首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Calatayud  A.  Alvarado  J.W.  Barreno  E. 《Photosynthetica》2002,40(2):195-200
Ozone is the major phytotoxic air pollutant that reduces the yield of several agricultural crops in the Spanish Mediterranean area. We studied four lettuce cultivars (Lactuca sativa L.) for the effects of different O3 concentrations during the winter on chlorophyll (Chl) a fluorescence, lipid peroxidation, and root length in outdoor open-top chambers. Under O3 the photosynthetic quantum conversion declined while heat emissions increased in all cultivars; these results provide more evidence of non-filtered air with additional ozone (NFA+O3) treatment compared with non-filtered air (NFA) and charcoal filtered ozone-free air (CFA). Changes in the Chl a fluorescence may be associated with an increase in membrane lipid peroxidation as well as with observed reduction of root length under O3 stress.  相似文献   

2.
In the terrestrial bromeliad, Puya floccosa, a value of carbon isotopic composition (δ13C) of −22‰ has been previously reported, suggesting the operation of weak and/or intermediate (C3-CAM) crassulacean acid metabolism (CAM). In order to characterize the operation of CAM in P. floccosa and its possible induction by drought, plants were grown in Caracas and subjected to four independent drought cycles. Additionally, since plants of this species grow in Venezuela in a large range of elevations, leaf samples were collected at elevations ranging from 725 to 2,100 m a.s.l. in the Venezuelan Andes and the Coastal Range, in order to evaluate the effect of elevation on CAM performance. Even though nocturnal acid accumulation occurred in both watered and droughted plants, mean ΔH+ was higher in droughted than watered plants [ΔH+ = 60.17.5 and 22.9 ± 5.2 μmol g−1(FM), respectively]. The majority of plants from all the natural populations sampled had low values of δ13C not differing significantly from those of C3 plants collected as standards and δ13C did not change with elevation. We conclude that P. floccosa is capable of a weak CAM activity, with a large variability among populations and drought experiments probably due to local and temporal differences in microclimatic variables and drought stress; elevation bears no influence on values of δ13C in this species.  相似文献   

3.
The significance of freshwater systems in global manganese cycles is well appreciated. Yet, the polar systems, which encompass the largest freshwater repository in the world, have been least studied for their role in manganese cycling. Here, we present results from a study that was conducted in the brackish water lakes in the Larsemann Hills region (east Antarctica). The rate of in situ manganese oxidation ranged from 0.04 to 3.96 ppb day−1. These lakes harbor numerous manganese-oxidizing bacteria (105 to 106 CFU l−1), predominantly belonging to genera Shewanella, Pseudomonas and an unclassified genus in the family Oxalobacteriaceae. Experiments were conducted with representatives of predominant genera to understand their contribution to Mn cycling and also to assess their metabolic capabilities in the presence of this metal. In general, the total and respiring cell counts were stimulated to a maximum when the growth medium was amended with 10 mM manganese. The addition of manganese promoted the use of d-mannitol, maltose, etc., but inhibited the use of maltotriose, l-serine and glycyl l-glutamic acid. The bacterial isolates were able to catalyze both the redox reactions in manganese cycling. In vitro manganese oxidation rates ranged from 3 to 147 ppb day−1, while manganese reduction rates ranged from 35 to 213 ppb day−1. It was also observed that the maximum stimulation of manganese oxidation occurred in the presence of cobalt (81 ± 57 ppb day−1), rather than iron (37 ± 16 ppb day−1) and nickel (40 ± 47 ppb day−1). Our studies suggest that cobalt could have a more profound role in manganese oxidation, while nickel promoted manganese reduction in polar aquatic systems.  相似文献   

