首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Sha R  Liu F  Seeman NC 《Biochemistry》2000,39(37):11514-11522
The Holliday junction is a central intermediate in genetic recombination. It contains four strands of DNA that are paired into four double helical arms flanking a branch point. In naturally occurring Holliday junctions, the sequence flanking the branch point contains 2-fold (homologous) symmetry. As a consequence of this symmetry, the junction can undergo a conformational isomerization known as branch migration, which relocates the site of branching. In the absence of proteins and in the presence of Mg(2+), the four arms are known to stack in pairs, forming two helical domains whose orientations are antiparallel. Nevertheless, the mechanistic models proposed for branch migration are all predicated on a parallel alignment of helical domains. Here, we have used antiparallel DNA double crossover molecules to demonstrate that branch migration can occur in antiparallel Holliday junctions. We have constructed a DNA double crossover molecule with three crossover points. Two adjacent branch points in this molecule are flanked by symmetric sequences. The symmetric crossover points are held immobile by the third crossover point, which is flanked by asymmetric sequences. Restriction of the helices that connect the immobile junction to the symmetric junctions releases this constraint. The restricted molecule undergoes branch migration, even though it is constrained to an antiparallel conformation.  相似文献   

2.
Construction and analysis of parallel and antiparallel Holliday junctions   总被引:4,自引:0,他引:4  
The Holliday junction is a four-stranded DNA intermediate that arises during recombination reactions. We have designed and constructed a set of Holliday junction analogs that model each of the ideal conformations available to a 2-fold symmetric four-arm junction. The strategy used is to connect two arms of a junction molecule with a short tether of thymidines. These DNA molecules share a common core sequence but have different arms that are connected so that each molecule is constrained in either an antiparallel or a parallel structure. For tethered antiparallel molecules the identity of the crossover strands is determined by which arms are connected. Different arm connections gave molecules representing each of the two antiparallel crossover isomers. Two parallel molecules that differ in the length and position of the tether exhibit opposite biases in their choice of crossover strands. Thus, a physical constraint applied at a distance from the branch point can determine the conformation of a junction.  相似文献   

3.
Sha R  Iwasaki H  Liu F  Shinagawa H  Seeman NC 《Biochemistry》2000,39(39):11982-11988
The Holliday junction is a key DNA intermediate in the process of genetic recombination. It consists of two double-helical domains composed of homologous strands that flank a branch point; two of the strands are roughly helical, and two form the crossover between the helices. RuvC is a Holliday junction resolvase that cleaves the helical strands at a symmetric sequence, leading to the production of two recombinant molecules. We have determined the position of the cleavage site relative to the crossover point by the use of symmetric immobile junctions; these are DNA molecules containing two crossover points, one held immobile by sequence asymmetry and the second a symmetric sequence, but held immobile by torsional coupling to the first junction. We have built five symmetric immobile junctions, in which the tetranucleotide recognition site is moved stepwise relative to the branch point. We have used kinetic analysis of catalysis, gel retardation, and hydroxyl radical hypersensitivity to analyze this system. We conclude that the internucleotide linkage one position 3' to the crossover point is the favored site of cleavage.  相似文献   

4.
Genetic evidence suggests that the Escherichia coli ruvC gene is involved in DNA repair and in the late step of RecE and RecF pathway recombination. To study the biochemical properties of RuvC protein, we overproduced and highly purified the protein. By employing model substrates, we examined the possibility that RuvC protein is an endonuclease that resolves the Holliday structure, an intermediate in genetic recombination in which two double-stranded DNA molecules are linked by single-stranded crossover. RuvC protein cleaves cruciform junctions, which are formed by the extrusion of inverted repeat sequences from a supercoiled plasmid and which are structurally analogous to Holliday junctions, by introducing nicks into strands with the same polarity. The nicked ends are ligated by E.coli or T4 DNA ligases. Analysis of the cleavage sites suggests that DNA topology rather than a particular sequence determines the cleavage site. RuvC protein also cleaves Holliday junctions which are formed between gapped circular and linear duplex DNA by the function of RecA protein. However, it does not cleave a synthetic four-way junction that does not possess homology between arms. The active form of RuvC protein, as studied by gel filtration, is a dimer. This is mechanistically suited for an endonuclease involved in swapping DNA strands at the crossover junctions. From these properties of RuvC protein and the phenotypes of the ruvC mutants, we infer that RuvC protein is an endonuclease that resolves Holliday structures in vivo.  相似文献   

