首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure-based design, synthesis, and biological evaluation of a series of peptidomimetic beta-secretase inhibitors incorporating hydroxyethylamine isosteres are described. We have identified inhibitor 24 which has shown exceedingly potent activity in memapsin 2 enzyme inhibitory (K(i) 1.8 nM) and cellular (IC(50)=1 nM in Chinese hamster ovary cells) assays. Inhibitor 24 has also shown very impressive in vivo properties (up to 65% reduction of plasma A beta) in transgenic mice. The X-ray structure of protein-ligand complex of memapsin 2 revealed critical interactions in the memapsin 2 active site.  相似文献   

2.
beta-Site APP-cleaving enzyme (BACE) initiates the processing of the amyloid precursor protein (APP) leading to the generation of beta-amyloid, the main component of Alzheimer's disease senile plaques. BACE (Asp2, memapsin 2) is a type I transmembrane aspartyl protease and is responsible for the beta-secretase cleavage of APP producing different endoproteolytic fragments referred to as the carboxy-terminal C99, C89 and the soluble ectodomain sAPPbeta. Here we describe two transgenic mouse lines expressing human BACE in the brain. Overexpression of BACE augments the amyloidogenic processing of APP as demonstrated by decreased levels of full-length APP and increased levels of C99 and C89 in vivo. In mice expressing huBACE in addition to human APP wild-type or carrying the Swedish mutation, the induction of APP processing characterized by elevated C99, C89 and sAPPbeta, results in increased brain levels of beta-amyloid peptides Abeta40 and Abeta42 at steady-state.  相似文献   

3.
To better understand amyloid-beta (Abeta) metabolism in vivo, we assessed the concentration of Abeta in the CSF and plasma of APP(V717F) (PDAPP) transgenic mice, a model that develops age-dependent Alzheimer's disease (AD)-like pathology. In 3-month-old mice, prior to the development of Abeta deposition in the brain, there was a highly significant correlation between Abeta levels in CSF and plasma. In 9-month-old-mice, an age at which some but not all mice have developed Abeta deposition, there was also a significant correlation between CSF and plasma Abeta; however, the correlation was not as strong as that present in young mice. In further exploring CSF and plasma Abeta levels in 9-month-old mice, levels of CSF Abeta were found to correlate highly with Abeta burden. Analysis of the CSF: plasma Abeta ratio revealed a selective two-fold increase in plaque versus non-plaque bearing mice, strongly suggesting a plaque-mediated sequestration of soluble Abeta in brain. Interestingly, in 9-month-old mice, a significant correlation between CNS and plasma Abeta was limited to mice lacking Abeta deposition. These findings suggest that there is a dynamic equilibrium between CNS and plasma Abeta, and that plaques create a new equilibrium because soluble CNS Abeta not only enters the plasma but also deposits onto amyloid plaques in the CNS.  相似文献   

4.
Aging and apolipoprotein E (APOE) isoform are among the most consistent risks for the development of Alzheimer's disease (AD). Metabolic factors that modulate risk have been elusive, though oxidative reactions and their by-products have been implicated in human AD and in transgenic mice with overt histological amyloidosis. We investigated the relationship between the levels of endogenous murine amyloid beta (Abeta) peptides and the levels of a marker of oxidation in mice that never develop histological amyloidosis [i.e. APOE knockout (KO) mice with or without transgenic human APOEepsilon3 or human APOEepsilon4 alleles]. Aging-, gender-, and APOE-genotype-dependent changes were observed for endogenous mouse brain Abeta40 and Abeta42 peptides. Levels of the oxidized lipid F2-isoprostane (F2-isoPs) in the brains of the same animals as those used for the Abeta analyses revealed aging- and gender-dependent changes in APOE KO and in human APOEepsilon4 transgenic KO mice. Human APOEepsilon3 transgenic KO mice did not exhibit aging- or gender-dependent increases in F2-isoPs. In general, the changes in the levels of brain F2-isoPs in mice according to age, gender, and APOE genotype mirrored the changes in brain Abeta levels, which, in turn, paralleled known trends in the risk for human AD. These data indicate that there exists an aging-dependent, APOE-genotype-sensitive rise in murine brain Abeta levels despite the apparent inability of the peptide to form histologically detectable amyloid. Human APOEepsilon3, but not human APOEepsilon4, can apparently prevent the aging-dependent rise in murine brain Abeta levels, consistent with the relative risk for AD associated with these genotypes. The fidelity of the brain Abeta/F2-isoP relationship across multiple relevant variables supports the hypothesis that oxidized lipids play a role in AD pathogenesis, as has been suggested by recent evidence that F2-isoPs can stimulate Abeta generation and aggregation.  相似文献   

