共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implications 总被引:18,自引:0,他引:18
Mannello F Gazzanelli G 《Apoptosis : an international journal on programmed cell death》2001,6(6):479-482
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, which can synergistically degrade the major components of extracellular matrix (ECM). A key role in maintaining the balance between ECM deposition and degradation in several physio-pathological processes is carried out, through multiple biological functions, by four members of the tissue inhibitors of metalloproteinases (TIMPs) family. TIMP-1 and TIMP-2 are capable of inhibiting the activities of MMPs, can inhibit tumour growth, invasion and metastasis, exhibit growth factor-like activity, can inhibit angiogenesis and suppress programmed cell death (PCD) independently of the MMP-inhibitory activity. TIMP-3 is the only member which is tightly bound to ECM, inhibits TNF- converting enzyme and induces PCD through the stabilization of TNF- receptors on the cell surface. TIMP-4 plays a role in ECM homeostasis in a tissue-specific fashion and its overexpression induces PCD. The aim of this article is to review the exciting and intriguing literature on TIMPs, with special emphasis on their conflicting-paradoxical roles in PCD and their potential clinical usefulness. 相似文献
2.
Shanti Diwakarla Linda D. Mercer Liubov Kardashsyan† Percy W. Y. Chu‡ Yea Seul Shin§ Chew L. Lau Maria L. R. Hughes†¶ Phillip Nagley† Philip M. Beart‡§ 《Journal of neurochemistry》2009,109(S1):198-206
GABAergic striatal neurons are compromised in basal ganglia pathologies and we analysed how insult nature determined their patterns of injury and recruitment of the intrinsic mitochondrial pathway during programmed cell death (PCD). Stressors affecting targets implicated in striatal neurodegeneration [3-morpholinylsydnoneimine (SIN-1), 3-nitropropionic acid (3-NP), NMDA, 3,5-dihydroxyphenylglycine (DHPG), and staurosporine (STS)] were compared in cultured GABAergic neurons from murine striatum by analyzing the progression of injury and its correlation with mitochondrial involvement, the redistribution of intermembrane space (IMS) proteins, and patterns of protease activation. Stressors produced PCD exhibiting slow-onset kinetics with time-dependent annexin-V labeling and eventual DNA fragmentation. IMS proteins including cytochrome c were differentially distributed, although stressors except STS produced early redistribution of apoptosis-inducing factor and Omi, suggestive of early recruitment of both caspase-dependent and caspase-independent signaling. In general, Bax mobilization to mitochondria appeared to promote IMS protein redistribution. Caspase 3 activation was prominent after STS, whereas NMDA and SIN-1 produced mainly calpain activation, and 3-NP and DHPG elicited a mixed profile of protease activation. PCD and redistribution of IMS proteins in striatal GABAergic neurons were canonical and insult-dependent, reflecting differential interplay between the caspase cascade and alternate cell death pathways. 相似文献
3.
Ellen E. Faszewski Selsebil Sljivo Lisa Kriszun Jane C. Kaltenbach 《Journal of morphology》2014,275(1):51-56
Apoptosis (programmed cell death) occurs during normal development of anurans in organs such as gills, gut, and tail. For example, apoptotic cells have been reported in the luminal epithelium along the length of the digestive tract of both larvae and frogs; however, timing of the peak number of such cells varies in different species. The purpose of the present study was to ascertain whether apoptosis also varies by species during metamorphic restructuring of the skin (as larval epithelium is replaced by adult epidermis). To determine this, cross‐sections of dorsal skin from representative larval stages and frogs of Rana pipiens, R. catesbeiana, and Ceratophrys ornata were incubated with monoclonal antibody against active caspase‐3, one of the main enzymes in the apoptotic cascade. We observed apoptotic cells in the epidermis of the skin of the three species and found that such cells were more numerous in larval stages than in frogs and more abundant in the two ranid species than in C. ornata. These results contribute to our understanding of metamorphic changes in anuran skin. J. Morphol. 275:51–56, 2014. © 2013 Wiley Periodicals, Inc. 相似文献
4.
