首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fractionation of messenger activities isolated from the cytoplasm of HeLa cells late in infection with adenovirus type 2 reveals that viral polypeptides III and pVII are each synthesized from two different-sized mRNA's. the major messenger activity for each protein has the same sedimentation rate as that previously reported by Anderson et al. (Proc. Natl. Acad. Sci. U.S.A. 71:2756-2760, 1974). The minor messenger activities for III and pVII sediment more rapidly and are not aggregates of the major mRNA's for these proteins. The two minor messenger activities cosediment with two polyadenylated RNA species which are labeled late in infection with 32P and whose molecular weights are estimated to be 2.9 x 10(6) and 2.4 x 10(6). Both of these species hybridize to adenovirus type 2 DNA specific for the mRNA family that is 3' coterminal at adenovirus type 2 map position 49.5 and the mRNA family that is 3' coterminal at 62.0. This is consistent with the possibility that these RNAs have 5'-terminal sequences identical to those of the normal mRNA's for III and pVII but are 3' coterminal at map position 62, the normal 3' terminus of the mRNA's for polypeptides II and pVI. These species are not found in polyadenylated RNA isolated from the nucleus, suggesting that the minor mRNA species are cytoplasmic RNAs.  相似文献   

2.
Four hours after infection of BHK cells by vesicular stomatitis virus (VSV), the rate of total protein synthesis was about 65% that of uninfected cells and synthesis of the 12 to 15 predominant cellular polypeptides was reduced to a level about 25% that of control cells. As determined by in vitro translation of isolated RNA and both one- and two-dimensional gel analyses of the products, all predominant cellular mRNA's remained intact and translatable after infection. The total amount of translatable mRNA per cell increased about threefold after infection; this additional mRNA directed synthesis of the five VSV structural proteins. To determine the subcellular localization of cellular and viral mRNA before and after infection, RNA from various sizes of polysomes and nonpolysomal ribonucleoproteins (RNPs) was isolated from infected and noninfected cells and translated in vitro. Over 80% of most predominant species of cellular mRNA was bound to polysomes in control cells, and over 60% was bound in infected cells. Only 2 of the 12 predominant species of translatable cellular mRNA's were localized to the RNP fraction, both in infected and in uninfected cells. The average size of polysomes translating individual cellular mRNA's was reduced about two- to threefold after infection. For example, in uninfected cells, actin (molecular weight 42,000) mRNA was found predominantly on polysomes with 12 ribosomes; after infection it was found on polysomes with five ribosomes, the same size of polysomes that were translating VSV N (molecular weight 52,000) and M (molecular weight 35,000) mRNA. We conclude that the inhibition of cellular protein synthesis after VSV infection is due, in large measure, to competition for ribosomes by a large excess of viral mRNA. The efficiency of initiation of translation on cellular and viral mRNA's is about the same in infected cells; cellular ribosomes are simply distributed among more mRNA's than are present in growing cells. About 20 to 30% of each of the predominant cellular and viral mRNA's were present in RNP particles in infected cells and were presumably inactive in protein synthesis. There was no preferential sequestration of cellular or viral mRNA's in RNPs after infection.  相似文献   