5.
Sha R  Liu F  Iwasaki H  Seeman NC 《Biochemistry》2002,41(36):10985-10993
RuvC is a well-characterized Holliday junction resolvase from E. coli. The presence of symmetry in its preferred recognition sequence leads to ambiguity in the position of the crossover point in the junction, because a symmetric junction can undergo branch migration. Symmetric immobile junctions are junctions that contain such symmetric sites, but are prevented from migrating by their physical characteristics. RuvC activity had been analyzed previously by traditional symmetric immobile junctions, in which the helix axes are held antiparallel in a double-crossover motif. Bowtie junctions are branched four-arm molecules containing 5',5' and 3',3' linkages at their crossover points. A new type of symmetric immobile junction can be made by flanking the crossover point of a Bowtie junction with a symmetric sequence. The junction is immobile because mobility would lead to pairing between parallel, rather than antiparallel, nucleotide pairs. In contrast to conventional Holliday junctions and their analogues, the Bowtie junction assumes a parallel, rather than antiparallel, helical domain conformation, offering a new type of substrate for Holliday junction resolvases. Here, we report the digestion of Bowtie junctions by RuvC. We demonstrate that Bowtie junctions can function as symmetric immobile junctions in this system. We also show that RuvC cleaves antiparallel junctions much more efficiently than parallel junctions, where the protein can bind (and cleave) only one site at a time. These data suggest that the presence of two binding sites leads to communication between the two subunits of the enzyme to increase its activity.  相似文献   

6.
Endonuclease VII is an enzyme from bacteriophage T4 capable of resolving four-arm Holliday junction intermediates in recombination. Since natural Holliday junctions have homologous (2-fold) sequence symmetry, they can branch migrate, creating a population of substrates that have the branch point at different sites. We have explored the substrate requirements of endonuclease VII by using immobile analogs of Holliday junctions that lack this homology, thereby situating the branch point at a fixed site in the molecule. We have found that immobile junctions whose double-helical arms contain fewer than nine nucleotide pairs do not serve as substrates for resolution by endonuclease VII. Scission of substrates with 2-fold symmetrically elongated arms produces resolution products that are a function of the particular arms that are lengthened. We have confirmed that the scission products are those of resolution, rather than nicking of individual strands, by using shamrock junction molecules formed from a single oligonucleotide strand. A combination of end-labeled and internally labeled shamrock molecules has been used to demonstrate that all of the scission is due to coordinated cleavage of DNA on opposite sides of the junction, 3' to the branch point. Endonuclease VII is known to cleave the crossover strands of Holliday junctions in this fashion. The relationship of the long arms to the cleavage direction suggests that the portion of the enzyme which requires the minimum arm length interacts with the pair of arms containing the 3' portion of the crossover strands on the bound surface of the antiparallel junction.  相似文献   