受体相互作用蛋白3(receptor-interacting protein 3,RIP3)是一种丝氨酸-苏氨酸蛋白激酶,因其参与细胞自噬的调控而受到广泛关注。本文就RIP3在细胞自噬的发展和调控机制中的作用进行了总结。RIP3可参与mTOR信号通路的调节,同时与多种自噬所必须的蛋白发生相互作用,包括GNAI3/RGSI9、P62和TFEB等,从而其在自噬启动、自噬体形成和自噬溶酶体成熟等多个阶段发挥正向或负向调控作用,为进一步探究RIP3对细胞程序性死亡的调控机制及相关疾病治疗的潜在分子靶标筛选提供参考。 相似文献
5.
Jane C. Kaltenbach Anne E. Fry Katherine M. Colpitts Ellen E. Faszewski 《Journal of morphology》2012,273(1):103-108
The lifespan of herbivorous Rana pipiens larvae is ~3 months, while that of carnivorous Ceratophrys ornata larvae is only about 2 weeks. During metamorphic climax, the larval gut shortens dramatically, especially in R. pipiens, and its luminal epithelium is replaced by adult‐type epithelium. To determine when programmed cell death occurs during the metamorphic restructuring of the gut, we prepared cross‐sections of the stomach, small intestine, and large intestine from representative larval stages and from juvenile frogs of both species. The sections were incubated with monoclonal antibody against active caspase‐3, one of the key enzymes in the apoptotic cascade. We observed apoptosis in some luminal epithelial cells in each of the three regions of the larval gastrointestinal tract of both species. However, apoptotic cells appeared earlier in larval stages of R. pipiens than C. ornata and few were seen in juvenile frogs of either species. The results demonstrate the occurrence of apoptosis in the metamorphic remodeling of the gut of both R. pipiens larvae and C. ornata larvae. J. Morphol., 2011. © 2011 Wiley Periodicals, Inc. 相似文献
6.
以平邑甜茶(Malus hupehensis var. pingyiensis)实生幼苗为试验材料, 研究NaCl浇灌后根系线粒体H2O2含量、膜电位(Δψm)和根系ATP含量的变化以及细胞死亡特征。结果表明, 根系线粒体H2O2含量在0.085 mol·L -1 NaCl处理的第1-6天逐渐降低, 在第6-15天则快速上升; 线粒体Δψm在0.085 mol·L -1 NaCl处理的15天内一直呈下降趋势, 在第6-15天下降速度明显加快; 根系ATP含量在0.085 mol·L -1 NaCl处理的15天内始终低于对照, 但保持在一个较稳定的范围内。TUNEL原位末端标记试验显示, 0.085 mol·L -1 NaCl处理的第9天, 根系石蜡组织切片上的阳性反应斑点明显增多, 到第15天时阳性反应斑点密集成片, 表明细胞核DNA发生了细胞程序性死亡的特征性断裂。根系中细胞程序性死亡关键酶类caspase3/7活性在0.085 mol·L -1 NaCl处理的第1-6天处于较低水平, 其活性在第6-15天成倍上升。这些结果表明, 0.085 mol·L -1 NaCl处理6-15天能诱导平邑甜茶根细胞发生程序性死亡, 而且线粒体特性的变化与根系细胞程序性死亡密切相关。 相似文献
7.
The formulation of quercetin nanoliposomes (QUE-NLs) has been shown to enhance QUE antitumor activity in C6 glioma cells. At high concentrations, QUE-NLs induce necrotic cell death. In this study, we probed the molecular mechanisms of QUE-NL-induced C6 glioma cell death and examined whether QUE-NL-induced programmed cell death involved Bcl-2 family and mitochondrial pathway through STAT3 signal transduction pathway. Downregulation of Bcl-2 and the overexpression of Bax by QUE-NL supported the involvement of Bcl-2 family proteins upstream of C6 glioma cell death. In addition, the activation of JAK2 and STAT3 were altered following exposure to QUE-NLs in C6 glioma cells, suggesting that QUE-NLs downregulated Bcl-2 mRNAs expression and enhanced the expression of mitochondrial mRNAs through STAT3-mediated signaling pathways either via direct or indirect mechanisms. There are several components such as ROS, mitochondrial, and Bcl-2 family shared by the necrotic and apoptotic pathways. Our studies indicate that the signaling cross point of the mitochondrial pathway and the JAK2/STAT3 signaling pathway in C6 glioma cell death is modulated by QUE-NLs. In conclusion, regulation of JAK2/STAT3 and ROS-mediated mitochondrial pathway agonists alone or in combination with treatment by QUE-NLs could be a more effective method of treating chemical-resistant glioma. 相似文献
8.