4.
Carbon isotope ratios (δ13C) were studied in evergreen and deciduous forest ecosystems in semi-arid Utah (Pinus contorta, Populus tremuloides, Acer negundo and Acer grandidentatum). Measurements were taken in four to five stands of each forest ecosystem differing in overstory leaf area index (LAI) during two consecutive growing seasons. The δ13Cleaf (and carbon isotope discrimination) of understory vegetation in the evergreen stands (LAI 1.5–2.2) did not differ among canopies with increasing LAI, whereas understory in the deciduous stands (LAI 1.5–4.5) exhibited strongly decreasing δ13Cleaf values (increasing carbon isotope discrimination) with increasing LAI. The δ13C values of needles and leaves at the top of the canopy were relatively constant over the entire LAI range, indicating no change in intrinsic water-use efficiency with overstory LAI. In all canopies, δ13Cleaf decreased with decreasing height above the forest floor, primarily due to physiological changes affecting c i/c a (> 60%) and to a minor extent due to δ13C of canopy air (< 40%). This intra-canopy depletion of δ13Cleaf was lowest in the open stand (1‰) and greatest in the denser stands (4.5‰). Although overstory δ13Cleaf did not change with canopy LAI, δ13C of soil organic carbon increased with increasing LAI in Pinus contorta and Populus tremuloides ecosystems. In addition, δ13C of decomposing organic carbon became increasingly enriched over time (by 1.7–2.9‰) for all deciduous and evergreen dry temperate forests. The δ13Ccanopy of CO2 in canopy air varied temporally and spatially in all forest stands. Vertical canopy gradients of δ13Ccanopy, and [CO2]canopy were larger in the deciduous Populus tremuloides than in the evergreen Pinu contorta stands of similar LAI. In a very wet and cool year, ecosystem discrimination (Δe) was similar for both deciduous Populus tremulodies (18.0 ± 0.7‰) and evergreen Pinus contorta (18.3 ± 0.9‰) stands. Gradients of δ13Ccanopy and [CO2]canopy were larger in denser Acer spp. stands than those in the open stand. However, 13C enrichment above and photosynthetic draw-down of [CO2]canopy below tropospheric baseline values were larger in the open than in the dense stands, due to the presence of a vigorous understory vegetation. Seasonal patterns of the relationship δ13Ccanopy versus 1/[CO2]canopy were strongly influenced by precipitation and air temperature during the growing season. Estimates of Δe for Acer spp. did not show a significant effect of stand structure, and averaged 16.8 ± 0.5‰ in 1933 and 17.4 ± 0.7‰ in 1994. However, Δe varied seasonally with small fluctuations for the open stand (2‰), but more pronounced changes for the dense stand (5‰). Received: 15 April 1996 / Accepted: 19 October 1996  相似文献   

5.
 To investigate the effects of ozone exposure and soil drought, singly and in combination, on gas exchange, antioxidant contents and pigments in current-year needles of Norway spruce [Picea abies (L.) Karst.] 4-year-old seedlings were fumigated in growth chambers with either charcoal-filtered air or with 100 nl l–1 ozone for 106 days. After 3 weeks a 20% reduction in gas exchange was observed in ozone-treated seedlings. However, no further decrease occurred in spite of continued ozone exposure. Whole needle ascorbate and apoplastic ascorbate increased until the end of the experiment and contents were 62% and 82%, respectively, higher than in ozone-free controls. This increase in ascorbate might have protected net photosynthesis from further decline. Ozone pre-treated plants and ozone-free controls were subjected to soil drought for 38 days which caused stomatal narrowing. Thereby ozone uptake was reduced when compared to well watered seedlings. At the end of the experiment drought alone, and even more in combination with ozone, had also caused an increase in ascorbate. Glutathione increased only in drought-stressed seedlings. The redox states of the ascorbate and the glutathione pools were not affected by any treatment. Superoxide dismutase activity declined under both stresses but was most reduced by ozone alone. While chlorophyll and neoxanthin contents remained unchanged, carotenes were significantly decreased upon drought. The combination of O3 and drought induced increased lutein contents, an increased pool size of the xanthophyll cycle as well as an increased epoxidation status of the xanthophyll cycle. These results suggest that spruce needles seem to be able to acclimate to ozone stress but also to drought stress by increasing their ascorbate pools and protecting pigments. Received: 15 September 1997 / Accepted: 24 March 1998  相似文献   

