR1 and ATR13 confer enhanced virulence to Pst DC3000 on susceptible Arabidopsis accessions. We conclude that ATR1 and ATR13 positively contribute to pathogen virulence inside host cells. Two ATR13 alleles suppressed bacterial PAMP (for Pathogen-Associated Molecular Patterns)-triggered callose deposition in susceptible Arabidopsis when delivered by DC3000 DeltaCEL mutants. Furthermore, expression of another allele of ATR13 in plant cells suppressed PAMP-triggered reactive oxygen species production in addition to callose deposition. Intriguingly, although Wassilewskija (Ws-0) is highly susceptible to H. parasitica isolate Emco5, ATR13Emco5 when delivered by Pst DC3000 triggered localized immunity, including HR, on Ws-0. We suggest that an additional H. parasitica Emco5 effector might suppress ATR13-triggered immunity.  相似文献   

10.
The baculovirus GP64 envelope fusion protein (GP64 EFP) is the major envelope glycoprotein of the budded virion and has been shown to mediate acid-triggered membrane fusion both in virions and when expressed alone in transfected cells. Using site-directed mutagenesis and functional assays for oligomerization, transport, and membrane fusion, we localized two functional domains of GP64 EFP. To identify a fusion domain in the GP64 EFP of the Orgyia pseudotsugata multiple nuclear polyhedrosis virus (OpMNPV), we examined two hydrophobic regions in the GP64 EFP ectodomain. Hydrophobic region I (amino acids 223 to 228) is a cluster of 6 hydrophobic amino acids exhibiting the highest local hydrophobicity in the ectodomain. Hydrophobic region II (amino acids 330 to 338) lies within a conserved region of GP64 EFP that contains a heptad repeat of leucine residues and is predicted to form an amphipathic alpha-helix. In region I, nonconservative amino acid substitutions at Leu-226 and Leu-227 (at the center of the hydrophobic cluster) completely abolished fusion activity but did not prevent GP64 EFP oligomerization or surface localization. To confirm the role of region I in membrane fusion activity, we used a synthetic 21-amino-acid peptide to generate polyclonal antibodies against region I and demonstrated that antipeptide antibodies were capable of both neutralizing membrane fusion activity and reducing infectivity of the virus. In hydrophobic region II, mutations were designed to disrupt several structural characteristics: a heptad repeat of leucine, a predicted alpha-helix, or the local hydrophobicity along one face of the helix. Single alanine substitutions for heptad leucines did not prevent oligomerization, transport, or fusion activity. However, multiple alanine substitutions or proline (helix-destabilizing) substitutions disrupted both oligomerization and transport of GP64 EFP. In addition, a deletion that removed region II and the predicted alpha-helix was defective for oligomerization, whereas a larger deletion that retained region II and the predicted helix was oligomerized. These results indicate that region II is required for oligomerization and transport and suggest that the predicted helical structure of this region may be important for this function. Thus, by using mutagenesis, functional assays, and antibody inhibition, two functional domains were localized within the baculovirus GP64 EFP: a fusion domain located at amino acids 223 to 228 and an oligomerization domain located at amino acids 327 to 335 within a predicted amphipathic alpha-helix.  相似文献   