7.
Sha R  Liu F  Bruist MF  Seeman NC 《Biochemistry》1999,38(9):2832-2841
The Holliday junction is a central intermediate in genetic recombination. It contains four strands of DNA that are paired into four double helical arms that flank a branch point. In the presence of Mg2+, the four arms are known to stack in pairs forming two helical domains whose orientations are antiparallel but twisted by about 60 degrees. The basis for the antiparallel orientation of the domains could be either junction structure or the effect of electrostatic repulsion between domains. To discriminate between these two possibilities, we have constructed and characterized an analogue, called a bowtie junction, in which one strand contains a 3',3' linkage at the branch point, the strand opposite it contains a 5',5' linkage, and the other two strands contain conventional 3',5' linkages. Electrostatic effects are expected to lead to an antiparallel structure in this system. We have characterized the molecule in comparison with a conventional immobile branched junction by Ferguson analysis and by observing its thermal transition profile; the two molecules behave virtually identically in these assays. Hydroxyl radical autofootprinting has been used to establish that the unusual linkages occur at the branch point and that the arms stack to form the same domains as the conventional junction. Cooper-Hagerman gel mobility analyses have been used to determine the relative orientations of the helical domains. Remarkably, we find them to be closer to parallel than to antiparallel, suggesting that the preferred structure of the branch point dominates over electrostatic repulsion. We have controlled for the number of available bonds in the branch point, for gel concentration, and for the role of divalent cations. This finding suggests that control of branch point structure alone can lead to parallel domains, which are generally consistent with recombination models derived from genetic data.  相似文献   

8.
The process of genetic recombination involves the formation of branched four-stranded DNA structures known as Holliday junctions. The Holliday junction is known to have an antiparallel orientation of its helices, i.e., the crossover occurs between strands of opposite polarity. Some intermediates in this process are known to involve two crossover sites, and these may involve crossovers between strands of identical polarity. Surprisingly, if a crossover occurs at every possible juxtaposition of backbones between parallel DNA double helices, the molecules form a paranemic structure with two helical domains, known as PX-DNA. Model PX-DNA molecules can be constructed from a variety of DNA molecules with five nucleotide pairs in the minor groove and six, seven or eight nucleotide pairs in the major groove. A topoisomer of the PX motif is the juxtaposed JX1 molecule, wherein one crossover is missing between the two helical domains. The JX1 molecule offers an outstanding baseline molecule with which to compare the PX molecule, so as to measure the thermodynamic cost of forming a crossover in a parallel molecule. We have made these measurements using calorimetric and ultraviolet hypochromicity methods, as well as denaturing gradient gel electrophoretic methods. The results suggest that in relaxed conditions, a system that meets the pairing requirements for PX-DNA would prefer to form the PX motif relative to juxtaposed molecules, particularly for the 6:5 structure.  相似文献   

9.
Recent genetic and biochemical studies revealed the mechanisms of late stage of homologous recombination in E. coli. A central intermediate of recombination called “Holliday structure”, in which two homologous duplex DNA molecules are linked by a single-stranded crossover, is formed by the functions of RecA and several other proteins. The products of the ruvA and ruvB genes, which constitute an SOS regulated operon, form a functional complex that promotes migration of Holliday junctions by catalyzing strand exchange reaction, thus enlarging the heteroduplex region. RuvA is a DNA-binding protein specific for these junctions, and RuvB is a motor molecule for branch migration providing energy by hydrolyzing ATP. The product of the ruvC gene, which is not regulated by the SOS system, resolves Holliday junctions by introducing nicks at or near the crossover junction in strands with the same polarity at the same sites. The recombination reaction is completed by sealing the nicks with DNA ligase, resulting in spliced or patched recombinants. The product of the recG gene provides an alternative route for resolving Holliday junctions. RecG has been proposed to promote branch migration in the opposite direction to that promoted by RecA protein. The atomic structure of RuvC protein revealed by crystallographic study, when combined with mutational analysis of RuvC, provides mechanistic insights into the interactions of RuvC with Holliday junction.  相似文献   

