首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

2.
D Pan  R A Mathies 《Biochemistry》2001,40(26):7929-7936
Time-resolved resonance Raman microchip flow experiments have been performed on the lumirhodopsin (Lumi) and metarhodopsin I (Meta I) photointermediates of rhodopsin at room temperature to elucidate the structure of the chromophore in each species as well as changes in protein-chromophore interactions. Transient Raman spectra of Lumi and Meta I with delay times of 16 micros and 1 ms, respectively, are obtained by using a microprobe system to focus displaced pump and probe laser beams in a microfabricated flow channel and to detect the scattering. The fingerprint modes of both species are very similar and characteristic of an all-trans chromophore. Lumi exhibits a relatively normal hydrogen-out-of-plane (HOOP) doublet at 951/959 cm(-1), while Meta I has a single HOOP band at 957 cm(-1). These results suggest that the transitions from bathorhodopsin to Lumi and Meta I involve a relaxation of the chromophore to a more planar all-trans conformation and the elimination of the structural perturbation that uncouples the 11H and 12H wags in bathorhodopsin. Surprisingly, the protonated Schiff base C=N stretching mode in Lumi (1638 cm(-1)) is unusually low compared to those in rhodopsin and bathorhodopsin, and the C=ND stretching mode shifts down by only 7 cm(-1) in D2O buffer. This indicates that the Schiff base hydrogen bonding is dramatically weakened in the bathorhodopsin to Lumi transition. However, the C=N stretching mode in Meta I is found at 1654 cm(-1) and exhibits a normal deuteration-induced downshift of 24 cm(-1), identical to that of the all-trans protonated Schiff base. The structural relaxation of the chromophore-protein complex in the bathorhodopsin to Lumi transition thus appears to drive the Schiff base group out of its hydrogen-bonded environment near Glu113, and the hydrogen bonding recovers to a normal solvated PSB value but presumably a different hydrogen bond acceptor with the formation of Meta I.  相似文献   

3.
Vertebrate rhodopsin consists of the apoprotein opsin and the chromophore 11-cis-retinal covalently linked via a protonated Schiff base. Upon photoisomerization of the chromophore to all-trans-retinal, the retinylidene linkage hydrolyzes, and all-trans-retinal dissociates from opsin. The pigment is eventually restored by recombining with enzymatically produced 11-cis-retinal. All-trans-retinal release occurs in parallel with decay of the active form, metarhodopsin (Meta) II, in which the original Schiff base is intact but deprotonated. The intermediates formed during Meta II decay include Meta III, with the original Schiff base reprotonated, and Meta III-like pseudo-photoproducts. Using an intrinsic fluorescence assay, Fourier transform infrared spectroscopy, and UV-visible spectroscopy, we investigated Meta II decay in native rod disk membranes. Up to 40% of Meta III is formed without changes in the intrinsic Trp fluorescence and thus without all-trans-retinal release. NADPH, a cofactor for the reduction of all-trans-retinal to all-trans-retinol, does not accelerate Meta II decay nor does it change the amount of Meta III formed. However, Meta III can be photoconverted back to the Meta II signaling state. The data are described by two quasi-irreversible pathways, leading in parallel into Meta III or into release of all-trans-retinal. Therefore, Meta III could be a form of rhodopsin that is stored away, thus regulating photoreceptor regeneration.  相似文献   