3.
HEp-2 cells were pulse-labeled at different times after infection with herpes simplex virus, and nuclear ribonucleic acid (RNA) and cytoplasmic RNA were examined. The data showed the following: (i) Analysis by acrylamide gel electrophoresis of cytoplasmic RNA of cells infected at high multiplicities [80 to 200 plaque-forming units (PFU)/cell] revealed that ribosomal RNA (rRNA) synthesis falls to less than 10% of control (uninfected cell) values by 5 hr after infection. The synthesis of 4S RNA also declined but not as rapidly, and at its lowest level it was still 20% of control values. At lower multiplicities (20 PFU), the rate of inhibition was slower than at high multiplicities. However, at all multiplicities the rates of inhibition of 18S and 28S rRNA remained identical and higher than that of 4S RNA. (ii) Analysis of nuclear RNA of cells infected at high multiplicities by sucrose density gradient centrifugation showed that the synthesis and methylation of 45S rRNA precursor continued at a reduced but significant rate (ca. 30% of control values) at times after infection when no radioactive uridine was incorporated or could be chased into 28S and 18S rRNA. This indicates that the inhibition of rRNA synthesis after herpesvirus infection is a result of two processes: a decrease in the rate of synthesis of 45S RNA and a decrease in the rate of processing of that 45S RNA that is synthesized. (iii) Hybridization of nuclear and cytoplasmic RNA of infected cells with herpesvirus DNA revealed that a significant proportion of the total viral RNA in the nucleus has a sedimentation coefficient of 50S or greater. The sedimentation coefficient of virus-specific RNA associated with cytoplasmic polyribosomes is smaller with a maximum at 16S to 20S, but there is some rapidly sedimenting RNA (> 28S) here too. (iv) Finally, there was leakage of low-molecular weight (4S) RNA from infected cells, the leakage being approximately three-fold that of uninfected cells by approximately 5 hr after infection.  相似文献   

4.
Genome localization of simian virus 40 RNA species.   总被引:16,自引:9,他引:7       下载免费PDF全文
  相似文献   

5.
Cytoplasmic and polyribosomal RNAs from Rous sarcoma virus-transformed and phenotypically reverted field vole cells were fractionated by rate-zonal sedimentation and hybridized with a (3)H-labeled complementary DNA viral probe to determine the size classes of virus-specific RNA present in these cell types. In contrast to Rous sarcoma virus-infected permissive avian cells, only two of three discrete species of virus-specific RNA were detected in the cytoplasm of these vole cells. These included genome-length 35S RNA and a 21S RNA. However, viral 28S RNA, routinely detected in the cytoplasm of productively infected avian cells, could not be found in cytoplasmic RNA from vole cells. In addition, a low-molecular-weight viral RNA sedimenting less than 16S was detected in both infected avian and vole cells. Because of its heterogeneity this latter species is most likely generated from the intracellular degradation of the larger viral RNAs. Both the viral 35S and 21S RNA were also found to be associated with total polyribosomes from these vole cells. Studies were also performed to determine the distribution of both total viral genomic and sarcoma-specific RNA sequences among the size classes of fractionated total polyribosomes. In both vole cell types the majority of cytoplasmic viral RNA sequences were also associated with polyribosomes and were similarly distributed among the size classes of total polyribosomes. Sarcoma-specific sequences were present on both the 35S and 21S RNA species. These data suggest that the expression of the viral transforming gene in revertant field vole cells may be controlled at some stage subsequent to translation of the viral RNA.  相似文献   

6.
The RNA sequences and RNA size classes transcribed early in productive infection with adenovirus 2 were analyzed by RNA-DNA hybridization. Two independent procedures demonstrated that early cytoplasmic viral RNA is composed of two sequence classes, class I which is absent or present in greatly reduced quantities at 18 h, and class II which persists throughout the infection. When the sequences in early viral RNA were analyzed by hybridization-inhibition studies, the hybridization of early [(3)H]RNA was inhibited only 50% by RNA from cultures harvested late (18 h) in infection. Liquid hybridizations with radioactive viral DNA confirmed that early RNA includes two classes. Duplex formation of RNA with (32)P-labeled viral DNA was assayed by hydroxylapatite chromatography and resistance to S(1) nuclease digestion. Both methods showed that the cytoplasmic RNA present early in infection annealed 12 to 15% of the viral DNA; late cytoplasmic RNA hybridized 21 to 25% of the DNA. Mixtures of early plus late cytoplasmic RNAs hybridized 30 to 34% of the viral DNA, demonstrating the reduced concentration of early class I RNA in the late RNA preparations. Experiments were performed to correlate class I and class II early RNA with size-fractionated cytoplasmic RNA synthesized early in infection. Fractionation of RNA by gel electrophoresis or sucrose gradient centrifugation confirmed three major size classes, 12 to 15S, 19 to 20S, and 26S. Total cytoplasmic RNA and RNA selected on the basis of poly(A) content contained the same size classes of viral RNA. In standard electrophoresis conditions, the 19 to 20S viral RNA could be resolved into two size classes, and the distribution of 12 to 15S RNA also indicated the presence of more than one size component. Hybridization-inhibition studies under nonsaturating conditions were performed with 26S, 19 to 20S, and 12 to 15S viral RNAs fractionated by gel electrophoresis. Late RNA inhibited the hybridization of 26S RNA only 20%, 19 to 20S RNA was inhibited 45%, and 12 to 15S RNA was inhibited 50%. When 18 to 19S and 12 to 15S viral RNAs purified by sucrose gradient centrifugation were similarly analyzed, late RNA inhibited hybridization of 18 to 19S RNA 50%, and the annealing of 12 to 15S RNA was inhibited 70%.  相似文献   