6.
Canopy CO2 concentrations in a tropical rainforest in French Guiana were measured continuously for 5 days during the 1994 dry season and the 1995 wet season. Carbon dioxide concentrations ([CO2]) throughout the canopy (0.02–38 m) showed a distinct daily pattern, were well-stratified and decreased with increasing height into the canopy. During both seasons, daytime [CO2] in the upper and middle canopy decreased on average 7–10 μmol mol−1 below tropospheric baseline values measured at Barbados. Within the main part of the canopy (≥ 0.7 m), [CO2] did not differ between the wet and dry seasons. In contrast, [CO2] below 0.7 m were generally higher during the dry season, resulting in larger [CO2] gradients. Supporting this observation, soil CO2 efflux was on average higher during the dry season than during the wet season, either due to diffusive limitations and/or to oxygen deficiency of root and microbial respiration. Soil respiration rates decreased by 40% after strong rain events, resulting in a rapid decrease in canopy [CO2] immediately above the forest floor of about 50␣μmol mol−1. Temporal and spatial variations in [CO2]canopy were reflected in changes of δ13Ccanopy and δ18Ocanopy values. Tight relationships were observed between δ13C and δ18O of canopy CO2 during both seasons (r 2 > 0.86). The most depleted δ13Ccanopy and δ18Ocanopy values were measured immediately above the forest floor (δ13C = −16.4‰; δ18O = 39.1‰ SMOW). Gradients in the isotope ratios of CO2 between the top of the canopy and the forest floor ranged between 2.0‰ and 6.3‰ for δ13C, and between 1.0‰ and 3.5‰ for δ18O. The δ13Cleaf and calculated c i/c a of foliage at three different positions were similar for the dry and wet seasons indicating that the canopy maintained a constant ratio of photosynthesis to stomatal conductance. About 20% of the differences in δ13Cleaf within the canopy was accounted for by source air effects, the remaining 80% must be due to changes in c i/c a. Plotting 1/[CO2] vs. the corresponding δ13C ratios resulted in very tight, linear relationships (r 2 = 0.99), with no significant differences between the two seasons, suggesting negligible seasonal variability in turbulent mixing relative to ecosystem gas exchange. The intercepts of these relationships that should be indicative of the δ13C of respired sources were close to the measured δ13C of soil respired CO2 and to the δ13C of litter and soil organic matter. Estimates of carbon isotope discrimination of the entire ecosystem, Δe, were calculated as 20.3‰ during the dry season and as 20.5‰ during the wet season. Received: 3 March 1996 / Accepted: 19 October 1996  相似文献   

7.
Oxygen (O) and sulfur (S) isotope systematics in bog water sulfates were determined for six Sphagnum dominated wetlands located in the British Isles and the Czech Republic, Central Europe. Comparison of a polluted and unpolluted site showed that 4 times higher atmospheric S inputs led to 3 times higher bog water sulfate concentrations and substrate S concentrations, 3 times increased ranges of substrate S concentrations, and 3 times increased ranges of δ34S values. Sites with elevated atmospheric S inputs exhibited greater geochemical variability in wetland S species. Sulfate O–S isotope composition of bog pore water at a depth of 40 cm below surface differed from that of surface bog water, indicating that dissimilatory bacterial sulfate reduction, a process known to discriminate against the heavier isotopes 18O and 34S, occurred in surface peat layers. While bacterial sulfate reduction remained to be one of the main isotope-selective processes for sulfate in peat, it could not fully explain the O–S isotope systematics of peat waters. The ‘residual’ sulfate was not simultaneously enriched in the heavier isotopes 18O and 34S. Mixing of residual sulfate following bacterial sulfate reduction with the product of S2− reoxidation, cleavage of esters, and isotope exchange reactions may have contributed to the decoupling of the δ34Sso4 and δ18Sso4 values. Large within-site differences in δ18Sso4 and δ34Sso4 (up to 13 and 15‰, respectively) indicated little communication between the 0 and 40 cm peat depth at some sites. Extremely high δ18Sso4 and δ34Sso4 values found in several peat bog water samples from Connemara (Ireland), Thorne Moors (England) and Ocean (Czech Republic) were not seen in streams draining the wetlands. Direct runoff of atmogenic sulfate constituted a significant portion of the bog outflow. At the wetland scale, zones of dissimilatory bacterial sulfate reduction form pockets whose lateral hydrological fluxes are small.  相似文献   