4.
Rhodopsin bears 11-cis-retinal covalently bound by a protonated Schiff base linkage. 11-cis/all-trans isomerization, induced by absorption of green light, leads to active metarhodopsin II, in which the Schiff base is intact but deprotonated. The subsequent metabolic retinoid cycle starts with Schiff base hydrolysis and release of photolyzed all-trans-retinal from the active site and ends with the uptake of fresh 11-cis-retinal. To probe chromophore-protein interaction in the active state, we have studied the effects of blue light absorption on metarhodopsin II using infrared and time-resolved UV-visible spectroscopy. A light-induced shortcut of the retinoid cycle, as it occurs in other retinal proteins, is not observed. The predominantly formed illumination product contains all-trans-retinal, although the spectra reflect Schiff base reprotonation and protein deactivation. By its kinetics of formation and decay, its low temperature photointermediates, and its interaction with transducin, this illumination product is identified as metarhodopsin III. This species is known to bind all-trans-retinal via a reprotonated Schiff base and forms normally in parallel to retinal release. We find that its generation by light absorption is only achieved when starting from active metarhodopsin II and is not found with any of its precursors, including metarhodopsin I. Based on the finding of others that metarhodopsin III binds retinal in all-trans-C(15)-syn configuration, we can now conclude that light-induced formation of metarhodopsin III operates by Schiff base isomerization ("second switch"). Our reaction model assumes steric hindrance of the retinal polyene chain in the active conformation, thus preventing central double bond isomerization.  相似文献   

5.
Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts   总被引:2,自引:0,他引:2  
C Pande  A Pande  K T Yue  R Callender  T G Ebrey  M Tsuda 《Biochemistry》1987,26(16):4941-4947
We report here the resonance Raman spectra of octopus rhodopsin and its photoproducts, bathorhodopsin and acid metarhodopsin. These studies were undertaken in order to make comparisons with the well-studied bovine pigments, so as to understand the similarities and the differences in pigment structure and photochemical processes between vertebrates and invertebrates. The flow method was used to obtain the Raman spectrum of rhodopsin at 13 degrees C. The bathorhodopsin spectrum was obtained by computer subtraction of the spectra containing different photostationary mixtures of rhodopsin, isorhodopsin, hypsorhodopsin, and bathorhodopsin, obtained at 12 K using the pump-probe technique and from measurements at 80 K. Like their bovine counterparts, the Schiff base vibrational mode appears at approximately 1660 cm-1 in octopus rhodopsin and the photoproducts, bathorhodopsin and acid metarhodopsin, suggesting a protonated Schiff base linkage between the chromophore and the protein. Differences between the Raman spectra of octopus rhodopsin and bathorhodopsin indicate that the formation of bathorhodopsin is associated with chromophore isomerization. This inference is substantiated by the chromophore chemical extraction data which show that, like the bovine system, octopus rhodopsin is an 11-cis pigment, while the photoproducts contain an all-trans pigment, in agreement with previous work. The octopus rhodopsin and bathorhodopsin spectra show marked differences from their bovine counterparts in other respects, however. The differences are most dramatic in the structure-sensitive fingerprint and the HOOP regions. Thus, it appears that although the two species differ in the specific nature of the chromophore-protein interactions, the general process of visual transduction is the same.  相似文献   

6.
G Renk  R K Crouch 《Biochemistry》1989,28(2):907-912
Several analogue pigments have been prepared containing retinals altered at the cyclohexyl ring or proximal to the aldehyde group in order to examine the role of the chromophore in the formation of the metarhodopsin I and II states of visual pigments. Deletion of the 13-methyl group on the isoprenoid chain did not affect metarhodopsin formation. However, analogue pigments containing chromophores with modified rings did not show the typical absorption changes associated with the metarhodopsin transitions of native or regenerated rhodopsins. In particular, 4-hydroxyretinal pigments did not show clear transitions between the metarhodopsin I and metarhodopsin II states. Pigment formed with an acyclic retinal showed no evidence by absorption spectroscopy of metarhodopsin formation. A retinal altered by substitution of a five-membered ring containing a nitroxide required a more acidic pH than the native pigment for formation of the metarhodopsin II state. ESR data suggest that the ring remains buried within the protein through the metarhodopsin II state. However, the Schiff base linkage is susceptible to hydrolysis of hydroxylamine in the metarhodopsin II state. These data indicate that (1), in the transition from rhodopsin to metarhodopsin II, major protein conformational changes are occurring near the lysine-retinal linkage whereas the ring portion of the chromophore remains deeply buried within the protein and (2) pigment absorptions characteristic of the metarhodopsin I and II states may be due to specific protein-chromophore interactions near the region of the chromophore ring.  相似文献   