5.
Neocortical beta-amyloid (Abeta) aggregates in Alzheimer's disease (AD) are enriched in transition metals that mediate assembly. Clioquinol (CQ) targets metal interaction with Abeta and inhibits amyloid pathology in transgenic mice. Here, we investigated the binding properties of radioiodinated CQ ([(125)I]CQ) to different in vitro and in vivo Alzheimer models. We observed saturable binding of [(125)I]CQ to synthetic Abeta precipitated by Zn(2+) (K(d)=0.45 and 1.40 nm for Abeta(1-42) and Abeta(1-40), respectively), which was fully displaced by free Zn(2+), Cu(2+), the chelator DTPA (diethylene triamine pentaacetic acid) and partially by Congo red. Sucrose density gradient of post-mortem AD brain indicated that [(125)I]CQ concentrated in a fraction enriched for both Abeta and Zn, which was modulated by exogenous addition of Zn(2+) or DTPA. APP transgenic (Tg2576) mice injected with [(125)I]CQ exhibited higher brain retention of tracer compared to non-Tg mice. Autoradiography of brain sections of these animals confirmed selective [(125)I]CQ enrichment in the neocortex. Histologically, both thioflavine-S (ThS)-positive and negative structures were labeled by [(125)I]CQ. A pilot SPECT study of [(123)I]CQ showed limited uptake of the tracer into the brain, which did however, appear to be more rapid in AD patients compared to age-matched controls. These data support metallated Abeta species as the neuropharmacological target of CQ and indicate that this drug class may have potential as in vivo imaging agents for Alzheimer neuropathology.  相似文献   

6.
Transgenic mice over-expressing mutant human amyloid precursor protein have become an important tool for research on Alzheimer's disease (AD) and, in particular, for therapeutic screening. Many models have reported formation of amyloid plaques with age as is detected in AD. However, the plaques generated in transgenic mice are more soluble than human plaques. Differences in solubility may occur for a number of reasons; one proposal is the presence of murine Abeta peptides within the CNS milieu. Here, we report the interaction of human and murine Abeta peptides, Abeta40 and Abeta42, utilizing a fluorescence assay to monitor formation of mixed pre-fibrillar aggregates, electron microscopy to examine morphological characteristics and detergent solubility to monitor stability. Our results demonstrate that interspecies Abeta aggregates and fibres are readily formed and are more stable than homogenous human fibres. Furthermore, these results suggest that the presence of endogenous murine Abeta in human APP transgenic mice does not account for the increased solubility of plaques.  相似文献   

7.
Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.  相似文献   

8.
FE65 is an adaptor protein that interacts with the cytoplasmic tail of the amyloid precursor protein (APP). In cultured non-neuronal cells, the formation of the FE65-APP complex is a key element for the modulation of APP processing, signalling and beta-amyloid (Abeta) production. The functions of FE65 in vivo, including its role in the metabolism of neuronal APP, remain to be investigated. In this study, transgenic mice expressing human FE65 were generated and crossbred with APP transgenic mice, known to develop Abeta deposits at 6 months of age. Compared with APP mice, APP/FE65 double transgenic mice exhibited a lower Abeta accumulation in the cerebral cortex as demonstrated by immunohistochemistry and immunoassay, and a lower level of APP-CTFs. The reduced accumulation of Abeta in APP/FE65 double transgenics, compared with APP mice, could be linked to the low Abeta42 level observed at 4 months of age and to the lower APP-CTFs levels. The present work provides evidence that FE65 plays a role in the regulation of APP processing in an in vivo model.  相似文献   