8.
The root growth rate in barley (Hordeum vulgare L.) seedlings was measured in parallel with temporal changes in longitudinal (δl) and transverse (δD/D) cell-wall extensibilities and membrane hydraulic conductivity (L p) in the root extension zone. The root growth rate and biophysical parameters examined were sensitive to UV-B irradiation of shoots or roots and to excessive content of ammonium, glutamate, or nickel in the nutrient medium. The root responses to the above treatments were compared with the effects of abscisic acid, salicylate, hydrogen peroxide, diethylstilbestrol, α-naphthyl acetate, oryzalin, and ionomycin. The progressive reduction of root growth under the action of various stressors was accompanied by typical temporal patterns of the growth zone parameters: the δl extensibility declined monotonically, while δD/D and L p changed nonmonotonically, exhibiting the reversion from the initial decrease to the eventual increase above the control values. The decline of δl indicated that the root growth suppression was mainly due to changes in cell-wall mechanical properties caused probably by disorganization of cortical microtubules. It was found that the decline in δD/D and L p was caused primarily by the appearance of oxidative stress, disorders in cytoplasmic H+ homeostasis in root cells, and the consequent transient activation of the plasmalemmal H+-pump. Conversely, the increase in δD/D and L p upon the abrupt retardation of root growth was presumably caused by the increase in cytoplasmic Ca2+ content, disassembling of cortical microtubules, and by partial inhibition of the plasmalemmal H+-pump. The reversion of δD/D and L p changes upon progressive reduction of root growth can be used as an indicator to distinguish moderate and severe stress conditions in the root growth zone. Furthermore, this reversion indicates the increasing disbalance in the homeostasis of reactive oxygen species, cytosolic Ca2+, and cytosolic H+ upon severe stress.  相似文献   

9.
The stable C isotope composition (δ13C) of CO2 respired by trunks was examined in a mature temperate deciduous oak forest (Quercus petraea). Month-to-month, day-to-day and diurnal, measurements were made to determine the range of variations at different temporal scales. Trunk growth and respiration rates were assessed. Phloem tissue was sampled and was analysed for total organic matter and soluble sugar 13C composition. The CO2 respired by trunk was always enriched in 13C relative to the total organic matter, sometimes by as much as 5‰. The δ13C of respired CO2 exhibited a large seasonal variation (3.3‰), with a relative maximum at the beginning of the growth period. The lowest values occurred in summer when the respiration rates were maximal. After the cessation of radial trunk growth, the respired CO2 δ13C values showed a progressive increase, which was linked to a parallel increase in soluble sugar content in the phloem tissue (R = 0.95; P < 0.01). At the same time, the respiration rates declined. This limited use of the substrate pool might allow the discrimination during respiration to be more strongly expressed. The late-season increase in CO2 δ13C might also be linked to a shift from recently assimilated C to reserves. At the seasonal scale, CO2 δ13C was negatively correlated with air temperature (R = −0.80; P < 0.01). The diurnal variation sometimes reached 3‰, but the range and the pattern depended on the period within the growing season. Contrary to expectations, diurnal variations were maximal in winter and spring when the leaves were missing or not totally functional. By contrast to the seasonal scale, these diurnal variations were not related to air temperature or sugar content. Our study shows that seasonal and diurnal variations of respired 13C exhibited a similar large range but were probably explained by different mechanisms.  相似文献   

10.
Discrimination between12C and13C by marine plants   总被引:2,自引:0,他引:2  
Summary The natural abundance13C/12C ratios (as δ13C) of organic matter of marine macroalgae from Fife and Angus (East Scotland) were measured for comparison with the species' ability to use CO2 and HCO 3 - for photosynthesis, as deduced from previously published pH-drift measurements. There was a clear difference in δ13C values for species able or unable to use HCO 3 - . Six species of Chlorophyta, 12 species of Phaeophyta and 8 species of Rhodophyta that the pH-drift data suggested could use HCO 3 - had δ13C values in the range -8.81‰ to -22.55‰. A further 6 species of Rhodophyta which the pH-drift data suggested could only use CO2 had δ13C values in the range -29.90‰ to-34.51‰. One of these six species (Lomentaria articulata) is intertidal; the other five are subtidal and so have no access to atmospheric CO2 to complicate the analysis. For these species, calculations based on the measured δ13C of the algae, the δ13C of CO2 in seawater, and the known13C/12C discrimination of CO2 diffusion and RUBISCO carboxylation suggest that only 15–21% of the limitation to photosynthesisin situ results from CO2 diffusion from the bulk medium to the plastids; the remaining 79–85% is associated with carboxylation reactions (and, via feedback effects, down-stream processes). This analysis has been extended for one of these five species,Delesseria sanguinea, by incorporating data onin situ specific growth rates, respiratory rates measured in the laboratory, and applying Fick's law of diffusion to calculate a boundary layer thickness of 17–24 μm. This value is reasonable for aDelesseria sanguinea frondin situ. For HCO 3 - -using marine macroalgae the range of δ13C values measured can be accommodated by a CO2 efflux from algal cells which range from 0.306 of the gross HCO 3 - influx forEnteromorpha intestinalis13C=-8.81‰) in a rockpool to 0.787 forChondrus crispus13C=-22.55‰). The relatively high computed CO2 efflux for those HCO 3 - -users with the more negative δ13C values implies a relatively high photon cost of C assimilation; the observed photon costs can be accommodated by assuming coupled, energy-independent inorganic carbon influx and efflux. The observed δ13C values are also interpreted in terms of water movement regimes and obtaining CO2 from the atmosphere. Published δ13C values for freshwater macrophytes were compared with the ability of the species to use CO2 and HCO 3 - and again there was an apparent separation in δ13C values for these two groups. δ13C values obtained for marine macroalgae for which no pH-drift data are available permit predictions, as yet untested, as to whether they use predominantly CO2 or HCO 3 -  相似文献   