7.
The chromophore of octopus rhodopsin is 11-cis retinal, linked via a protonated Schiff base to the protein backbone. Its stable photoproduct, metarhodopsin, has all-trans retinal as its chromphore. The Schiff base of acid metarhodopsin (lambda max = 510 nm) is protonated, whereas that of alkaline metarhodopsin (lambda max = 376 nm) is unprotonated. Metarhodopsin in photoreceptor membranes was titrated and the apparent pK of the Schiff base was measured at different ionic strengths. From these salt-dependent pKs the surface charge density of the octopus photoreceptor membranes and the intrinsic Schiff base pK of metarhodopsin were obtained. The surface charge density is sigma = -1.6 +/- 0.1 electronic charges per 1,000 A2. Comparison of the measured surface charge density with values from octopus rhodopsin model structures suggests that the measured value is for the extracellular surface and so the Schiff base in metarhodopsin is freely accessible to protons from the extracellular side of the membrane. The intrinsic Schiff base pK of metarhodopsin is 8.44 +/- 0.12, whereas that of rhodopsin is found to be 10.65 +/- 0.10 in 4.0 M KCl. These pK values are significantly higher than the pK value around 7.0 for a retinal Schiff base in a polar solvent; we suggest that a plausible mechanism to increase the pK of the retinal pigments is the preorganization of their chromophore-binding sites. The preorganized site stabilizes the protonated Schiff base with respect to the unprotonated one. The difference in the pK for the octopus rhodopsin compared with metarhodopsin is attributed to the relative freedom of the latter's chromophore-binding site to rearrange itself after deprotonation of the Schiff base.  相似文献   

8.
A Cooper  C A Converse 《Biochemistry》1976,15(14):2970-2978
A sensitive technique for the direct calorimetric determination of the energetics of photochemical reactions under low levels of illumination, and its application to the study of primary processes in visula excitation, are described. Enthlpies are reported for various steps in the bleaching of rhodopsin in intact rod outer segment membranes, together with the heats of appropriate model reactions. Protonation changes are also determined calorimetrically by use of buffers with differing heats of proton ionization. Bleaching of rhodopsin is accompanied by significant uptake of heat energy, vastly in excess of the energy required for simple isomerization of the retinal chromophore. Metarhodopsin I formation involves the uptake of about 17 kcal/mol and no net change in proton ionization of the system. Formation of metarhodopsin II requires an additional energy of about 10 kcal/mol and involves the uptake on one hydrogen ion from solution. The energetics of the overall photolysis reaction, rhodopsin leads to opsin + all-trans-retinal, are pH dependent and involve the exposure of an additional titrating group on opsin. This group has a heat of proton ionization of about 12 kcal/mal, characteristic of a primary amine, but a pKa in the region of neutrality. We suggest that this group is the Schiff base lysine of the chromophore binding site of rhodopsin which becomes exposed on photolysis. The low pKa for this active lysine would result in a more stable retinal-opsin linkage, and might be induced by a nearby positively charged group on the protein (either arginine or a second lysine residue). This leads to a model involving intramolecular protonation of the Schiff base nitrogen in the retinal-opsin linkage of rhodopsin, which is consistent with the thermodynamic and spectroscopic properties of the system. We further propose that the metarhodopsin I leads to metarhodopsin II step in the bleaching sequence involves reversible hydrolysis of the Schiff base linkage in the chromophore binding site, and that subsequent steps are the result of migration of the chromophore from this site.  相似文献   