9.
Memapsin 2 (beta-secretase) is the protease that initiates cleavage of amyloid precursor protein (APP) leading to the production of amyloid-beta (Abeta) peptide and the onset of Alzheimer's disease. Both APP and memapsin 2 are Type I transmembrane proteins and are endocytosed into endosomes where APP is cleaved by memapsin 2. Separate endocytic signals are located in the cytosolic domains of these proteins. We demonstrate here that the addition of the ectodomain of memapsin 2 (M2(ED)) to cells transfected with native APP or APP Swedish mutant (APPsw) resulted in the internalization of M2(ED) into endosomes with increased Abeta production. These effects were reduced by treatment with glycosylphosphatidylinositol-specific phospholipase C. The nontransfected parental cells had little internalization of M2(ED). The internalization of M2(ED) was dependent on the endocytosis signal in APP, because the expression of a mutant APP that lacks its endocytosis signal failed to support M2(ED) internalization. These results suggest that exogenously added M2(ED) interacts with the ectodomain of APP on the cell surface leading to the internalization of M2(ED), supported by fluorescence resonance energy transfer experiments. The interactions between the two proteins is not due to the binding of substrate APPsw to the active site of memapsin 2, because neither a potent active site binding inhibitor of memapsin 2 nor an antibody directed to the beta-secretase site of APPsw had an effect on the uptake of M2(ED). In addition, full-length memapsin 2 and APP, immunoprecipitated together from cell lysates, suggested that the interaction of these two proteins is part of the native cellular processes.  相似文献   

10.
Transgenic mice carrying mutant Cu/Zn superoxide dismutase (SOD1) recapitulate the motor impairment of human amyotrophic lateral sclerosis (ALS). The amyloid-beta (Abeta) peptide associated with Alzheimer's disease is neurotoxic. To investigate the potential role of Abeta in ALS development, we generated a double transgenic mouse line that overexpresses SOD1(G93A) and amyloid precursor protein (APP)-C100. The transgenic mouse C100.SOD1(G93A) overexpresses Abeta and shows earlier onset of motor impairment but has the same lifespan as the single transgenic SOD1(G93A) mouse. To determine the mechanism associated with this early-onset phenotype, we measured copper and zinc levels in brain and spinal cord and found both significantly elevated in the single and double transgenic mice compared with their littermate control mice. Increased glial fibrillary acidic protein and decreased APP levels in the spinal cord of C100.SOD1(G93A) mice compared with the SOD1(G93A) mice agree with the neuronal damage observed by immunohistochemical analysis. In the spinal cords of C100.SOD1(G93A) double transgenic mice, soluble Abeta was elevated in mice at end-stage disease compared with the pre-symptomatic stage. Buffer-insoluble SOD1 aggregates were significantly elevated in the pre-symptomatic mice of C100.SOD1(G93A) compared with the age-matched SOD1(G93A) mice, correlating with the earlier onset of motor impairment in the C100.SOD1(G93A) mice. This study supports abnormal SOD1 protein aggregation as the pathogenic mechanism in ALS, and implicates a potential role for Abeta in the development of ALS by exacerbating SOD1(G93A) aggregation.  相似文献   

11.
Generation and deposition of the amyloid beta (Abeta) peptide following proteolytic processing of the amyloid precursor protein (APP) by BACE-1 and gamma-secretase is central to the aetiology of Alzheimer's disease. Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Abeta, is an attractive therapeutic approach for the treatment of Alzheimer's disease. We have designed a selective non-peptidic BACE-1 inhibitor, GSK188909, that potently inhibits beta-cleavage of APP and reduces levels of secreted and intracellular Abeta in SHSY5Y cells expressing APP. In addition, we demonstrate that this compound can effectively lower brain Abeta in vivo. In APP transgenic mice, acute oral administration of GSK188909 in the presence of a p-glycoprotein inhibitor to markedly enhance the exposure of GSK188909 in the brain decreases beta-cleavage of APP and results in a significant reduction in the level of Abeta40 and Abeta42 in the brain. Encouragingly, subchronic dosing of GSK188909 in the absence of a p-glycoprotein inhibitor also lowers brain Abeta. This pivotal first report of central Abeta lowering, following oral administration of a BACE-1 inhibitor, supports the development of BACE-1 inhibitors for the treatment of Alzheimer's disease.  相似文献   

