首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A human extrastriate area functionally homologous to macaque V4   总被引:5,自引:0,他引:5  
Gallant JL  Shoup RE  Mazer JA 《Neuron》2000,27(2):227-235
Extrastriate area V4 is crucial for intermediate form vision and visual attention in nonhuman primates. Human neuroimaging suggests that an area in the lingual sulcus/fusiform gyrus may correspond to ventral V4 (V4v). We studied a human neurological patient, AR, with a putative V4v lesion. The lesion does not affect early visual processing (luminance, orientation, and motion perception). However, it does impair hue perception, intermediate form vision, and visual attention in the upper contralateral visual field. Form deficits occur during discrimination of illusory borders, Glass patterns, curvature, and non-Cartesian patterns. Attention deficits occur during discrimination of the relative positions of object parts, detection of low-salience targets, and orientation discrimination in the presence of distractors. This pattern of deficits is consistent with the known properties of area V4 in nonhuman primates, indicating that AR's lesion affects a cortical region functionally homologous to macaque V4.  相似文献   

2.
Spontaneous network activity constitutes a central theme during the development of neuronal circuitry [1, 2]. Before the onset of vision, retinal neurons generate waves of spontaneous activity that are relayed along the ascending visual pathway [3, 4] and shape activity patterns in these regions [5, 6]. The spatiotemporal nature of retinal waves is required to establish precise functional maps in higher visual areas, and their disruption results in enlarged axonal projection areas (e.g., [7-10]). However, how retinal inputs shape network dynamics in the visual cortex on the cellular level is unknown. Using in vivo two-photon calcium imaging, we identified two independently occurring patterns of network activity in the mouse primary visual cortex (V1) before and at the onset of vision. Acute manipulations of spontaneous retinal activity revealed that one type of network activity largely originated in the retina and was characterized by low synchronicity (L-) events. In addition, we identified a type of high synchronicity (H-) events that required gap junction signaling but were independent of retinal input. Moreover, the patterns differed in wave progression and developmental profile. Our data suggest that different activity patterns have complementary functions during the formation of synaptic circuits in the developing visual cortex.  相似文献   

3.
The visual system has the remarkable ability to extract several types of meaningful global-motion signals, such as radial motion, translation motion, and rotation, for different visual functions and actions. In the monkey brain, different groups of cells in MST respond best to different types of global motion [1, 2] whereas in lower cortical areas including MT, no such differential responses have been found. Here, we show that an area (or areas) lower than MST in the human brain [3] responds to different types of global motion. A series of human functional magnetic resonance imaging (fMRI) experiments, in which attention was controlled for, indicated that the center of radial motion activates the corresponding location in the V3A representation, whereas translation motion activates mainly in a more peripheral representation of V3A. These results suggest that in the human brain, V3A is an area that differentially responds according to the type of global motion.  相似文献   

4.
Recent electrophysiological studies indicate that cells in the LGN, V1, V2, and V4 areas in monkeys are specifically sensitive to Cartesian, polar and hyperbolic stimuli. We have characterized the contrast sensitivity functions (CSF) to stimuli defined in these coordinates with the two-alternatives forced-choice paradigm. CSFs to Cartesian, concentric, and hyperbolic stimuli have had similar shapes, with peak sensitivity at approximately 3 c/deg. However, the Cartesian CSF peak sensitivity has been at least 0.1 log units higher than that to stimuli in any other coordinate system. The concentric-Bessel CSF has a low-pass shape, peaking at 1.5 c/deg or below. The radial CSF has a bell shape with maximum sensitivity at 8 c/360 degrees. Only the concentric-Bessel CSF could be explained in terms of the components of maximum amplitude of the Fourier transform. Neural models, which in previous studies predicted the responses to Cartesian and polar Glass patterns, failed to account for the full CSFs data.  相似文献   