9.
Vertebrate rhodopsin shares with other retinal proteins the 11-cis-retinal chromophore and the light-induced 11-cis/trans isomerization triggering its activation pathway. However, only in rhodopsin the retinylidene Schiff base bond to the apoprotein is eventually hydrolyzed, making a complex regeneration pathway necessary. Metabolic regeneration cannot be short-cut, and light absorption in the active metarhodopsin (Meta) II intermediate causes anti/syn isomerization around the retinylidene linkage rather than reversed trans/cis isomerization. A new deactivating pathway is thereby triggered, which ends in the Meta III "retinal storage" product. Using time-resolved Fourier transform infrared spectroscopy, we show that the identified steps of receptor activation, including Schiff base deprotonation, protein structural changes, and proton uptake by the apoprotein, are all reversed. However, Schiff base reprotonation is much faster than the activating deprotonation, whereas the protein structural changes are slower. The final proton release occurs with pK approximately 4.5, similar to the pK of a free Glu residue and to the pK at which the isolated opsin apoprotein becomes active. A forced deprotonation, equivalent to the forced protonation in the activating pathway, which occurs against the unfavorable pH of the medium, is not observed. This explains properties of the final Meta III product, which displays much higher residual activity and is less stable than rhodopsin arising from regeneration with 11-cis-retinal. We propose that the anti/syn conversion can only induce a fast reorientation and distance change of the Schiff base but fails to build up the full set of dark ground state constraints, presumably involving the Glu(134)/Arg(135) cluster.  相似文献   

10.
Vogel R  Lüdeke S  Radu I  Siebert F  Sheves M 《Biochemistry》2004,43(31):10255-10264
Meta III is an inactive intermediate thermally formed following light activation of the visual pigment rhodopsin. It is produced from the Meta I/Meta II photoproduct equilibrium of rhodopsin by a thermal isomerization of the protonated Schiff base C=N bond of Meta I, and its chromophore configuration is therefore all-trans 15-syn. In contrast to the dark state of rhodopsin, which catalyzes exclusively the cis to trans isomerization of the C11=C12 bond of its 11-cis 15-anti chromophore, Meta III does not acquire this photoreaction specificity. Instead, it allows for light-dependent syn to anti isomerization of the C15=N bond of the protonated Schiff base, yielding Meta II, and for trans to cis isomerizations of C11=C12 and C9=C10 of the retinal polyene, as shown by FTIR spectroscopy. The 11-cis and 9-cis 15-syn isomers produced by the latter two reactions are not stable, decaying on the time scale of few seconds to dark state rhodopsin and isorhodopsin by thermal C15=N isomerization, as indicated by time-resolved FTIR methods. Flash photolysis of Meta III produces therefore Meta II, dark state rhodopsin, and isorhodopsin. Under continuous illumination, the latter two (or its unstable precursors) are converted as well to Meta II by presumably two different mechanisms.  相似文献   

11.
R Vogel  G B Fan  F Siebert  M Sheves 《Biochemistry》2001,40(44):13342-13352
In rhodopsin, the retinal chromophore is covalently bound to the apoprotein by a protonated Schiff base, which is stabilized by the negatively charged counterion Glu113, conferring upon it a pK(a) of presumably >16. Upon photoexcitation and conformational relaxation of the initial photoproducts, the Schiff base proton neutralizes the counterion, a step that is considered a prerequisite for formation of the active state of the receptor, metarhodopsin II (MII). We show that the pK(a) of the Schiff base drops below 2.5 in MII. In the presence of solute anions, however, it may be increased considerably, thereby leading to the formation of a MII photoproduct with a protonated Schiff base (PSB) absorbing at 480 nm. This PSB is not stabilized by Glu113, which is shown to be neutral, but by stoichiometric binding of an anion near the Schiff base. Protonation of the Schiff base in MII changes neither coupling to G protein, as assessed by binding to a transducin-derived peptide, nor the conformation of the protein, as judged by FTIR and UV spectroscopy. A PSB and an active state conformation are therefore compatible, as suggested previously by mutants of rhodopsin. The anion specificity of the stabilization of the PSB follows the series thiocyanate > iodide > nitrate > bromide > chloride > sulfate in order of increasing efficiency. This specificity correlates inversely with the strength of hydration of the respective anion species in solution and seems therefore to be determined mainly by its partitioning into the considerably less polar protein interior.  相似文献   