11.
 Our objective was to evaluate the relative importance of gradients in light intensity and the isotopic composition of atmospheric CO2 for variation in leaf carbon isotope ratios within a Pinus resinosa forest. In addition, we measured photosynthetic gas exchange and leaf carbon isotope ratios on four understory species (Dryopteris carthusiana, Epipactus helleborine, Hieracium floribundum, Rhamnus frangula), in order to estimate the consequence of the variation in the understory light microclimate for carbon gain in these plants. During midday, CO2 concentration was relatively constant at vertical positions ranging from 15 m to 3 m above ground. Only at positions below 3 m was CO2 concentration significantly elevated above that measured at 15 m. Based on the strong linear relationship between changes in CO2 concentration and δ13C values for air samples collected during a diurnal cycle, we calculated the expected vertical profile for the carbon isotope ratio of atmospheric CO2 within the forest. These calculations indicated that leaves at 3 m height and above were exposed to CO2 of approximately the same isotopic composition during daylight periods. There was no significant difference between the daily mean δ13C values at 15 m (–7.77‰) and 3 m (–7.89‰), but atmospheric CO2 was significantly depleted in 13C closer to the ground surface, with daily average δ13C values of –8.85‰ at 5 cm above ground. The light intensity gradient in the forest was substantial, with average photosynthetically active radiation (PAR) on the forest floor approximately 6% of that received at the top of the canopy. In contrast, there were only minor changes in air temperature, and so it is likely that the leaf-air vapour pressure difference was relatively constant from the top of the canopy to the forest floor. For red pine and elm tree samples, there was a significant correlation between leaf δ13C value and the height at which the leaf sample was collected. Leaf tissue sampled near the forest floor, on average, had lower δ13C values than samples collected near the top of the canopy. We suggest that the average light intensity gradient through the canopy was the major factor influencing vertical changes in tree leaf δ13C values. In addition, there was a wide range of variation (greater than 4‰) among the four understory plant species for average leaf δ13C values. Measurements of leaf gas exchange, under natural light conditions and with supplemental light, were used to estimate the influence of the light microclimate on the observed variation in leaf carbon isotope ratios in the understory plants. Our data suggest that one species, Epipactus helleborine, gained a substantial fraction of carbon during sunflecks. Received: 21 March 1996 / Accepted: 13 August 1996  相似文献   

12.
The 15N ratio of nitrogen oxides (NOx) emitted from vehicles, measured in the air adjacent to a highway in the Swiss Middle Land, was very high [δ15N(NO2) = +5.7‰]. This high 15N abundance was used to estimate long-term NO2 dry deposition into a forest ecosystem by measuring δ15N in the needles and the soil of potted and autochthonous spruce trees [Picea abies (L.) Karst] exposed to NO2 in a transect orthogonal to the highway. δ15N in the current-year needles of potted trees was 2.0‰ higher than that of the control after 4 months of exposure close to the highway, suggesting a 25% contribution to the N-nutrition of these needles. Needle fall into the pots was prevented by grids placed above the soil, while the continuous decomposition of needle litter below the autochthonous trees over previous years has increased δ15N values in the soil, resulting in parallel gradients of δ15N in soil and needles with distance from the highway. Estimates of NO2 uptake into needles obtained from the δ15N data were significantly correlated with the inputs calculated with a shoot gas exchange model based on a parameterisation widely used in deposition modelling. Therefore, we provide an indication of estimated N inputs to forest ecosystems via dry deposition of NO2 at the receptor level under field conditions. Received: 7 November 1997 / Accepted: 16 September 1998  相似文献   