11.
Resistance responses that plants deploy in defence against pathogens are often triggered following a recognition event mediated by resistance (R) genes. The encoded R proteins usually contain a nucleotide-binding site (NB) and a leucine-rich repeat (LRR) domain. They are further classified into those that contain an N-terminal coiled coil (CC) motif or a Toll interleukin receptor (TIR) domain. Such R genes, when transferred into a susceptible plant of the same or closely related species, usually impart full resistance capability. We have used map-based cloning and mutation analysis to study the recognition of Peronospora parasitica (RPP)2 (At) locus in Arabidopsis accession Columbia (Col-0), which is a determinant of specific recognition of P. parasitica (At) isolate Cala2. Genetic mapping located RPP2 to a 200-kb interval on chromosome 4, which contained four adjacent TIR:NB:LRR genes. Mutational analysis revealed three classes of genes involved in specifying resistance to Cala2. One class, which resulted in pleiotropic effects on resistance to other P. parasitica (At) isolates, was unlinked to the RPP2 locus; this class included AtSGT1b. The other two classes were mapped within the interval and were specific to Cala2 resistance. Representatives of each of these classes were sequenced, and mutations were found in one or the other of two (RPP2A and RPP2B) of the four TIR:NB:LRR genes. RPP2A and RPP2B complemented their specific mutations, but failed to impart resistance when present alone, and it is concluded that both genes are essential determinants for isolate-specific recognition of Cala2. RPP2A has an unusual structure with a short LRR domain at the C-terminus, preceded by two potential but incomplete TIR:NB domains. In addition, the RPP2A LRR domain lacks conserved motifs found in all but three other TIR:NB:LRR class proteins. In contrast, RPP2B has a complete TIR:NB:LRR structure. It is concluded that RPP2A and RPP2B cooperate to specify Cala2 resistance by providing recognition or signalling functions lacked by either partner protein.  相似文献   

12.
Oligomerization of the hydrophobic heptad repeat of gp41.   总被引:3,自引:9,他引:3       下载免费PDF全文
The transmembrane protein of human immunodeficiency virus type 1 (HIV-1) contains a leucine zipper-like (hydrophobic heptad) repeat which has been predicted to form an amphipathic alpha helix. To evaluate the potential of the hydrophobic heptad repeat to induce protein oligomerization, this region of gp41 has been cloned into the bacterial expression vector pRIT2T. The resulting plasmid, pRIT3, expresses a fusion protein consisting of the Fc binding domain of monomeric protein A, a bacterial protein, and amino acids 538 to 593 of HIV-1 gp41. Gel filtration chromatography demonstrated the presence of oligomeric forms of the fusion protein, and analytical centrifugation studies confirmed that the chimeric protein formed a higher-order multimer that was greater than a dimer. Thus, we have identified a region of HIV-1 gp41 which is capable of directing the oligomerization of a fusion protein containing monomeric protein A. Point mutations, previously shown to inhibit the biological activity of the HIV-1 envelope glycoprotein, have been engineered into the segment of gp41 contained in the fusion protein, and expressed mutant proteins were purified and analyzed via fast protein liquid chromatography. A point mutation in the heptad repeat, which changed the central isoleucine to an alanine, caused a significant (> 60%) decrease in oligomerization, whereas changing the central isoleucine to aspartate or proline resulted in almost a complete loss of oligomerization. Deletions of one, two, or three amino acids following the first isoleucine also resulted in a profound decrease in oligomerization. The inhibitory effects of the mutations on oligomer formation correlated with the effects of the same mutations on envelope glycoprotein-mediated fusion. A possible role of the leucine zipper-like region in the fusion process and in an oligomerization event distinct from assembly of the envelope glycoprotein complex is discussed.  相似文献   

13.
At least six rust resistance specificities (P and P1 to P5) map to the complex P locus in flax. The P2 resistance gene was identified by transposon tagging and transgenic expression. P2 is a member of a small multigene family and encodes a protein with nucleotide binding site (NBS) and leucine-rich repeat (LRR) domains and an N-terminal Toll/interleukin-1 receptor (TIR) homology domain, as well as a C-terminal non-LRR (CNL) domain of approximately 150 amino acids. A related CNL domain was detected in almost half of the predicted Arabidopsis TIR-NBS-LRR sequences, including the RPS4 and RPP1 resistance proteins, and in the tobacco N protein, but not in the flax L and M proteins. Presence or absence of this domain defines two subclasses of TIR-NBS-LRR resistance genes. Truncations of the P2 CNL domain cause loss of function, and evidence for diversifying selection was detected in this domain, suggesting a possible role in specificity determination. A spontaneous rust-susceptible mutant of P2 contained a G-->E amino acid substitution in the GLPL motif, which is conserved in the NBS domains of plant resistance proteins and the animal cell death control proteins APAF-1 and CED4, providing direct evidence for the importance of this motif in resistance gene function. A P2 homologous gene isolated from a flax line expressing the P resistance specificity encodes a protein with only 10 amino acid differences from the P2 protein. Chimeric gene constructs indicate that just six of these amino acid changes, all located within the predicted beta-strand/beta-turn motif of four LRR units, are sufficient to alter P2 to the P specificity.  相似文献   