12.
Isomerization of the 11-cis retinal chromophore in the visual pigment rhodopsin is coupled to motion of transmembrane helix H6 and receptor activation. We present solid-state magic angle spinning NMR measurements of rhodopsin and the metarhodopsin II intermediate that support the proposal that interaction of Trp265(6.48) with the retinal chromophore is responsible for stabilizing an inactive conformation in the dark, and that motion of the beta-ionone ring allows Trp265(6.48) and transmembrane helix H6 to adopt active conformations in the light. Two-dimensional dipolar-assisted rotational resonance NMR measurements are made between the C19 and C20-methyl groups of the retinal and uniformly 13C-labeled Trp265(6.48). The retinal C20-Trp265(6.48) contact present in the dark-state of rhodopsin is lost in metarhodopsin II, and a new contact is formed with the C19 methyl group. We have previously shown that the retinal translates 4-5 A toward H5 in metarhodopsin II. This motion, in conjunction with the Trp-C19 contact, implies that the Trp265(6.48) side-chain moves significantly upon rhodopsin activation. NMR measurements also show that a packing interaction in rhodopsin between Trp265(6.48) and Gly121(3.36) is lost in metarhodopsin II, consistent with H6 motion away from H3. However, a close contact between Gly120(3.35) on H3 and Met86(2.53) on H2 is observed in both rhodopsin and metarhodopsin II, suggesting that H3 does not change orientation significantly upon receptor activation.  相似文献   

13.
Rhodopsin is the prototypical G protein-coupled receptor, responsible for detection of dim light in vision. Upon absorption of a photon, rhodopsin undergoes structural changes, characterised by distinct photointermediates. Currently, only the ground-state structure has been described. We have determined a density map of a photostationary state highly enriched in metarhodopsin I, to a resolution of 5.5 A in the membrane plane, by electron crystallography. The map shows density for helix 8, the cytoplasmic loops, the extracellular plug, all tryptophan residues, an ordered cholesterol molecule and the beta-ionone ring. Comparison of this map with X-ray structures of the ground state reveals that metarhodopsin I formation does not involve large rigid-body movements of helices, but there is a rearrangement close to the bend of helix 6, at the level of the retinal chromophore. There is no gradual build-up of the large conformational change known to accompany metarhodopsin II formation. The protein remains in a conformation similar to that of the ground state until late in the photobleaching process.  相似文献   

14.
Structure of the retinal chromophore in the hR578 form of halorhodopsin   总被引:1,自引:0,他引:1  
Halorhodopsin is a retinal-containing pigment that is thought to function as a light-driven chloride ion pump in the cell membrane of Halobacterium halobium. To address the role of the retinal chromophore in chloride ion transport, resonance Raman spectra have been obtained of the hR578 form of chromatographically purified halorhodopsin (hR). The close similarity of the frequencies and intensities of the hR578 Raman bands with those of light-adapted bacteriorhodopsin (bR568) shows that the chromophore in hR578 has an all-trans configuration and that the protein environment around the chromophore in these two pigments is very similar. In addition, hR578 exhibits a Raman line at 1633 cm-1 which is assigned as the stretching vibration of a protonated Schiff base linkage to the protein based on its shift to 1627 cm-1 in D2O. The reduced frequency of the Schiff base stretching vibration compared with bR568 (1640 cm-1) is shown to result from a reduction of its coupling with the NH in-plane rock. This may be due to a reduction in hydrogen-bonding between the Schiff base proton and an electronegative counterion in halorhodopsin.  相似文献   