5.
Cumulative psychophysical evidence suggests that the shape of closed contours is analysed by means of their radial frequency components (RFC). However, neurophysiological evidence for RFC-based representations is still missing. We investigated the representation of radial frequency in the human visual cortex with functional magnetic resonance imaging. We parametrically varied the radial frequency, amplitude and local curvature of contour shapes. The stimuli evoked clear responses across visual areas in the univariate analysis, but the response magnitude did not depend on radial frequency or local curvature. Searchlight-based, multivariate representational similarity analysis revealed RFC specific response patterns in areas V2d, V3d, V3AB, and IPS0. Interestingly, RFC-specific representations were not found in hV4 or LO, traditionally associated with visual shape analysis. The modulation amplitude of the shapes did not affect the responses in any visual area. Local curvature, SF-spectrum and contrast energy related representations were found across visual areas but without similar specificity for visual area that was found for RFC. The results suggest that the radial frequency of a closed contour is one of the cortical shape analysis dimensions, represented in the early and mid-level visual areas.  相似文献   

6.
Although primary visual cortex (V1 or striate) activity per se is not sufficient for visual apperception (normal conscious visual experiences and conscious functions such as detection, discrimination, and recognition), the same is also true for extrastriate visual areas (such as V2, V3, V4/V8/VO, V5/M5/MST, IT, and GF). In the lack of V1 area, visual signals can still reach several extrastriate parts but appear incapable of generating normal conscious visual experiences. It is scarcely emphasized in the scientific literature that conscious perceptions and representations must have also essential energetic conditions. These energetic conditions are achieved by spatiotemporal networks of dynamic mitochondrial distributions inside neurons. However, the highest density of neurons in neocortex (number of neurons per degree of visual angle) devoted to representing the visual field is found in retinotopic V1. It means that the highest mitochondrial (energetic) activity can be achieved in mitochondrial cytochrome oxidase-rich V1 areas. Thus, V1 bear the highest energy allocation for visual representation.In addition, the conscious perceptions also demand structural conditions, presence of adequate duration of information representation, and synchronized neural processes and/or ‘interactive hierarchical structuralism.’ For visual apperception, various visual areas are involved depending on context such as stimulus characteristics such as color, form/shape, motion, and other features. Here, we focus primarily on V1 where specific mitochondrial-rich retinotopic structures are found; we will concisely discuss V2 where smaller riches of these structures are found. We also point out that residual brain states are not fully reflected in active neural patterns after visual perception. Namely, after visual perception, subliminal residual states are not being reflected in passive neural recording techniques, but require active stimulation to be revealed.  相似文献   

7.

Background

The perception of global form requires integration of local visual cues across space and is the foundation for object recognition. Here we used magnetoencephalography (MEG) to study the location and time course of neuronal activity associated with the perception of global structure from local image features. To minimize neuronal activity to low-level stimulus properties, such as luminance and contrast, the local image features were held constant during all phases of the MEG recording. This allowed us to assess the relative importance of striate (V1) versus extrastriate cortex in global form perception.

Methodology/Principal Findings

Stimuli were horizontal, rotational and radial Glass patterns. Glass patterns without coherent structure were viewed during the baseline period to ensure neuronal responses reflected perception of structure and not changes in local image features. The spatial distribution of task-related changes in source power was mapped using Synthetic Aperture Magnetometry (SAM), and the time course of activity within areas of maximal power change was determined by calculating time-frequency plots using a Hilbert transform. For six out of eight observers, passive viewing of global structure was associated with a reduction in 10–20 Hz cortical oscillatory power within extrastriate occipital cortex. The location of greatest power change was the same for each pattern type, being close to or within visual area V3a. No peaks of activity were observed in area V1. Time-frequency analyses indicated that neural activity was least for horizontal patterns.

Conclusions

We conclude: (i) visual area V3a is involved in the analysis of global form; (ii) the neural signature for perception of structure, as assessed using MEG, is a reduction in 10–20 Hz oscillatory power; (iii) different neural processes may underlie the perception of horizontal as opposed to radial or rotational structure; and (iv) area V1 is not strongly activated by global form in Glass patterns.  相似文献   

8.
9.
The number of oil ducts in freehand sections of roots of eight carrot (Daucus carota L.) genetic lines was compared to the levels of major volatile terpenoids. There was a high correlation (0.79) between number of ducts per unit area and total terpenoid amount. Individual compounds exhibited varying degrees of correlation, probably due to genetic difference between lines. Oil ducts often exhibited distinct patterns of concentric rings or radial lines, but this feature was not closely related to duct number. Oil ducts are present only in the phloem, and can form a highly interconnected network.  相似文献   