13.
Bai E  Boutton TW  Liu F  Wu XB  Archer SR 《Oecologia》2008,156(3):479-489
δ13C values of C3 plants are indicators of plant carbon–water relations that integrate plant responses to environmental conditions. However, few studies have quantified spatial variation in plant δ13C at the landscape scale. We determined variation in leaf δ13C, leaf nitrogen per leaf area (Narea), and specific leaf area (SLA) in April and August 2005 for all individuals of three common woody species within a 308 × 12-m belt transect spanning an upland–lowland topoedaphic gradient in a subtropical savanna in southern Texas. Clay content, available soil moisture, and soil total N were all negatively correlated with elevation. The δ13C values of Prosopis glandulosa (deciduous N2-fixing tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) leaves increased 1–4‰ with decreasing elevation, with the δ13C value of P. glandulosa leaves being 1–3‰ higher than those of the two shrub species. Contrary to theory and results from previous studies, δ13C values were highest where soil water was most available, suggesting that some other variable was overriding or interacting with water availability. Leaf Narea was positively correlated with leaf δ13C of all species (p < 0.01) and appeared to exert the strongest control over δ13C along this topoedaphic gradient. Since leaf Narea is positively related to photosynthetic capacity, plants with high leaf Narea are likely to have low p I/p a ratios and therefore higher δ13C values, assuming stomatal conductance is constant. Specific leaf area was not correlated significantly with leaf δ13C. Following a progressive growing season drought in July/August, leaf δ13C decreased. The lower δ13C in August may reflect the accumulation of 13C-depleted epicuticular leaf wax. We suggest control of leaf δ13C along this topoedaphic gradient is mediated by leaf Narea rather than by stomatal conductance limitations associated with water availability.  相似文献   

14.
Weber A  Karst J  Gilbert B  Kimmins JP 《Oecologia》2005,143(1):148-156
Increased use of stable isotope analysis to examine food-web dynamics, migration, transfer of nutrients, and behavior will likely result in expansion of stable isotope studies investigating human-induced global changes. Recent elevation of atmospheric CO2 concentration, related primarily to fossil fuel combustion, has reduced atmospheric CO2 δ13C (13C/12C), and this change in isotopic baseline has, in turn, reduced plant and animal tissue δ13C of terrestrial and aquatic organisms. Such depletion in CO2 δ13C and its effects on tissue δ13C may introduce bias into δ13C investigations, and if this variation is not controlled, may confound interpretation of results obtained from tissue samples collected over a temporal span. To control for this source of variation, we used a high-precision record of atmospheric CO2 δ13C from ice cores and direct atmospheric measurements to model modern change in CO2 δ13C. From this model, we estimated a correction factor that controls for atmospheric change; this correction reduces bias associated with changes in atmospheric isotopic baseline and facilitates comparison of tissue δ13C collected over multiple years. To exemplify the importance of accounting for atmospheric CO2 δ13C depletion, we applied the correction to a dataset of collagen δ13C obtained from mountain lion (Puma concolor) bone samples collected in California between 1893 and 1995. Before correction, in three of four ecoregions collagen δ13C decreased significantly concurrent with depletion of atmospheric CO2 δ13C (n ≥ 32, P ≤ 0.01). Application of the correction to collagen δ13C data removed trends from regions demonstrating significant declines, and measurement error associated with the correction did not add substantial variation to adjusted estimates. Controlling for long-term atmospheric variation and correcting tissue samples for changes in isotopic baseline facilitate analysis of samples that span a large temporal range.  相似文献   

15.
A field growth chamber study was conducted to determine the effects of ozone and simulated acid rain (SAR) on soil heavy metals. Loblolly pine (Pinus taeda L.), grown in open-top chambers, was exposed to three concentrations of ozone (charcoal filtered air with 0.026 µL O3 L-1, and two non-filtered treatments in which ozone concentrations were 0.074 µL L-1 and 0.147 µL L-1, respectively) and two levels of SAR (pH 3.5 and 5.2). Ozone was applied for 12 h d-1 for 9 months and acid rain deposition was 125 mm event-1. After 9 months exposure, soil pH, organic matter and DTPA-extractable heavy metals (Cd, Pb, Zn, Mn, Fe, Cu) were determined on soil samples collected from exposed chambers at two depths (0–15 cm and 15–30 cm). Simulated acid rain decreased the original soil pH. The concentrations of Cd, Pb and Mn at SAR pH 3.5 were significantly higher than at SAR pH 5.2. Ozone did not affect Zn, Fe and Cu, but a significant interaction between pH and O3 on Mn, Pb and Cd was observed. Due to the poor drainage capacity of this soil, leaching of heavy metals was not observed.  相似文献   