7.
We have characterized murine mammary tumor virus (MuMTV)-specific RNA in several types of cells in which viral DNA is transcribed into RNA: cultured GR mouse mammary tumor cells, S49 lymphoma cells from BALB/c mice, lactating mammary glands from C57BL/6 mice, and mink lung cells infected in vitro with MuMTV. In all cell types studied, there are three distinct species of intracellular viral RNA, with sedimentation coefficients of 35S, 24S, and 13S (or molecular weights of 3.1 X 10(6), 1.5 X 10(6), and 0.37 X 10(6), as determined by rate-zonal sedimentation in sucrose gradients and by electrophoresis in agarose gels under denaturing conditions. These three viral RNA species appear to be present regardless of viral RNA concentration, responsiveness to glucocorticoid hormones, production of extracellular virus, and use of either endogenous or acquired MuMTV proviral DNA as template. The three viral RNAs display characteristics of mRNAs in that they are polyadenylated, associated with polyribosomes, and released from polyribosomes by treatment with EDTA; hence all three species presumably direct the synthesis of virus-coded proteins. The two larger species of viral RNA are probably responsible for synthesis of the structural proteins of the virion, but the function of the 13S RNA is not known. Both of the subgenomic RNAs contain sequences found at the 3' terminus of 35S (or genomic) RNA. However, only the 24S RNA (not the 13S RNA) contains sequences which are located at the 5' terminus of 35S RNA and are apparently transposed during RNA synthesis of maturation, as described for subgenomic mRNA's of other retroviruses.  相似文献   

8.
We have isolated as recombinant DNA clones, in the plasmid pBR322, regions of the herpesvirus type 1 genome spanning the region between 0.53 and 0.6 on the prototypical arrangement. This 11,000-base-pair region corresponds to 10% of the large unique region and encodes five major and several minor mRNA species abundant at different times after infection, which range in length from 7 to 1 kilobase. In this report, we have used RNA transfer blots and S1 nuclease digestion of hybrids between viral DNA and polyribosomal RNA to precisely localize (+/- 0.1 kilobase) these mRNA's. Comparison of neutral and alkaline gels of S1 nuclease-digested hybrids indicates no internal introns in the coding sequences of these mRNA's, although noncontiguous leader sequences near (ca. 0.1 kilobase) the 5' ends of any or all mRNA's could not be excluded. The 5' ends of several late mRNA's that are encoded opposite DNA strands map very close to one another, and the 3' ends of a major late and a major early mRNA, which are partially colinear, terminate in the same region. In vitro translation of the viral mRNA's isolated by hybridization with DNA bound to cellulose and fractionation of mRNA species on denaturing agarose gels allowed us to assign specific polypeptide products to each of the mRNA's characterized. Among other results, it was demonstrated unequivocally that two major late mRNA's, which partially overlap, encode the same polypeptide.  相似文献   