10.
Recent evidence has demonstrated that arginine vasopressin (AVP) may modulate primary afferent activity of nociceptors in the dorsal horn of the spinal cord. Because nociceptors are group III and IV afferents, spinal AVP also may modulate the activity of group III and IV afferents that cause reflex cardiovascular responses to muscle contraction. Thus, we compared the pressor (mean arterial pressure), myocardial contractile (dP/dt), and heart rate (HR) responses to electrically induced static contraction of the cat hindlimb before and after lumbar intrathecal (IT) injection (L1-L7) of AVP (n = 9), the V1 receptor antagonist d(CH2)5Tyr(Me)AVP (n = 6), the V2 receptor antagonist d(CH2)5[D-Ile2,Ile4,Ala-NH2(9)]AVP (n = 6), and the V2 agonist [Val4,D]AVP (n = 8). After IT injection of AVP (0.1 or 1 nmol) the pressor and contractile responses to static contraction were attenuated by 55 and 44%, respectively. HR was unchanged. Forty-five to 60 min after AVP injection, the contraction-induced pressor and contractile responses were restored to control levels. V1 receptor blockade augmented contraction-induced increases in mean arterial pressure (36%) and dP/dt (49%) but not HR. V2 receptor blockade had no effect on the cardiovascular response to contraction, whereas selective V2 stimulation attenuated the dP/dt (-20%) and HR (-33%) responses but not the pressor response. These results suggest that AVP attenuates the reflex cardiovascular response to contraction by modulating sensory nerve transmission from contracting muscle primarily via a V1 receptor mechanism in the lumbar spinal cord.  相似文献   

11.
A new study shows that sparse coding - a principle which elegantly explains neural selectivity in the early visual system - may also explain selectivity in V4, an intermediate visual area implicated in object vision.  相似文献   

12.
Several hereditary point mutations in human apolipoprotein A-I (apoA-I) have been associated with low HDL-cholesterol levels and/or increased coronary artery disease (CAD) risk. However, one apoA-I mutation, the V19L, recently identified in Icelanders, has been associated with increased HDL-cholesterol levels and decreased CAD risk. In an effort to gain mechanistic insight linking the presence of this mutation in apoA-I with the increase of HDL-cholesterol levels we evaluated the effect of V19L mutation on the conformational integrity and functional properties of apoA-I in lipid-free and lipidated form. ApoA-I[V19L] was found to be thermodynamically destabilized in lipid-free form and displays an increased capacity to associate with phospholipids compared to WT apoA-I. When associated to reconstituted HDL (rHDL), apoA-I[V19L] was more thermodynamically stabilized than WT apoA-I. ApoA-I[V19L] displayed normal capacity to promote ABCA1-mediated cholesterol efflux and to activate the enzyme LCAT, in lipid-free and rHDL-associated forms, respectively. Additionally, rHDL-associated apoA-I[V19L] showed normal capacity to promote ABCG1-mediated cholesterol efflux, but 45% increased capacity to promote SR-BI-mediated cholesterol efflux, while the SR-BI-mediated HDL-lipid uptake was normal. Overall, our findings show that the apoA-I V19L mutation does not affect the first steps of HDL biogenesis pathway. However, the increased capacity of apoA-I[V19L] to associate with phospholipids, in combination with the enhanced thermodynamic stability of lipoprotein-associated apoA-I[V19L] and increased capacity of apoA-I[V19L]-containing lipoprotein particles to accept additional cholesterol by SR-BI could account for the increased HDL-cholesterol levels observed in human carriers of the mutation.  相似文献   

13.
Concentrations of Cd, Pb and Zn were determined in stem wood of beech trees (Fagus sylvatica L.) from 3 sites in northern Germany. Distinct radial distribution patterns of the elements were observed in the xylem. Concentrations of Cd and Pb increased from the youngest, outermost annual rings towards the center of the stem. With Zn intermediate concentrations were observed in the sapwood and higher levels at the center of the stem.Temporal and spatial stability of such distribution patterns in the trunks was investigated. Wood samples taken from the same individual tree in different months of the year were analysed. Marked seasonal variations of mineral concentrations were observed. Also the shape of the distribution patterns of the elements varied with the season. Such variations were larger than those observed with samples taken simultaneously from different sides of the trunk. Furthermore, Pb concentrations in the stem showed variations with height above ground.The results indicate, that radial distribution patterns of Cd, Pb and Zn in xylem rings of beech are not stable. Biomonitoring trace element pollution levels by analysis of beech wood is, thus, questionable. To obtain a reliable historical record of pollution from tree rings, the distribution patterns should be stable over a long period of time. This basic requirement of the dendroanalytical method does not hold for the examined beech. Still, with other tree species and under more favourable conditions the dendroanalytical biomonitoring method may prove valuable.Presented as symposium paper at the V International Congress of Ecology, Yokohama, August 23–30, 1990.  相似文献   