Garima Sharma Arti Parihar Priyanka Parihar Mordhwaj Singh Parihar 《Journal of biochemical and molecular toxicology》2019,33(8)
Elevated levels of saturated fatty acids show a strong cytotoxic effect in liver cells. Sirtuin 3 (SIRT3), a mitochondrially localized member of NAD+‐dependent deacetylase has been shown to protect hepatocytes against the oxidative stress. The role of SIRT3 on the cytotoxicity caused by fatty acids in liver cells is not fully understood. The aim of this study was to evaluate the expression level of SIRT3, oxidative stress, and mitochondrial impairments in human hepatoma HepG2 cells exposed to palmitic acid (PA). Our results showed that PA treatment caused the deposition of lipid droplets and resulted in an increased expression of tumor necrosis factor‐α in a dose‐dependent manner. Excessive accumulation of PA induces the reactive oxygen species formation and apoptosis while dissipating the mitochondrial transmembrane potential. The level of SIRT3 expression in both nuclear and mitochondrial fractions in HepG2 cells was decreased with the increase in PA concentrations. However, in the cytosolic fraction, the SIRT3 was undetectable. In conclusion, our results showed that PA caused an increase in inflammation and oxidative stress in HepG2 cells. The exposure of PA also resulted in the decline in transmembrane potential and an increase in apoptosis. The underexpression of nuclear and mitochondrial SIRT3 by PA suggests that the PA target the process that regulates the stress‐related gene expression and mitochondrial functions. 相似文献
9.
目的:观察饥饿及雨蛙素诱导的大鼠胰腺腺泡细胞AR42J中自噬基因LC3及beclin-1表达的变化,初步探讨吞噬(autophagy)在急性胰腺炎中的作用。方法:选择体外培养的生长状态良好的大鼠胰腺腺泡AR42J细胞,随机分为3组,饥饿组(N=10),雨蛙素处理组(N=10),空白对照组(N=10)。饥饿组加入充足的平衡盐溶液,雨蛙素处理组加入含10-7mol/L雨蛙素的全营养培养液,空白对照组加入含20%灭活胎牛血清的F12-K培养液(p H7.2-7.4),各组分别于处理后2、4、6 h收集细胞并提取蛋白质。采用免疫印迹法检测三组不同时点胰腺腺泡细胞AR42J中自噬基因Beclin-1和LC3的蛋白表达。结果:空白对照组不同时点beclin-1和LC3-II均呈低表达,且各时点比较差异无统计学意义(P<0.05)。饥饿组和雨蛙素处理组beclin-1和LC3-II的表达随处理时间的延长逐渐增加,且不同时点beclin-1和LC3-II的表达均较空白对照组显著增高,差异均具统计学意义(P<0.05)。结论:雨蛙素和饥饿刺激可导致大鼠胰腺腺泡细胞AR42J中LC3-II及beclin-1蛋白表达随作用时间的延长而增加,自噬可能参与了胰腺炎的发生发展过程。 相似文献
10.
Dorsey DA Mascó DH Dikranian K Hyrc K Masciotra L Faddis B Soriano M Gru AA Goldberg MP de Erausquin GA 《Apoptosis : an international journal on programmed cell death》2006,11(4):535-544
Developing neuronal populations undergo significant attrition by natural cell death. Dopaminergic neurons in the substantia
nigra pars compacta undergo apoptosis during synaptogenesis. Following this time window, destruction of the anatomic target
of dopaminergic neurons results in dopaminergic cell death but the morphology is no longer apoptotic. We describe ultrastructural
changes that appear unique to dying embryonic dopaminergic neurons. In primary cultures of mesencephalon, death of dopaminergic
neurons is triggered by activation of glutamate receptors sensitive to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA), and differs ultrastructurally from both neuronal apoptosis or typical excitotoxicity. AMPA causes morphological
changes selectively in dopaminergic neurons, without affecting other neurons in the same culture dishes. Two hours after the
onset of treatment swelling of Golgi complexes is apparent. At 3 h, dopaminergic neurons display loss of membrane asymmetry
(coinciding with commitment to die), as well as nuclear membrane invagination, irregular aggregation of chromatin, and mitochondrial
swelling. Nuclear changes continue to worsen until loss of cytoplasmic structures and cell death begins to occur after 12 h.