9.
We have analyzed the structure of the late cytoplasmic RNAs made after infection with wild-type simian virus 40 and a set of viable mutants, four of which have deletions and one an insertion within the nucleotide sequence specifying the leader segment of the 16S and 19S mRNA's. The principal findings are: (i) simian virus 40 16S and 19S mRNA's made during infections with wild-type virnds and possibly in the nucleotide sequence comprising the "leader" segments. (II) "Spliced" 16S and 19S mRNA's are made during infections with each of the mutants although, in some cases, the ratio of 19S to 16S mRNA species is reduced. (iii) The deletion or insertion of nucleotides within the DNA segment defined by map position 0.70 to 0.75 causes striking alterations in the types of leader structures in the late mRNAs. (iv) Many of the late RNA leader segments produced after infection with the mutants appear to be multiply spliced, i.e., instead of the major 200- to 205-nucleotide-long leader segment present in wild-type 16S mRNA, the RNAs produced by several of the deletion mutants have leaders with whort discontiguous segments.  相似文献   

10.
J Tal  E A Craig    H J Raskas 《Journal of virology》1975,15(1):137-144
Synthesis of cytoplasmic viral RNA was studied during infection of cultured human (KB) cells with adenovirus 2. At 6 h, before viral DNA synthesis began 5% of the poly(A)-containing RNA hybridized to viral DNA; by 12 h and at later times more than 80% was virus specified. At 18 h after infection, four major size classes of cytoplasmic viral RNA were identified among the poly(A)-containing molecules. These size classes migrated as 27S, 24S, 19S, and 12 to 15S in polyacrylamide gels. The three larger size classes could also be identified in denaturing formamide gels. Hybridization of the 27S, 24S, and 19S viral RNAs was not inhibited by RNA harvested from cells at early times in infection. Therefore, these three major RNAs must code for late viral proteins. Hybridization of the 12 to 15S RNA was partially inhibited by RNA from cultures harvested at early times, suggesting that in this size class some of the RNA labeled at 18 h codes for early viral proteins.  相似文献   

11.
12.
M Lange  E May  P May 《Journal of virology》1981,38(3):940-951
Mouse cells are fully nonpermissive for simian virus 40 (SV40). Infection does not lead to detectable virus replication. In this report, it was shown, first, that spliced 16S and 19S SV40 late mRNA were present in cytoplasmic and polysomal polyadenylated acid+ RNA preparations from SV40-infected baby mouse kidney cells. The 16S and 19S SV40 late mRNA's produced in infected baby mouse kidney cells were identical to or similar to the 16S and 19S SV40 late mRNA's produced in permissive monkey cells as judged by their S1 mapping patterns performed with the late strand of HpaII-BamHI fragment B and by their sedimentation patterns in a sucrose gradient. It was also shown that the 16S late mRNA from infected baby mouse kidney cells could be translated into a polypeptide which was identical to or similar to virion protein VP1 in every aspect examined, including the patter of peptide mapping by limited proteolysis. Second, we reported that mouse kidney cells produced detectable, although low, levels of SV40 virion protein VP1, as shown by the sodium dodecyl sulfate-polyacrylamide gel autoradiogram of [35S]methionine-labeled proteins immunoprecipitated by a rabbit antiserum directed against SV40 virion proteins. Third, it was reported that infected baby mouse kidney cells produced late mRNA's either (i) when the infection was done at a restrictive temperature with the nonleaky tsA58 mutant or (ii) in cells treated with 100 microgram of cycloheximide per ml, in which large T antigen synthesis was inhibited by more than 99.9%. This suggested that large T antigen was not required for the synthesis of late mRNA in mouse cells.  相似文献   

13.
During late lytic infection of mouse kidney cell cultures polyoma 16S and 19S (late 19S RNA) were isolated by oligo(dT)-cellulose chromatography. Approximately 60-80% of total cytoplasmic polyoma RNA contained tracts of poly(A) which were retained by oligo(dT)-cellulose. Early in lytic infection when viral DNA synthesis and the production of capsid protein are blocked by the addition of 5-fluorodeoxyuridine, approximately 100% of polyoma "early" 19S RNA was quantitatively retained by oligo(dT)-cellulose indicating the presence of poly(A) tracts on most 19S mRNA molecules. In addition, 2 classes polyoma RNA, synthesized after the onset of cellular RNA synthesis under conditions where DNA synthesis is inhibited with 5-fluorodeoxyuridine, were found to contain tracts of poly(A). These species sedimenting at 16S and 19S in aqueous sucrose density gradients were also quantitatively retained by oligo (dT)-cellulose.  相似文献   