15.
The analysis of the vibrational spectrum of the retinal chromophore in bacteriorhodopsin with isotopic derivatives provides a powerful "structural dictionary" for the translation of vibrational frequencies and intensities into structural information. Of importance for the proton-pumping mechanism is the unambiguous determination of the configuration about the C13=C14 and C=N bonds, and the protonation state of the Schiff base nitrogen. Vibrational studies have shown that in light-adapted BR568 the Schiff base nitrogen is protonated and both the C13=C14 and C=N bonds are in a trans geometry. The formation of K625 involves the photochemical isomerization about only the C13=C14 bond which displaces the Schiff base proton into a different protein environment. Subsequent Schiff base deprotonation produces the M412 intermediate. Thermal reisomerization of the C13=C14 bond and reprotonation of the Schiff base occur in the M412------O640 transition, resetting the proton-pumping mechanism. The vibrational spectra can also be used to examine the conformation about the C--C single bonds. The frequency of the C14--C15 stretching vibration in BR568, K625, L550 and O640 argues that the C14--C15 conformation in these intermediates is s-trans. Conformational distortions of the chromophore have been identified in K625 and O640 through the observation of intense hydrogen out-of-plane wagging vibrations in the Raman spectra (see Fig. 2). These two intermediates are the direct products of chromophore isomerization. Thus it appears that following isomerization in a tight protein binding pocket, the chromophore cannot easily relax to a planar geometry. The analogous observation of intense hydrogen out-of-plane modes in the primary photoproduct in vision (Eyring et al., 1982) suggests that this may be a general phenomenon in protein-bound isomerizations. Future resonance Raman studies should provide even more details on how bacterio-opsin and retinal act in concert to produce an efficient light-energy convertor. Important unresolved questions involve the mechanism by which the protein catalyzes deprotonation of the L550 intermediate and the mechanism of the thermal conversion of M412 back to BR568. Also, it has been shown that under conditions of high ionic strength and/or low light intensity two protons are pumped per photocycle (Kuschmitz & Hess, 1981). How might this be accomplished?(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The resonance Raman spectrum of the dark-adapted form of the purple membrane protein (bacteriorhodopsin) has been obtained and is compared to the light-adapted pigment and model chromophore spectra. As in the light-adapted form, the chromophore-protein linkage is found to be a protonated Schiff base. Electron delocalization appears to play the dominant role in color regulation. The dark-adapted spectrum indicates a conformation closer to 13-cis than the light-adapted spectrum.  相似文献   

17.
Glutamic acid at position 113 in bovine rhodopsin ionizes to form the counterion to the protonated Schiff base (PSB), which links the 11-cis-retinylidene chromophore to opsin. Photoactivation of rhodopsin requires both Schiff base deprotonation and neutralization of Glu-113. To better understand the role of electrostatic interactions in receptor photoactivation, absorbance difference spectra were collected at time delays from 30 ns to 690 ms after photolysis of rhodopsin mutant E113Q solubilized in dodecyl maltoside at different pH values at 20 degrees C. The PSB form (pH 5. 5, lambda(max) = 496 nm) and the unprotonated Schiff base form (pH 8. 2, lambda(max) = 384 nm) of E113Q rhodopsin were excited using 477 nm or 355 nm light, respectively. Early photointermediates of both forms of E113Q were qualitatively similar to those of wild-type rhodopsin. In particular, early photoproducts with spectral shifts to longer wavelengths analogous to wild-type bathorhodopsin were seen. In the case of the basic form of E113Q, the absorption maximum of this intermediate was at 408 nm. These results suggest that steric interaction between the retinylidene chromophore and opsin, rather than charge separation, plays the dominant role in energy storage in bathorhodopsin. After lumirhodopsin, instead of deprotonating to form metarhodopsin I(380) on the submillisecond time scale as is the case for wild type, the acidic form of E113Q produced metarhodopsin I(480), which decayed very slowly (exponential lifetime = 12 ms). These results show that Glu-113 must be present for efficient deprotonation of the Schiff base and rapid visual transduction in vertebrate visual pigments.  相似文献   