10.
Holliday junctions are critical intermediates for homologous, site-specific recombination, DNA repair, and replication. A wealth of structural information is available for immobile four-way junctions, but the controversy on the mechanism of branch migration of Holliday junctions remains unsolved. Two models for the mechanism of branch migration were suggested. According to the early model of Alberts-Meselson-Sigal (Sigal, N., and Alberts, B. (1972) J. Mol. Biol. 71, 789-793 and Meselson, M. (1972) J. Mol. Biol. 71, 795-798), exchanging DNA strands around the junction remain parallel during branch migration. Kinetic studies of branch migration (Panyutin, I. G., and Hsieh, P. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 2021-2025) suggest an alternative model in which the junction adopts an extended conformation. We tested these models using a Holliday junction undergoing branch migration and time-lapse atomic force microscopy, an imaging technique capable of imaging DNA dynamics. The single molecule atomic force microscopy experiments performed in the presence and in the absence of divalent cations show that mobile Holliday junctions adopt an unfolded conformation during branch migration that is retained despite a broad range of motion in the arms of the junction. This conformation of the junction remains unchanged until strand separation. The data obtained support the model for branch migration having the extended conformation of the Holliday junction.  相似文献   

11.
Liao S  Mao C  Birktoft JJ  Shuman S  Seeman NC 《Biochemistry》2004,43(6):1520-1531
Holliday junctions are intermediates in genetic recombination. They consist of four strands of DNA that flank a branch point. In natural systems, their sequences have 2-fold (homologous) sequence symmetry. This symmetry enables the molecules to undergo an isomerization, known as branch migration, that relocates the site of the branch point. Branch migration leads to polydispersity, which makes it difficult to characterize the physical properties of the junction and the effects of the sequence context flanking the branch point. Previous studies have reported two symmetric junctions that do not branch migrate: one that is immobilized by coupling to an asymmetric junction in a double crossover context, and a second that is based on molecules containing 5',5' and 3',3' linkages. Both are flawed by distorting the structure of the symmetric junction from its natural conformation. Here, we report an undistorted symmetric immobile junction based on the use of DNA parallelogram structures. We have used a series of these junctions to characterize the junction resolution reaction catalyzed by vaccinia virus DNA topoisomerase. The resolution reaction entails cleavage and rejoining at CCCTT/N recognition sites arrayed on opposing sides of the four-arm junction. We find that resolution is optimal when the scissile phosphodiester (Tp/N) is located two nucleotides 5' to the branch point on the helical strand. Covalent topoisomerase-DNA adducts are precursors to recombinant strands in all reactions, as expected. Kinetic analysis suggests a rate limiting step after the first-strand cleavage.  相似文献   

12.
DNA branched junctions are analogues of Holliday junction recombination intermediates. Partially mobile junctions contain a limited amount of homology flanking the branch point. A partially mobile DNA branched junction has been incorporated into a synthetic double-stranded circular DNA molecule. The junction is flanked by four homologous nucleotide pairs, so that there are five possible locations for the branch point. Two opposite arms of the branched junction are joined to form the circular molecule, which contains 262 nucleotides to the base of the junction. This molecule represents a system whereby torque applied to the circular molecule can have an impact on the junction, by relocating its branch point. Ligation of the molecule produces two topoisomers; about 87% of the product is a relaxed molecule, and the rest is a molecule with one positive supercoil. The position of the branch point is assayed by cleaving the molecule with endonuclease VII. We find that the major site of the branch point in the relaxed topoisomer is at the maximally extruded position in the relaxed molecule. Upon the addition of ethidium, the major site of the branch point migrates to the minimally extruded position. © 1998 John Wiley & Sons, Inc. Biopoly 45: 69–83, 1998  相似文献   

13.
The advance of a DNA replication fork requires an unwinding of the parental double helix. This in turn creates a positive superhelical stress, a (+)-DeltaLk, that must be relaxed by topoisomerases for replication to proceed. Surprisingly, partially replicated plasmids with a (+)-DeltaLk were not supercoiled nor were the replicated arms interwound in precatenanes. The electrophoretic mobility of these molecules indicated that they have no net writhe. Instead, the (+)-DeltaLk is absorbed by a regression of the replication fork. As the parental DNA strands re-anneal, the resultant displaced daughter strands base pair to each other to form a four-way junction at the replication fork, which is locally identical to a Holliday junction in recombination. We showed by restriction endonuclease digestion that the junction can form at either the terminus or the origin of replication and we visualized the structure with scanning force microscopy. We discuss possible physiological implications of the junction for stalled replication in vivo.  相似文献   