14.
Coiled-coil sequences in proteins commonly share a seven-amino acid repeat with nonpolar side chains at the first (a) and fourth (d) positions. We investigate here the role of a 3-3-1 hydrophobic repeat containing nonpolar amino acids at the a, d, and g positions in determining the structures of coiled coils using mutants of the GCN4 leucine zipper dimerization domain. When three charged residues at the g positions in the parental sequence are replaced by nonpolar alanine or valine side chains, stable four-helix structures result. The X-ray crystal structures of the tetramers reveal antiparallel, four-stranded coiled coils in which the a, d, and g side chains interlock in a combination of knobs-into-knobs and knobs-into-holes packing. Interfacial interactions in a coiled coil can therefore be prescribed by hydrophobic-polar patterns beyond the canonical 3-4 heptad repeat. The results suggest that the conserved, charged residues at the g positions in the GCN4 leucine zipper can impart a negative design element to disfavor thermodynamically more stable, antiparallel tetramers.  相似文献   

15.
In Arabidopsis, RPP4 confers resistance to Peronospora parasitica (P.p.) races Emoy2 and Emwa1 (downy mildew). We identified RPP4 in Col-0 as a member of the clustered RPP5 multigene family encoding nucleotide-binding leucine-rich repeat proteins with Toll/interleukin-1 receptor domains. RPP4 is the orthologue of RPP5 which, in addition to recognizing P.p. race Noco2, also mediates resistance to Emoy2 and Emwa1. Most differences between RPP4 and RPP5 occur in residues that constitute the TIR domain and in LRR residues that are predicted to confer recognition specificity. RPP4 requires the action of at least 12 defence components, including DTH9, EDS1, PAD4, PAL, PBS2, PBS3, SID1, SID2 and salicylic acid. The ndr1, npr1 and rps5-1 mutations partially compromise RPP4 function in cotyledons but not in true leaves. The identification of RPP4 as a TIR-NB-LRR protein, coupled with its dependence on certain signalling components in true leaves, is consistent with the hypothesis that distinct NB-LRR protein classes differentially signal through EDS1 and NDR1. Our results suggest that RPP4-mediated resistance is developmentally regulated and that in cotyledons there is cross-talk between EDS1 and NDR1 signalling and processes regulating systemic acquired resistance.  相似文献   

16.
Activation of plant immunity relies on recognition of pathogen effectors by several classes of plant resistance proteins. To discover the underlying molecular mechanisms of effector recognition by the Arabidopsis thaliana RECOGNITION OF PERONOSPORA PARASITICA1 (RPP1) resistance protein, we adopted an Agrobacterium tumefaciens–mediated transient protein expression system in tobacco (Nicotiana tabacum), which allowed us to perform coimmunoprecipitation experiments and mutational analyses. Herein, we demonstrate that RPP1 associates with its cognate effector ARABIDOPSIS THALIANA RECOGNIZED1 (ATR1) in a recognition-specific manner and that this association is a prerequisite step in the induction of the hypersensitive cell death response of host tissue. The leucine-rich repeat (LRR) domain of RPP1 mediates the interaction with ATR1, while the Toll/Interleukin1 Receptor (TIR) domain facilitates the induction of the hypersensitive cell death response. Additionally, we demonstrate that mutations in the TIR and nucleotide binding site domains, which exhibit loss of function for the induction of the hypersensitive response, are still able to associate with the effector in planta. Thus, our data suggest molecular epistasis between signaling activity of the TIR domain and the recognition function of the LRR and allow us to propose a model for ATR1 recognition by RPP1.  相似文献   