16.
In barley (Hordeum vulgare L.) seedlings, the rate of root growth, osmotic pressure (Π), hydraulic conductance (L p), and longitudinal (δl) and transverse (δD/D) extensibility of root cells were measured. The seedlings were grown on Knop solution with nitrate or without nitrate with addition of 5–10 mM NH4+ or 0.5–1.0 mM glutamate. Root growth retardation on the 1st–4th days of exposure to NH4+ was determined by a decrease in δl in the zone of elongation, whereas root thickening was evidently related to an increase in Π. Biphasic dynamics of δl in the presence of NH4+ was imitated by medium acidification near the root surface to pH 3.7, which confirms a conclusion, we have done earlier, about a non-monotonous pH-dependence of longitudinal extensibility. Root growth retardation during the first day of exposure to Glu was also determined by a decrease in the δl, which was, however, accompanied by an increase in the δD/D and L p. Fast Glu-induced changes of measured root parameters were imitated by root exposure to oryzalin, ionomycin, and inhibitors of the H+-pump. It was supposed that a decrease in δl in the presence of NH4+ and Glu was related to cortical microtubule disorganization with the involvement of cytosolic calcium Cacyt2+. A decrease in the δD/D and L p in the presence of NH4+ was related to apoplast acidification and a high activity of the plasmalemmal H+-pump. An increase in the δD/D and L p in the presence of Glu indicates the inhibition of the plasmalemmal H+-pump. On the 2nd–4th days of exposure to Glu, root growth ceased, as distinct from treatment with NH4+. This complete root growth inhibition by Glu was possibly related to a rapid uptake of Ca2+ through Glu-sensitive Ca2+-channels, Ca2+-dependent inhibition of the plasmalemmal H+-pump, and a decrease in mitotic activity.  相似文献   

17.
The C isotope composition of leaf dark-respired CO213Cl) integrates short-term metabolic responses to environmental change and is potentially recorded in the isotopic signature of ecosystem-level respiration. Species differences in photosynthetic pathway, resource acquisition and allocation patterns, and associated isotopic fractionations at metabolic branch points can influence δ13Cl, and differences are likely to be modified by seasonal variation in drought intensity. We measured δ13Cl in two deep-rooted C3 trees (Prosopis velutina and Celtis reticulata), and two relatively shallow-rooted perennial herbs (a C3 dicot Viguiera dentata and a C4 grass Sporobolus wrightii) in a floodplain savanna ecosystem in southeastern Arizona, USA during the dry pre-monsoon and wet monsoon seasons. δ13Cl decreased during the nighttime and reached minimum values at pre-dawn in all species. The magnitude of nocturnal shift in δ13Cl differed among species and between pre-monsoon and monsoon seasons. During the pre-monsoon season, the magnitude of the nocturnal shift in δ13Cl in the deep-rooted C3 trees P. velutina (2.8 ± 0.4‰) and C. reticulata (2.9 ± 0.2‰) was greater than in the C3 herb V. dentata (1.8 ± 0.4‰) and C4 grass S. wrightii (2.2 ± 0.4‰). The nocturnal shift in δ13Cl in V. dentata and S. wrightii increased to 3.2 ± 0.1‰ and 4.6 ± 0.6‰, respectively, during the monsoon season, but in C3 trees did not change significantly from pre-monsoon values. Cumulative daytime net CO2 uptake was positively correlated with the magnitude of the nocturnal decline in δ13Cl across all species, suggesting that nocturnal δ13Cl may be controlled by 13C/12C fractionations associated with C substrate availability and C metabolite partitioning. Nocturnal patterns of δ13Cl in dominant plant species in the semiarid savanna apparently have predictable responses to seasonal changes in water availability, which is important for interpreting and modeling the C isotope signature of ecosystem-respired CO2.  相似文献   