14.
Intrathecal (IT) administration of vasopressin produces antinociception, scratching behavior, and motor suppression. The present experiments characterized these effects with regards to the following: 1) VP receptor specificity, 2) possible involvement of endogenous opiates, 3) possible involvement of seizure activity, and 4) whether the antinociception is due to direct actions of VP at the spinal cord. These studies showed that IT administration of a V1-specific vasopressin antagonist completely blocked the antinociception, scratching behavior, and motor suppression produced by 25 ng IT vasopressin. Furthermore, IT administration of the vasopressin metabolite, [pGlu4,Cyt6]AVP(4-9), produced none of the effects produced by vasopressin. Systemic administration of the opiate antagonists naloxone (1 mg/kg IP) and naltrexone (10 mg/kg IP) had no significant effect on the antinociception produced by IT vasopressin, whereas naltrexone potentiated the scratching behavior. Neither the IT vasopressin-induced antinociception nor scratching behavior was affected by pretreatment with the anticonvulsant sodium valproate. In addition, IT vasopressin inhibited the tail flick reflex in rats with transected spinal cords, demonstrating direct spinal effects of vasopressin. In conclusion, IT administration of vasopressin produces antinociception, scratching behavior, and motor suppression via activation of VP-specific receptors in the spinal cord.  相似文献   

15.
16.
There is much evidence in primates' visual processing for distinct mechanisms involved in object recognition and encoding object position and motion, which have been identified with 'ventral' and 'dorsal' streams, respectively, of the extra-striate visual areas [1] [2] [3]. This distinction may yield insights into normal human perception, its development and pathology. Motion coherence sensitivity has been taken as a test of global processing in the dorsal stream [4] [5]. We have proposed an analogous 'form coherence' measure of global processing in the ventral stream [6]. In a functional magnetic resonance imaging (fMRI) experiment, we found that the cortical regions activated by form coherence did not overlap with those activated by motion coherence in the same individuals. Areas differentially activated by form coherence included regions in the middle occipital gyrus, the ventral occipital surface, the intraparietal sulcus, and the temporal lobe. Motion coherence activated areas consistent with those previously identified as V5 and V3a, the ventral occipital surface, the intraparietal sulcus, and temporal structures. Neither form nor motion coherence activated area V1 differentially. Form and motion foci in occipital, parietal, and temporal areas were nearby but showed almost no overlap. These results support the idea that form and motion coherence test distinct functional brain systems, but that these do not necessarily correspond to a gross anatomical separation of dorsal and ventral processing streams.  相似文献   

17.
Polarisation sensitivity (PS) - the ability to detect the orientation of polarised light - occurs in a wide variety of invertebrates [1] [2] and vertebrates [3] [4] [5], many of which are marine species [1]. Of these, the crustacea are particularly well documented in terms of their structural [6] and neural [7] [8] adaptations for PS. The few behavioural studies conducted on crustaceans demonstrate orientation to, or local navigation with, polarised sky patterns [9]. Aside from this, the function of PS in crustaceans, and indeed in most animals, remains obscure. Where PS can be shown to allow perception of polarised light as a 'special sensory quality' [1], separate from intensity or colour, it has been termed polarisation vision (PV). Here, within the remarkable visual system of the stomatopod crustaceans (mantis shrimps) [10], we provide the first demonstration of PV in the crustacea and the first convincing evidence for learning the orientation of polarised light in any animal. Using new polarimetric [11] and photographic methods to examine stomatopods, we found striking patterns of polarisation on their antennae and telson, suggesting that one function of PV in stomatopods may be communication [12]. PV may also be used for tasks such as navigation [5] [9] [13], location of reflective water surfaces [14] and contrast enhancement [1] [15] [16] [17] [18]. It is possible that the stomatopod PV system also contributes to some of these functions.  相似文献   