14.
Polyadenylated cytoplasmic RNA from polyoma virus-infected cells can be translated in the wheat germ system to yield all there polyoma virus capsid proteins, VP1, VP2, and VP3. The translation products of RNA selected from total cytoplasmic RNA of infected cells by hybridization to polyoma virus DNA showed a high degree of enrichment for VP1, VP2, and VP3. The identity of the in vitro products with authentic virion proteins was established in two ways. First, tryptic peptide maps of the in vitro products were found to be essentially identical to those of their in vivo counterparts. Second, the mobilities of the in vitro products on two-dimensional gels were the same as those of viral proteins labeled in vivo. VP1, VP2, and vp3 were all labeled with [35S] formylmethionine when they were synthesized in the presence of [35S] formylmethionyl-tRNAfmet. We determined the sizes of the polyadenylated mRNA's for VP1, VP2, and VP3 by fractionation on gels. The sizes of the major mRNA species for the capsid proteins are as follows: VP2, 8.5 X 10(5) daltons; VP3, 7.4 X 10(5) daltons; and VP1, 4.6 X 10(5) daltons. We conclude that all three viral capsid proteins are synthesized independently in vitro, that all three viral capsid proteins are virally coded, and that each of the capsid proteins has a discrete mRNA.  相似文献   

15.
16.
17.
18.
Previous reports from this laboratory (Honess and Roizman, 1974) have operationally defined alpha polypeptides as the viral proteins that are synthesized first in HEp-2 cells treated with cycloheximide from the time of infection with herpes simplex virus type 1 until the withdrawal of the drug 12 to 15 h after infection. It has also been shown that the viral RNA (designated alpha RNA) that accumulates in the cytoplasm during cycloheximide treatment and on polyribosomes immediately upon withdrawal of the drug is homologous to 10 to 12% of viral DNA, whereas the viral RNA accumulating in the cytoplasm of untreated cells at 8 to 14 h after infection is homologous to 43% of viral DNA (Kozak and Roizman, 1974). In the present study, alpha RNA and cytoplasmic RNA extracted from untreated cells 8 h after infection were each hybridized in liquid to in vitro labeled restriction endonuclease fragments generated by cleavage of herpes simplex virus type 1 DNA with Hsu I, with Bgl II, and with both enzymes simultaneously. The data show that only a subset of the fragments hybridized to alpha RNA, and these are scattered within both the L and S components of the DNA. There are at least five noncontiguous regions in the DNA homologous to alpha RNA; two of these are located partially within the reiterated sequences in the S component. All fragments tested hybridized more extensively with 8-h cytoplasmic RNA than with alpha RNA. Four adjacent fragments, corresponding to 30% of the DNA and mapping within the L component, hybridized exclusively with the cytoplasmic RNA extracted from cells 8 h after infection.  相似文献   

19.
20.
Influenza viral complementary RNA (cRNA), i.e., viral mRNA was radioactive when purified from the cytoplasmic fraction of cordycepin-treated canine kidney cells that were incubated with [methyl-3H]methionine during infection. Approximately 55 to 60% of the methyl-3H radioactivity was in internal N6-methyladenosine, a feature distinguishing this mRNA from those viral mRNA's that are known to be synthesized in the cytoplasm. The remaining methyl-3H radioactivity was in 5'-terminal cap structures that consisted of 7-methylguanosine in pyrophosphate linkage to 2'-o-methyladenosine, N6, 2'-O-dimethyladenosine, or 2'-O-methylguanosine. Methylated adenosine was the predominant penultimate nucleoside in caps, suggesting that cRNA synthesis in infected cells initiates preferentially with adenosine at the 5' end. In contrast to cRNA, influenza virion RNA segments extracted from purified virus contained mainly 5'-terminal ppA and no detectable cap structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号