17.
Hyaloperonospora arabidopsidis (Hpa) is an obligate biotroph oomycete pathogen of the model plant Arabidopsis thaliana and contains a large set of effector proteins that are translocated to the host to exert virulence functions or trigger immune responses. These effectors are characterized by conserved amino-terminal translocation sequences and highly divergent carboxyl-terminal functional domains. The availability of the Hpa genome sequence allowed the computational prediction of effectors and the development of effector delivery systems enabled validation of the predicted effectors in Arabidopsis. In this study, we identified a novel effector ATR39-1 by computational methods, which was found to trigger a resistance response in the Arabidopsis ecotype Weiningen (Wei-0). The allelic variant of this effector, ATR39-2, is not recognized, and two amino acid residues were identified and shown to be critical for this loss of recognition. The resistance protein responsible for recognition of the ATR39-1 effector in Arabidopsis is RPP39 and was identified by map-based cloning. RPP39 is a member of the CC-NBS-LRR family of resistance proteins and requires the signaling gene NDR1 for full activity. Recognition of ATR39-1 in Wei-0 does not inhibit growth of Hpa strains expressing the effector, suggesting complex mechanisms of pathogen evasion of recognition, and is similar to what has been shown in several other cases of plant-oomycete interactions. Identification of this resistance gene/effector pair adds to our knowledge of plant resistance mechanisms and provides the basis for further functional analyses.  相似文献   

18.
ATRMec1 phosphorylation-independent activation of Chk1 in vivo   总被引:1,自引:0,他引:1  
The conserved protein kinase Chk1 is a player in the defense against DNA damage and replication blocks. The current model is that after DNA damage or replication blocks, ATR(Mec1) phosphorylates Chk1 on the non-catalytic C-terminal domain. However, the mechanism of activation of Chk1 and the function of the Chk1 C terminus in vivo remains largely unknown. In this study we used an in vivo assay to examine the role of the C terminus of Chk1 in the response to DNA damage and replication blocks. The conserved ATR(Mec1) phosphorylation sites were essential for the checkpoint response to DNA damage and replication blocks in vivo; that is, that mutation of the sites caused lethality when DNA replication was stalled by hydroxyurea. Despite this, loss of the ATR(Mec1) phosphorylation sites did not change the kinase activity of Chk1 in vitro. Furthermore, a single amino acid substitution at an invariant leucine in a conserved domain of the non-catalytic C terminus restored viability to cells expressing the ATR(Mec1) phosphorylation site-mutated protein and relieved the requirement of an upstream mediator for Chk1 activation. Our findings show that a single amino acid substitution in the C terminus, which could lead to an allosteric change in Chk1, allows it to bypass the requirement of the conserved ATR(Mec1) phosphorylation sites for checkpoint function.  相似文献   

19.
To study the relationship between the primary structure of transforming growth factor alpha (TGF-alpha) and some of its functional properties (competition with epidermal growth factor (EGF) for binding to the EGF receptor and induction of anchorage-independent growth), we introduced single amino acid mutations into the sequence for the fully processed, 50-amino-acid human TGF-alpha. The wild-type and mutant proteins were expressed in a vector by using a yeast alpha mating pheromone promoter. Mutations of two amino acids that are conserved in the family of the EGF-like peptides and are located in the carboxy-terminal part of TGF-alpha resulted in different biological effects. When aspartic acid 47 was mutated to alanine or asparagine, biological activity was retained; in contrast, substitutions of this residue with serine or glutamic acid generated mutants with reduced binding and colony-forming capacities. When leucine 48 was mutated to alanine, a complete loss of binding and colony-forming abilities resulted; mutation of leucine 48 to isoleucine or methionine resulted in very low activities. Our data suggest that these two adjacent conserved amino acids in positions 47 and 48 play different roles in defining the structure and/or biological activity of TGF-alpha and that the carboxy terminus of TGF-alpha is involved in interactions with cellular TGF-alpha receptors. The side chain of leucine 48 appears to be crucial either indirectly in determining the biologically active conformation of TGF-alpha or directly in the molecular recognition of TGF-alpha by its receptor.  相似文献   

20.

Background

Severe acute respiratory syndrome (SARS) is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV), whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2) is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41) differs in length, and has no sequence homology with S2.

Results

Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1) an N-terminal leucine/isoleucine zipper-like sequence, and (2) a C-terminal heptad repeat located upstream of (3) an aromatic residue-rich region juxtaposed to the (4) transmembrane segment.

Conclusions

This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号