12.
Autosomal dominant mutations in the presenilin 1 (PS1) gene are associated with familial, early-onset Alzheimer's disease. Although the pathogenic mechanism of these mutations is unclear, their common feature is that they lead to an increased concentration of amyloid beta-peptide (Abeta) 42 in the plasma of early-onset patients, in the conditioned media of transfected cells, and in the brains of transgenic mice that overexpress mutant PS1. To address the mechanism(s) by which the pathogenic PS1 mutations increase Abeta42, we constructed human cell lines expressing a doxycyclin (dox)-inducible antisense PS1 RNA and measured its effects on the levels of PS1, amyloid precursor protein (APP), and Abeta. In time course experiments, we observed a statistically significant (p = 0.0038) more than twofold elevation in secreted Abeta42 as early as 12 days after addition of dox. This correlated with an 80% decrease in the 46-kDa PS1 holoprotein and a 30% decrease in the 26-kDa N-terminal fragment (NTF). Furthermore, there was a significant fivefold (p = 0.002) increase in Abeta42 after 14-day dox treatment; this correlated with a >90% decrease in PS1 holoprotein and 60% decrease in NTF. At no time point did we observe significant changes in Abeta40, APP holoprotein, presenilin 2, or tubulin. Ten days after the removal of dox, we observed a return to constitutive levels for Abeta42, PS1 holoprotein, and NTF. These results suggest that in human cell lines, the reduction of normal PS1 activity results in the increased production of Abeta42. Furthermore, our results are consistent with a loss of function or dominant negative mechanism for the pathogenic PS1 mutations.  相似文献   

13.
14.
Memapsin 2 is the protease known as beta-secretase whose action on beta-amyloid precursor protein leads to the production of the beta-amyloid (Abeta) peptide. Since the accumulation of Abeta in the brain is a key event in the pathogenesis of Alzheimer's disease, memapsin 2 is an important target for the design of inhibitory drugs. Here we describe the residue preference for the subsites of memapsin 2. The relative k(cat)/K(M) values of residues in each of the eight subsites were determined by the relative initial cleavage rates of substrate mixtures as quantified by MALDI-TOF mass spectrometry. We found that each subsite can accommodate multiple residues. The S(1) subsite is the most stringent, preferring residues in the order of Leu > Phe > Met > Tyr. The preferences of other subsites are the following: S(2), Asp > Asn > Met; S(3), Ile > Val > Leu; S(4), Glu > Gln > Asp; S(1)', Met > Glu > Gln > Ala; S(2)', Val > Ile > Ala; S(3)', Leu > Trp > Ala; S(4)', Asp > Glu > Trp. In general, S subsites are more specific than the S' subsites. A peptide comprising the eight most favored residues (Glu-Ile-Asp-Leu-Met-Val-Leu-Asp) was found to be hydrolyzed with the highest k(cat)/K(M) value so far observed for memapsin 2. Residue preferences at four subsites were also studied by binding of memapsin 2 to a combinatorial inhibitor library. From 10 tight binding inhibitors, the consensus preferences were as follows: S(2), Asp and Glu; S(3), Leu and Ile; S(2)', Val; and S(3)', Glu and Gln. An inhibitor, OM00-3, Glu-Leu-Asp-LeuAla-Val-Glu-Phe (where the asterisk represents the hydroxyethylene tansition-state isostere), designed from the consensus residues, was found to be the most potent inhibitor of memapsin 2 so far reported (K(i) of 3.1 x 10(-10) M). A molecular model of OM00-3 binding to memapsin 2 revealed critical improvement of the interactions between inhibitor side chains with enzyme over a previous inhibitor, OM99-2 [Ghosh, A. K., et al. (2000) J. Am. Chem. Soc. 14, 3522-3523].  相似文献   