18.
The decay reactions of metarhodopsin II and the dissociation of the complex between rhodopsin (in the metarhodopsin II state) and the GTP-binding protein (G-protein) (in its inactive, GDP-binding form) have been compared at various concentrations of hydroxylamine. The reactions of the chromophore were measured by absorption changes in the visible range, the complex dissociation by changes in the near-in-frared scattering. An additional monitor of the complex was given by the G-protein-dependent equilibrium between metarhodopsin I and metarhodopsin II. For all measurements, fragments of isolated bovine rod outer segments in suspension were used. In the absence of hydroxylamine, the rhodopsin-G-protein complex dissociated within 20–30 min at room temperature. The presence of hydroxylamine greatly accelerated (e.g., 5-fold at 1 mM NH2OH) the dissociation. Under all conditions, the free, dissociated G-protein can reassociate to metarhodopsin II produced by subsequent bleaching. Dissociation of the metarhodopsin II-G-protein complex required the decay of photoproducts with a maximal absorbance of 380 nm, but was not affected by the simultaneous presence of metarhodopsin III or metarhodopsin III — like photoproducts with a maximal absorbance between 450 and 470 nm. Despite the acceleration of metarhodopsin II-G-protein dissociation by NH2OH, metarhodopsin II-G-protein was relatively stabilized as compared to free metarhodopsin II. The ratio of the decay rates of free metarhodopsin II and metarhodopsin III-G-protein was increased as much as 10-fold in the presence of 25 mM NH2OH. The results indicate a mutual interdependence of retinal, opsin and G-protein.  相似文献   

19.
The kinetics of the metarhodopsin (meta) I → metarhodopsin II reaction have been studied by flash photolysis in two different types of preparations of bovine rhodopsin: (i) digitonin-solubilized rod outer segment (ROS) membranes with a molar ratio of phospholipid to rhodopsin of approximately 90, and (ii) digitonin-solubilized phospholipid-free rhodopsin with a molar ratio of phospholipid to rhodopsin of less than 0.2. At 20 °C the kinetics in both preparations are multiexponential, but four terms are required to fit the data with the solubilized membranes, whereas only two are required with the phospholipid-free preparation. Thus, phospholipid removal simplifies the kinetics of the meta I → meta II reaction, but the resulting preparation still does not show first-order kinetics. The ratio of the time constants of these two components with detergent-solubilized phospholipid-free rhodopsin was nearly equal to the values found with ROS particles, rhodopsin-phospholipid recombinants and intact rabbit eyes. This suggests a common origin for these two components in all these preparations and appears to exclude heterogeneity in bound phospholipid as the basis of these two-component kinetics.  相似文献   

20.
Furutani Y  Kandori H  Shichida Y 《Biochemistry》2003,42(28):8494-8500
The functional process of rhodopsin is initiated by cis-trans photoisomerization of the retinal chromophore. One of the primary intermediates, bathorhodopsin (Batho), is stable at 77 K, and structural changes in Batho are limited around the chromophore. Then, relaxation of Batho leads to helix opening at the cytoplasmic surface in metarhodopsin II (Meta II), which allows activation of a G protein transducin. Two intermediates, lumirhodopsin (Lumi) and metarhodopsin I (Meta I), appear between Batho and Meta II, and can be stabilized at 200 and 240 K, respectively. A photoaffinity labeling experiment reported that formation of Lumi accompanied flip-over of the beta-ionone ring of the retinal chromophore so that the ring portion was attached to Ala169 of helix IV [Borhan, B., Souto, M. L., Imai, H., Shichida, Y., and Nakanishi, K. (2000) Science 288, 2209-2212]. According to the crystal structure of bovine rhodopsin, the distance between the labeled C3 atom of the chromophore and Ala169 was >15 A [Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Science 289, 739-745]. These facts suggest that global protein structural changes such as helix motions take place in Lumi. In the study presented here, Lumi and Meta I are illuminated at 77 K, and protein structural changes are probed by Fourier transform infrared (FTIR) spectroscopy. We found that Lumi can be photoconverted to rhodopsin at 77 K from the IR spectral analysis of the photoproducts of Lumi. In contrast, more complex spectra were obtained for the photoproducts of Meta I at 77 K, implying that the protein structure of Meta I is considerably altered so as not to be reverted to the original state at 77 K. Thus, these photoreaction experiments with Lumi and Meta I at 77 K suggested the presence of global protein structural changes in the process between them. We concluded that the helix motions do not occur at Lumi, but at Meta I, and the flip-over of the beta-ionone ring reported by the photoaffinity labeling takes place through the specific reaction channel without a change in the global structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号