18.
We used a P enrichment gradient in the Everglades to investigate patterns of the stable N isotopic ratio (δ15N) in peat profiles as an indicator of historic eutrophication of this wetland. We also tested two hypotheses to explain the effects of P on increased δ15N of organic matter including: (1) increased N mineralization/N loss, and (2) reduced isotopic discrimination during macrophyte N uptake. Spatial patterns of δ15N in surface litter and soil (0–10 cm) mimic those of the aboveground macrophytes (Typha domingensis Pers. and Cladium jamaicense Crantz). Peat profiles also show increased δ15N in the peat accumulated in areas near the historic P discharges since the early 1960s. The increased δ15N of bulk peat correlated well with both measured increases in soil total P and the historical beginning of nutrient discharges into this wetland. In 15-day bottle incubations of soil, added P had no effect on the δ15N of NH4+ and significantly increased the δ15N of water-extractable organic N. Measurements of surface soils collected during a field mesocosm experiment also revealed no significant effect of P on δ15N even after 5 years of P addition. In contrast, δ15N of leaf and root tissues of hydroponically grown Typha and Cladium were shown to increase up to 12‰ when grown at elevated levels of P and fixed levels of N (as NH4+). The magnitude of changes in δ15N resulting from altered discrimination during N uptake is significant compared with other mechanisms affecting plant δ15N, and suggests that this may be the dominant mechanism affecting δ15N of organic matter following P enrichment. The results of this study have implications for the interpretation of δ15N as an indicator of shifts in relative N limitation in wetland ecosystems, and also stress the importance of experimental validation in interpreting δ15N patterns.  相似文献   

19.
Variation in the stable N isotope ratio (δ15N) of plants and soils often reflects the influence of environment on the N cycle. We measured leaf δ15N and N concentration ([N]) on all individuals of Prosopis glandulosa (deciduous tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) present within a belt transect 308 m long × 12 m wide in a subtropical savanna ecosystem in southern Texas, USA in April and August 2005. Soil texture, gravimetric water content (GWC), total N and δ15N were also measured along the transect. At the landscape scale, leaf δ15N was negatively related to elevation for all the three species along this topoedaphic sequence. Changes in soil δ15N, total N, and GWC appeared to contribute to this spatial pattern of leaf δ15N. In lower portions of the landscape, greater soil N availability and GWC are associated with relatively high rates of both N mineralization and nitrification. Both soil δ15N and leaf [N] were positively correlated with leaf δ15N of non-N2 fixing plants. Leaf δ15N of P. glandulosa, an N2-fixing legume, did not correlate with leaf [N]; the δ15N of P. glandulosa’s leaves were closer to atmospheric N2 and significantly lower than those of C. hookeri and Z. fagara. Additionally, at smaller spatial scales, a proximity index (which reflected the density and distance of surrounding P. glandulosa trees) was negatively correlated with leaf δ15N of C. hookeri and Z. fagara, indicating the N2-fixing P. glandulosa may be important to the N nutrition of nearby non-N2-fixing species. Our results indicate plant 15N natural abundance can reflect the extent of N retention and help us better understand N dynamics and plant-soil interactions at ecosystem and landscape scales.  相似文献   

20.
The size of seeds and the microsite of seed dispersal may affect the early establishment of seedlings through different physiological processes. Here, we examined the effects of seed size and light availability on seedling growth and survival, and whether such effects were mediated by water use efficiency. Acorns of Quercus petraea and the more drought-tolerant Quercus pyrenaica were sowed within and around a tree canopy gap in a sub-Mediterranean forest stand. We monitored seedling emergence and measured predawn leaf water potential (Ψpd), leaf nitrogen per unit area (Na), leaf mass per area, leaf carbon isotope composition (δ13C) and plant growth at the end of the first summer. Survival was measured on the next year. Path analysis revealed a consistent pattern in both species of higher δ13C as Ψpd decreased and higher δ13C as seedlings emerged later in the season, indicating an increase in 13C as the growing season is shorter and drier. There was a direct positive effect of seed size on δ13C in Q. petraea that was absent in Q. pyrenaica. Leaf δ13C had no effect on growth but the probability of surviving until the second year was higher for those seedlings of Q. pyrenaica that had lower δ13C on the first year. In conclusion, leaf δ13C is affected by seed size, seedling emergence time and the availability of light and water, however, leaf δ13C is irrelevant for first year growth, which is directly dependent on the amount of seed reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号