14.
Viral and bacterial Holliday junction resolvases differ in specificity with the former typically being more promiscuous, acting on a variety of branched DNA substrates, while the latter exclusively targets Holliday junctions. We have determined the crystal structure of a RuvC resolvase from bacteriophage bIL67 to help identify features responsible for DNA branch discrimination. Comparisons between phage and bacterial RuvC structures revealed significant differences in the number and position of positively‐charged residues in the outer sides of the junction binding cleft. Substitutions were generated in phage RuvC residues implicated in branch recognition and six were found to confer defects in Holliday junction and replication fork cleavage in vivo. Two mutants, R121A and R124A that flank the DNA binding site were purified and exhibited reduced in vitro binding to fork and linear duplex substrates relative to the wild‐type, while retaining the ability to bind X junctions. Crucially, these two variants cleaved Holliday junctions with enhanced specificity and symmetry, a feature more akin to cellular RuvC resolvases. Thus, additional positive charges in the phage RuvC binding site apparently stabilize productive interactions with branched structures other than the canonical Holliday junction, a feature advantageous for viral DNA processing but deleterious for their cellular counterparts.  相似文献   

15.
The formation and subsequent resolution of Holliday junctions are critical stages in recombination. We describe a new Escherichia coli endonuclease that resolves Holliday intermediates by junction cleavage. The 14 kDa Rus protein binds DNA containing a synthetic four-way junction (X-DNA) and introduces symmetrical cuts in two strands to give nicked duplex products. Rus also processes Holliday intermediates made by RecA into products that are characteristic of junction resolution. The cleavage activity on X-DNA is remarkably similar to that of RuvC. Both proteins preferentially cut the same two strands at the same location. Increased expression of Rus suppresses the DNA repair and recombination defects of ruvA, ruvB and ruvC mutants. We conclude that all ruv strains are defective in junction cleavage, and discuss pathways for Holliday junction resolution by RuvAB, RuvC, RecG and Rus.  相似文献   

16.
The Holliday junction is the central intermediate in homologous recombination. Branch migration of this four-stranded DNA structure is a key step in genetic recombination that affects the extent of genetic information exchanged between two parental DNA molecules. Here, we have constructed synthetic Holliday junctions to test the effects of p53 on both spontaneous and RuvAB promoted branch migration as well as the effect on resolution of the junction by RuvC. We demonstrate that p53 blocks branch migration, and that cleavage of the Holliday junction by RuvC is modulated by p53. These findings suggest that p53 can block branch migration promoted by proteins such as RuvAB and modulate the cleavage by Holliday junction resolution proteins such as RuvC. These results suggest that p53 could have similar effects on eukaryotic homologues of RuvABC and thus have a direct role in recombinational DNA repair.  相似文献   

17.
The variable positions of a branch-migrating cruciform junction in supercoiled plasmid DNA were mapped following cleavage of the DNA with bacteriophage T7 endonuclease I. T7 endonuclease I specifically cleaved, and thereby resolved, the Holliday junction existing at the base of the cruciform in the circular bacterial plasmid pSA1B.56A. Cruciform extrusion of cloned sequences in pSA1B.56A (containing a 322 base-pair inverted repeat insert composed of poxvirus telomeric sequences) topologically relaxed the plasmid substrate in vitro. Thus, numerous crossover positions were identified within the region of cloned sequences, reflecting the range of superhelical densities in the native plasmid preparation. Endonuclease I-sensitive crossover positions, mapped to both strands of the viral insert following the T7 endonuclease I digestion of either plasmid preparations or individual topoisomers, were regularly separated by approximately ten nucleotides. The appearance of sensitive crossovers every ten nucleotides corresponds to a change in linking difference (delta Lk) of +/- 2 in the circular core domain of the plasmid during branch point migration. In contrast, individual topoisomers of a plasmid preparation differ in linking number in increments of +/- 1. Thus, the observed linearization of each individual topoisomer following enzyme treatment, as a result of resolution of the crossovers associated with each topoisomer, showed that branch point migration to sensitive crossover positions must have occurred facilely. T7 endonuclease I randomly resolved across either axis of the cruciform, though some discrimination (related to the sequence specificity of the enzyme) was observed. The ten-nucleotide spacing between sensitive crossover positions is accounted for by an isomerization of the cruciform junction on branch point migration. An hypothesis is that this isomerization was imposed upon the cruciform junction by the change in helix twist (delta Tw) in the two branches that compose the topologically closed, circular domain of the plasmid. T7 endonuclease I may discriminate between the various isomeric forms and cleave a sensitive conformation that appears with every turn of branch migration which leads to the extrusion, or absorption, of two turns of helix from the circular core.  相似文献   