These changes are different from those described in neurons undergoing either apoptosis or excitotoxic death, but are similar
to ultrastructural changes observed in spontaneous death of dopaminergic neurons in the natural mutant weaver mouse. 相似文献
11.
In our previous studies, programmed cell death (PCD) was induced in human periodontal ligament (PDL) cells, through activation of caspase-3 and upregulation of CASP5 gene (encoding caspase-5 protein), in response to mechanical stretch loading. The aim of this study is to explore the relationship between the inflammatory caspase, caspase-5, and the apoptotic executioner protein, caspase-3, in human PDL cells. Here, we found that cyclic stretching upregulated the activity and the protein expression level of caspase-3 and -5 and the addition of the caspase-3 inhibitor or caspase-5 inhibitor significantly inhibited the stretch-induced PCD. Meanwhile, the inhibition of caspase-5 inhibited the activation of caspase-3 and vice versa. The result of coimmunoprecipitation also demonstrated that the expression of caspase-3 was immunoprecipitated with caspase-5. Thus, our study revealed that the in vitro application of cyclic stretching induced PCD by activation of caspase-3 and -5 in human PDL cells, and these two caspases could interact with each other after mechanical stretch loading. The study may facilitate further studies on the mechanism of stretch-induced PCD and help us understand the force-related periodontal homeostasis and remodeling better. 相似文献
12.
Carlos A. Elena-Real Katiuska González-Arzola Gonzalo Pérez-Mejías Antonio Díaz-Quintana Adrián Velázquez-Campoy Bénédicte Desvoyes Crisanto Gutiérrez Miguel A. De la Rosa Irene Díaz-Moreno 《The Plant journal : for cell and molecular biology》2021,106(1):74-85
Programmed cell death (PCD) is crucial for development and homeostasis of all multicellular organisms. In human cells, the double role of extra-mitochondrial cytochrome c in triggering apoptosis and inhibiting survival pathways is well reported. In plants, however, the specific role of cytochrome c upon release from the mitochondria remains in part veiled yet death stimuli do trigger cytochrome c translocation as well. Here, we identify an Arabidopsis thaliana 14-3-3ι isoform as a cytosolic cytochrome c target and inhibitor of caspase-like activity. This finding establishes the 14-3-3ι protein as a relevant factor at the onset of plant H2O2-induced PCD. The in vivo and in vitro studies herein reported reveal that the interaction between cytochrome c and 14-3-3ι exhibits noticeable similarities with the complex formed by their human orthologues. Further analysis of the heterologous complexes between human and plant cytochrome c with plant 14-3-3ι and human 14-3-3ε isoforms corroborated common features. These results suggest that cytochrome c blocks p14-3-3ι so as to inhibit caspase-like proteases, which in turn promote cell death upon H2O2 treatment. Besides establishing common biochemical features between human and plant PCD, this work sheds light onto the signaling networks of plant cell death. 相似文献
13.
The casepase is considered to regulate the process of programmed cell death in the development of organisms. In this study, caspase 3-like protease was detected by immunohistochemistry and immunoelectron microscopy during the development of sieve element and tracheary element of stem in Cucurbita moschata Duch. Antibody with brown color (under light microscopy) and gold particles (under transmission electron microscopy) for detecting caspase 3-like protease was mainly displayed in inner phloem, extemal phloem and xylem in the region close to procambium. From the results it was considered that caspase 3-like protease did exist in vascular elements and played different roles during the development of sieve and tracheary elements, and different types of programmed cell death might be carried out. The caspase 3-like protease mainly participated in making cytoplasmic streaming cease and in degrading P-protein bodies; however, it rarely participated in the function for signal transferring in the developmental sieve element. However, it might induce calcium accumulation for rupturing the tonoplast in the signal of PCD in the developmental tracheary element. 相似文献
14.