18.
Double-stranded (ds)RNA is made as a by-product of viral replication. Synthetic dsRNA induces virtually all of the same systemic symptoms as acute viral infections, such as fever and malaise. In order to develop a model of respiratory viral infections (such as influenza) suitable for use in gene knockout mice (where the deleted gene may affect viral replication), we examined C57BL/6 mouse body temperature and locomotor activity responses to the synthetic dsRNA polyriboinosinic.polyribocytidylic acid (poly[rI.rC]) introduced via the intratracheal (IT) route. We compared the IT poly[rI.rC] responses to the well-characterized intraperitoneal (IP) poly[rI.rC] responses. IT poly[rI.rC] failed to induce an acute phase response (APR) in mice, in contrast to IP poly[rI.rC]. However, addition of interferon (IFN)gamma to the IT poly[rI.rC] inoculum induced sustained hypothermia and suppressed locomotor activity responses with similar kinetics to those responses seen in acute mouse influenza. We further examined cytokine, antiviral, muscarinic M2 receptor and inducible nitric oxide synthase gene expression at 5 hr in the lungs of IT challenged mice. These studies suggested that priming the lung with IFNgamma could enhance proinflammatory (IL1beta, IL6, TNFalpha) cytokine gene expression and suppress interferon gene expression compared to IT poly[rI.rC] alone. No differences were detected for the other genes examined. While further molecular characterization of the model is required, we demonstrate that IT challenge with combined poly[rI.rC] and IFNgamma closely simulates the APR to an acute respiratory virus, and may serve as a suitable model for analyzing the molecular basis of the viral APR in gene knockout mice.  相似文献   

19.
A new cue for visual discrimination by the honeybee has been demonstrated. Bees detected the position of the centre of symmetry of radial patterns of spokes, sectors, and circles relative to their point of choice in the learning process, irrespective of the pattern. When trained with one of these patterns versus a blank target, the bees discriminated a shift in the position of the centre of symmetry by as little as 5 degrees , in some cases with unfamiliar test patterns. A pattern of spokes or rings also stabilized the vision of the bees in the horizontal plane so that the position of a plain black area could then be discriminated. In other experiments, bees discriminated half of a pattern of radial spokes or concentric circles from the other half, cut either vertically or horizontally, and irrespective of scale. Therefore these patterns were not detected by preformed combinations of orientation detectors or global templates with a single output. Instead, the crucial cue for detecting edges as radial or circular was the coincidence of responses of numerous local edge detectors having the appropriate convergence to a hub. Edges that converged towards a hub were detected by the bees as radial, and edges at right angles to these were parts of circles, irrespective of the actual pattern. Breaking the patterns of spokes or circles into rows of squares spoiled the discrimination if the squares were separately resolved. Alternatively, breaking the pattern into short bars that were separately resolved spoiled the discrimination when the bars subtended less than 3 degrees . The local feature detectors for spokes and circles therefore resembled those of the orientation detectors in being short, independent, and unable to span gaps of more than 3 degrees . In conclusion, radial and circular patterns were identified by the regional coincidences and convergence of local detectors of edge orientation, and the positions of the centres of symmetry were remembered as landmarks that helped locate the reward, but the patterns themselves were not remembered.  相似文献   

20.
The activation of the [Ca2+]-dependent cysteine protease calpain plays an important role in ischemic injury. Here, the levels of two calpain-specific substrates, p35 protein and eukaryotic initiation factor 4G (eIF4G), as well as its physiological regulator calpastatin, were investigated in a rat model of transient global cerebral ischemia with or without ischemic tolerance (IT). Extracts of the cerebral cortex, whole hippocampus and hippocampal subregions after 30 min of ischemia and different reperfusion times (30 min and 4 h) were used. In rats without IT, the p35 levels slightly decreased after ischemia or reperfusion, whereas the levels of p25 (the truncated form of p35) were much higher than those in sham control rats after ischemia and remained elevated during reperfusion. The eIF4G levels deeply diminished after reperfusion and the decrease was significantly greater in CA1 and the rest of the hippocampus than in the cortex. By contrast, the calpastatin levels did not significantly decrease during ischemia or early reperfusion, but were upregulated after 4 h of reperfusion in the cortex. Although IT did not promote significant changes in p35 and p25 levels, it induced a slight increase in calpastatin and eIF4G levels in the hippocampal subregions after 4 h of reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号