15.
Long-term vaccinations with human beta-amyloid peptide 1-42 (Abeta1-42) have recently been shown to prevent or markedly reduce Abeta deposition in the PDAPP transgenic model of Alzheimer's disease (AD). Using a similar protocol to vaccinate 7.5-month-old APP (Tg2576) and APP+PS1 transgenic mice over an 8-month period, we previously reported modest reductions in brain Abeta deposition at 16 months. In these same mice, Abeta vaccinations had no deleterious behavioral effects and, in fact, benefited the mice by providing partial protection from age-related deficits in spatial working memory in the radial arm water maze task (RAWM) at 15.5 months. By contrast, control-vaccinated transgenic mice exhibited impaired performance throughout the entire RAWM test period at 15.5 months. The present study expands on our initial report by presenting additional behavioral results following long-term Abeta vaccination, as well as correlational analyses between cognitive performance and Abeta deposition in vaccinated animals. We report that 8 months of Abeta vaccinations did not reverse an early-onset balance beam impairment in transgenic mice. Additionally, in Y-maze testing at 16 months, all mice showed comparable spontaneous alternation irrespective of genotype or vaccination status. Strong correlations were nonetheless present between RAWM performance and extent of "compact" Abeta deposition in both the hippocampus and the frontal cortex of vaccinated APP+PS1 mice. Our results suggest that the behavioral protection of long-term Abeta vaccinations is task specific, with preservation of hippocampal-associated working memory tasks most likely to occur. In view of the early short-term memory deficits exhibited by AD patients, Abeta vaccination of presymptomatic AD patients could be an effective therapeutic to protect against such cognitive impairments.  相似文献   

16.
Amyloid beta-peptide (Abeta)(1-42) oligomers have recently been discussed as intermediate toxic species in Alzheimer's disease (AD) pathology. Here we describe a new and highly stable Abeta(1-42) oligomer species which can easily be prepared in vitro and is present in the brains of patients with AD and Abeta(1-42)-overproducing transgenic mice. Physicochemical characterization reveals a pure, highly water-soluble globular 60-kDa oligomer which we named 'Abeta(1-42) globulomer'. Our data indicate that Abeta(1-42) globulomer is a persistent structural entity formed independently of the fibrillar aggregation pathway. It is a potent antigen in mice and rabbits eliciting generation of Abeta(1-42) globulomer-specific antibodies that do not cross-react with amyloid precursor protein, Abeta(1-40) and Abeta(1-42) monomers and Abeta fibrils. Abeta(1-42) globulomer binds specifically to dendritic processes of neurons but not glia in hippocampal cell cultures and completely blocks long-term potentiation in rat hippocampal slices. Our data suggest that Abeta(1-42) globulomer represents a basic pathogenic structural principle also present to a minor extent in previously described oligomer preparations and that its formation is an early pathological event in AD. Selective neutralization of the Abeta globulomer structure epitope is expected to have a high potential for treatment of AD.  相似文献   

17.
β-Secretase (memapsin 2; BACE-1) is the first protease in the processing of amyloid precursor protein leading to the production of amyloid-β (Aβ) in the brain. It is believed that high levels of brain Aβ are responsible for the pathogenesis of Alzheimer's disease (AD). Therefore, β-secretase is a major therapeutic target for the development of inhibitor drugs. During the past decade, steady progress has been made in the evolution of β-secretase inhibitors toward better drug properties. Recent inhibitors are potent, selective and have been shown to penetrate the blood-brain barrier to inhibit Aβ levels in the brains of experimental animals. Moreover, continuous administration of a β-secretase inhibitor was shown to rescue age-related cognitive decline in transgenic AD mice. A small number of β-secretase inhibitors have also entered early phase clinical trials. These developments offer some optimism for the clinical development of a disease-modifying drug for AD.  相似文献   