Masaru Yukihiro Takuya Hiramatsu Francois Bouteau Takashi Kadono Tomonori Kawano 《Plant signaling & behavior》2012,7(1):113-120
It has long been concerned that some secondary air pollutants such as smog components, ozone (O3) and peroxyacetyl nitrate (PAN), are highly phytotoxic even at low concentrations. Compared with the biology of O3, we largely lack the information on the toxicity model for PAN at the cellular signaling levels. Here, we studied the cell-damaging impact of PAN using suspension culture of smog-sensitive tobacco variety (Bel-W3). The cells were exposed to freshly synthesized PAN and the induced cell death was assessed under microscope after staining with Evans blue. Involvement of reactive oxygen species (ROS) in PAN toxicity was suggested by PAN-dependently increased intracellular H2O2 and also by the cell-protective effects of ROS scavengers and related inhibitors. Calcium chelator also lowered the level of PAN-induced cell death, indicating that Ca2+ is also involved. Using a transgenic cell line expressing aequorin, an increase in cytosolic Ca2+ concentration responsive to the pulse of PAN, but sensitive to Ca2+ channel blockers, was recorded, indicating that Ca2+ channels are activated by PAN or PAN-derived signals. Above data show some similarity between the signaling mechanisms responsive to O3 and PAN. 相似文献
15.
C Lachaud E Prigent P Thuleau S Grat D Da Silva C Brière C Mazars V Cotelle 《Cell death and differentiation》2013,20(2):209-217
In eukaryotic cells, sphingoid long chain bases (LCBs) such as sphingosine or phytosphingosine (PHS) behave as second messengers involved in various processes including programmed cell death (PCD). In plants, induction of PCD by LCBs has now been described, but the signalling pathway is still enigmatic. Using Arabidopsis, we identify new key steps in this pathway. We demonstrate that PHS induces activation of the calcium-dependent kinase CPK3, which phosphorylates its binding partners, the 14-3-3 proteins. This phosphorylation leads to the disruption of the complex and to CPK3 degradation. Using cpk3 knockout lines, we demonstrate that CPK3 is a positive regulator of LCB-mediated PCD. These findings establish 14-3-3-regulated CPK3 as a key component of the LCB pathway leading to PCD in plants. 相似文献
16.
Sophie Koszinowski Melanie Boerries Hauke Busch Kerstin Krieglstein 《Developmental neurobiology》2015,75(11):1204-1218
17.
Valenciano AI Corrochano S de Pablo F de la Villa P de la Rosa EJ 《Journal of neurochemistry》2006,99(2):524-536
Programmed cell death is an essential, highly regulated process in neural development. Although the role of insulin-like growth factor I in supporting the survival of neural cells has been well characterized, studies on proinsulin/insulin are scarce. Here, we characterize proinsulin/insulin effects on cell death in embryonic day 15.5 mouse retina. Both proinsulin mRNA and proinsulin/insulin immunoreactivity were found in the developing retina. Organotypic embryonic day 15.5 retinas cultured under growth factor deprivation showed an increase in cell death that was reversed by proinsulin, insulin and insulin-like growth factor I, with similar median effective concentration values via phosphatidylinositol-3-kinase activation. Although insulin and insulin-like growth factor I provoked a sustained Akt phosphorylation, proinsulin-induced phosphorylation of Akt was not found. Analysis of the growth factor deprivation-induced cell death mechanisms, using caspase and cathepsin inhibitors, demonstrated that both protease families were required for the effective execution of cell death. The insulin survival effect, which decreased the extent and distribution of cell death to levels similar to those found in vivo, was not enhanced by simultaneous treatment with caspase and cathepsin inhibitors, suggesting that insulin interferes with these protease pathways in the embryonic mouse retina. The mechanisms characterized in this study provide new details on early neural cell death and its genuine regulation by insulin/proinsulin. 相似文献
18.
B M Walter C Nordhoff G Varga G Goncharenko S W Schneider S Ludwig V Wixler 《Cell death & disease》2012,3(4):e297
Mss4 (mammalian suppressor of Sec4) is an evolutionarily highly conserved protein and shows high sequence and structural similarity to nucleotide exchange factors. Although Mss4 tightly binds a series of exocytic Rab GTPases, it exercises only a low catalytic activity. Therefore Mss4 was proposed to work rather as a chaperone, protecting nucleotide free Rabs from degradation than as a nucleotide exchange factor. Here we provide further evidence for chaperone-like properties of Mss4. We show that expression levels of cellular Mss4 mRNA and protein are rapidly changed in response to a broad range of extracellular stress stimuli. The alterations are regulated mostly via the (c-jun NH2-terminal kinase) JNK stress MAPK signaling pathway and the mode of regulation resembles that of heat shock proteins. Similar to heat shock proteins, upregulation of Mss4 after stress stimulation functions protectively against the programmed cell death. Molecular analysis of the Mss4-mediated inhibition of apoptosis showed that interaction of Mss4 with eIF3f (eukaryotic translation initiation factor 3 subunit f), a member of the translation initiation complex and a protein with distinct pro-apoptotic properties, is the critical event in the anti-apoptotic action of Mss4. 相似文献
19.