18.
DNA branched junctions have been constructed that contain either five arms or six arms surrounding a branch point. These junctions are not as stable as junctions containing three or four arms; unlike the smaller junctions, they cannot be shown to migrate as a single band on native gels when each of their arms contains eight nucleotide pairs. However, they can be stabilized if their arms contain 16 nucleotide pairs. Ferguson analysis of these junctions in combination with three-arm and four-arm junctions indicates a linear increase in friction constant as the number of arms increases, with the four-arm junction migrating anomalously. The five-arm junction does not appear to have any unusual stacking structure, and all strands show similar responses to hydroxyl radical autofootprinting analysis. By contrast, one strand of the six-arm junction shows virtually no protection from hydroxyl radicals, suggesting that it is the helical strand of a preferred stacking domain. Both junctions are susceptible to digestion by T4 endonuclease VII, which resolves Holliday junctions. However, the putative helical strand of the six-arm junction shows markedly reduced cleavage, supporting the notion that its structure is largely found in a helical conformation. Branched DNA molecules can be assembled into structures whose helix axes form multiply connected objects and networks. The ability to construct five-arm and six-arm junctions vastly increases the number of structures and networks that can be built from branched DNA components. Icosahedral deltahedra and 11 networks with 432 symmetry, constructed from Platonic and Archimedean solids, are among the structures whose construction is feasible, now that these junctions can be made.  相似文献   

19.
Various branched DNA structures were created from synthetic, partly complementary oligonucleotides combined under annealing conditions. Appropriate mixtures of oligonucleotides generated three specific branched duplex DNA molecules: (i) a Holliday junction analog having a fixed (immobile) crossover bounded by four duplex DNA branches, (ii) a similar Holliday junction analog which is capable of limited branch migration and, (iii) a Y-junction, with three duplex branches and fixed branch point. Each of these novel structures was specifically cleaved by bacteriophage T7 gene 3 product, endonuclease I. The cleavage reaction "resolved" the two Holliday structure analogs into pairs of duplex DNA products half the size of the original molecules. The point of cleavage in the fixed-junction molecules was predominantly one nucleotide removed to the 5' side of the expected crossover position. Multiple cleavage positions were mapped on the Holliday junction with the mobile, or variable, branch point, to sites consistent with the unrestricted movement of the phosphodiester crossover within the region of limited dyad symmetry which characterizes this molecule. Based on the cleavage pattern observed with this latter substrate, the enzyme displayed a modest degree of sequence specificity, preferring a pyrimidine on the 3' side of the cleavage site. Branched molecules that were partial duplexes (lower order complexes which possessed single-stranded as well as duplex DNA branches) were also substrates for the enzyme. In these molecules, the cleaved phosphodiester bonds were in duplex regions only and predominantly one nucleotide to the 5' side of the branch point. The phosphodiester positions 5' of the branch point in single-stranded arms were not cleaved. Under identical reaction conditions, individually treated oligonucleotides were completely refractory. Thus, cleavage by T7 endonuclease I displays great structural specificity with an efficiency that can vary slightly according to the DNA sequence.  相似文献   

20.
DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号