18.
Immunization with amyloid-beta (Abeta) prevents the deposition of Abeta in the brain and memory deficits in transgenic mouse models of Alzheimer's disease (AD), opening the possibility for immunotherapy of AD in humans. Unfortunately, the first human trial of Abeta vaccination was complicated, in a small number of vaccinees, by cell-mediated meningoencephalitis. To develop an Abeta vaccine that lacks the potential to induce autoimmune encephalitis, we have generated papillomavirus-like particles (VLP) that display 1-9 aa of Abeta protein repetitively on the viral capsid surface (Abeta-VLP). This Abeta peptide was chosen because it contains a functional B cell epitope, but lacks known T cell epitopes. Rabbit and mouse vaccinations with Abeta-VLP were well tolerated and induced high-titer autoAb against Abeta, that inhibited effectively assembly of Abeta(1-42) peptides into neurotoxic fibrils in vitro. Following Abeta-VLP immunizations of APP/presenilin 1 transgenic mice, a model for human AD, we observed trends for reduced Abeta deposits in the brain and increased numbers of activated microglia. Furthermore, Abeta-VLP vaccinated mice also showed increased levels of Abeta in plasma, suggesting efflux from the brain into the vascular compartment. These results indicate that the Abeta-VLP vaccine induces an effective humoral immune response to Abeta and may thus form a basis to develop a safe and efficient immunotherapy for human AD.  相似文献   

19.
Amyloid beta peptide (Abeta) accumulates in the CNS in Alzheimer's disease. Both the full peptide (1-42) or the 25-35 fragment are toxic to neurons in culture. We have used fluorescence imaging technology to explore the mechanism of neurotoxicity in mixed asytrocyte/neuronal cultures prepared from rat or mouse cortex or hippocampus, and have found that Abeta acts preferentially on astrocytes but causes neuronal death. Abeta causes sporadic transient increases in [Ca2+]c in astrocytes, associated with a calcium dependent increased generation of reactive oxygen species (ROS) and glutathione depletion. This caused a slow dissipation of mitochondrial potential on which abrupt calcium dependent transient depolarizations were superimposed. The mitochondrial depolarization was reversed by mitochondrial substrates glutamate, pyruvate or methyl succinate, and by NADPH oxidase (NOX) inhibitors, suggesting that it reflects oxidative damage to metabolic pathways upstream of mitochondrial complex I. The Abeta induced increase in ROS and the mitochondrial depolarization were absent in cells cultured from transgenic mice lacking the NOX component, gp91phox. Neuronal death after 24 h of Abeta exposure was dramatically reduced both by NOX inhibitors and in gp91phox knockout mice. Thus, by raising [Ca2+]c in astrocytes, Abeta activates NOX, generating oxidative stress that is transmitted to neurons, causing neuronal death.  相似文献   

20.
Memapsin 2 (beta-secretase) is the membrane-anchored aspartic protease that initiates the cleavage of beta-amyloid precursor protein (APP), leading to the production of amyloid-beta (Abeta), a major factor in the pathogenesis of Alzheimer's disease. The active site of memapsin 2 has been shown, with kinetic data and crystal structures, to bind to eight substrate residues (P(4)-P(4)'). We describe here that the addition of three substrate residues from P(7) to P(5) strongly influences the hydrolytic activity by memapsin 2 and these subsites prefer hydrophobic residues, especially tryptophan. A crystal structure of memapsin 2 complexed with a statine-based inhibitor spanning P(10)-P(4)' revealed the binding positions of P(5)-P(7) residues. Kinetic studies revealed that the addition of these substrate residues contributes to the decrease in K(m) and increase in k(cat) values, suggesting that these residues contribute to both substrate recognition and transition-state binding. The crystal structure of a new inhibitor, OM03-4 (K(i) = 0.03 nM), bound to memapsin 2 revealed the interaction of a tryptophan with the S(6) subsite of the protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号