R Gauthier P Laprise E Cardin C Harnois A Plourde J C Reed A Vézina P H Vachon 《Journal of cellular biochemistry》2001,82(2):339-355
The small and large intestines differ in their expression profiles of Bcl-2 homologs. Intestinal segment-specific Bcl-2 homolog expression profiles are acquired as early as by mid-gestation (18-20 weeks) in man. In the present study, we examined the question whether such distinctions underlie segment-specific control mechanisms of intestinal cell survival. Using mid-gestation human jejunum and colon organotypic cultures, we analyzed the impact of growth factors (namely insulin; 10 microg/ml) and pharmacological compounds that inhibit signal transduction molecules/pathways (namely tyrosine kinases, Fak, P13-K/Akt, and MEK/Erk) on cell survival and Bcl-2 homolog expression (anti-apoptotic: Bcl-2, Bcl-X(L), Mcl-1; pro-apoptotic: Bax, Bak, Bad). The relative activation levels of p125Fak, p42Erk-2, and p57Akt were analyzed as well. Herein, we report that (1) the inhibition of signal transduction molecules/pathways revealed striking differences in their impact on cell survival in the jejunum and colon (e.g., the inhibition of p125Fak induced apoptosis with a significantly greater extent in the jejunum [approximately 43%] than in the colon [approximately 24%]); (2) sharp distinctions between the two segments were noted in the modulatory effects of the various treatments on Bcl-2 homolog steady-state levels (e.g., inhibition of tyrosine kinase activities in the jejunum down-regulated all anti-apoptotics analyzed while increasing Bax, whereas the same treatment in the colon down-regulated Bcl-X(L) only and increased all pro-apoptotics); and (3) in addition to their differential impact on cell survival and Bcl-2 homolog expression, the MEK/Erk and P13-K/Akt pathways were found to be distinctively regulated in the jejunum and colon mucosae (e.g., insulin in the jejunum increased p42Erk-2 activation without affecting that of p57Akt, whereas the same treatment in the colon decreased p42Erk-2 activation while increasing that of p57Akt). Altogether, these data show that intestinal cell survival is characterized by segment-specific susceptibilities to apoptosis, which are in turn linked with segmental distinctions in the involvement of signaling pathways and the regulation of Bcl-2 homolog steady-state levels. Therefore, these indicate that cell survival is subject to segment-specific control mechanisms along the proximal-distal axis of the intestine. 相似文献
20.
Hongmin Chen Thomas R. Tritton Nicholas Kenny Marlene Absher Jen-Fu Chiu 《Journal of cellular biochemistry》1996,61(1):9-17
We report here that the antiestrogen tamoxifen (TAM) induces cell death in human breast cancer cell line MCF-7. We assessed the type of cell death induced by TAM in this breast cancer cell line on the basis of morphological and biochemical characteristics. Dying cells showed morphological characteristics of apoptosis, such as chromatin condensation and nuclear disintegration. DNA isolated from these cells revealed a pattern of distinctive DNA bands on agarose gel. The DNA fragmentation in MCF-7 cells induced by TAM could also be detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin end labeling. Northern blot hybridization revealed a substantial increase in the amounts of TRPM-2 and TGF-β1 mRNAs in MCF-7 cells after treatment with TAM. In contrast, the mRNA level of the estrogen-induced pS2 gene was strongly suppressed. The biological activity of TGF-β was increased at least fourfold in the media from MCF-7 cells treated with TAM. The results presented in this study suggest that TAM induces apoptosis of MCF-7 cells and it may be mediated by the secretion of active TGF-β. © 1996 Wiley-Liss, Inc. 相似文献