首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Characteristics of the periphyton associated with the submerged macrophytesCeratophyllum, Elodea andMyriophyllum were similar. During the whole growing season the periphyton dry weight often exceeded that of the macrophyte. The periphyton contained much detritus and carbonates, and the epiphytic algae were accompanied by large numbers of bacteria, protozoans and rotifers. Attached algae were scarce, but motile diatoms were abundant throughout the year. Thus the periphyton showed the features of a benthic community. Consequently, the role of the macrophytes would be rather the extension of the bottom area instead of actively promoting the growth of microorganisms by providing minerals or excreting organic substances.During the peak of the littoral development the epiphytic algae expressed a high photosynthetic capacity, while at the same time the periphyton dark respiration was intense. After measurements of the depth distribution of biomass and light in aCeratophyllum stand, it was concluded that the contribution of the epiphytic algae to the production in the lake's littoral zone was substantial. Furthermore, on a daily basis, the total association of macrophytes and periphyton would be oxygen consuming due to heterotrophic activity, notably mineralization of the detritus.  相似文献   

2.
Periphyton production and grazing by chironomids in Alderfen Broad, Norfolk   总被引:9,自引:0,他引:9  
The standing crops of periphyton were measured on dead Typha stems and glass rods in a small, eutrophic lake from February to November. Chironomid larvae were also counted on the Typha stems; very few were present on the glass rods. The standing crop of periphyton on the Typha stems fell from 1.8 mg cm−2 in early April to nearly zero in November. On the glass rods the periphyton reached a peak of 1.93 mg cm−2 in late May and 1.94 mg cm−2 in July, thereafter falling to a steady level of 1.6 mg cm−2. The population of chironomids showed a peak in late May and then declined. The alimentary canals of chironomids collected fromTyphastems contained diatoms and filamentous algae so it appeared that chironomids were grazing down the periphyton. Chironomids moved on to theTyphastems in spring and returned to the mud in autumn. The periphyton is a richer source of essential amino acids than the mud, so that a movement from mud to reedstems in spring may increase the rates of growth and metamorphosis of the larvae. A crude production estimate gave a net primary production of periphyton of 170 mg dry wt m−2 day−1; the periphyton, however, would have contained bacteria and many small animals as well as algae.  相似文献   

3.
Energy flux to a large, deep, salt lake from phytoplankton, periphyton and macrophyte primary production as well as fluvial transport and wind-transported terrestrial vegetation and dust were quantified. Average areal phytoplankton net photosynthesis was 511 mg C m−2 d−1. Highest rates were during water-blooms of the bluegreen alga, Nodularia spumigena. Although areal daily net photosynthesis by periphyton in Pyramid Lake was comparable to other salt lakes, annual carbon influx by periphyton was small due to the lake's graben morphology and moderate euphotic depth (mean, 11.9 m). Macrophytes were uncommon and, therefore a minor source of energy. Truckee River is the only major fluvial discharge to Pyramid Lake and dissolved organic carbon was the principal organic carbon fraction in river water. Large upstream water diversions coupled with several drought years resulted in an average fluvial organic carbon load of only 7.3 g Cm−2y−1 or 4% of median phytoplankton net photosynthesis. Tumbleweeds were the most common terrestrial plant material observed in Pyramid Lake comprising a maximum projected importance of 6% of total annual carbon input. Windborne dust represented < .1% of annual carbon input. Phytoplankton primary production is the predominant energy source to Pyramid Lake, accounting for over 80% of annual carbon influx. The relative magnitude of autochthonous and allochthonous vectors to the annual carbon budget of this desert salt lake are comparable to those of the few other large lakes for which detailed energy input budgets have been calculated.  相似文献   

4.
Tang  Yali  Zhou  Daiying  Su  Ling  Liu  Zhengwen  Zhang  Xiufeng  Dumont  Henri J. 《Aquatic Ecology》2021,55(2):579-588

Submerged macrophytes are regarded as being hardly assimilated by zooplankton for their lack of essential nutrients such as polyunsaturated fatty acids (PUFAs) thus serve as poor quality food, contrary to field stable isotopic investigations with observed macrophyte carbon contributions to zooplankton. However, periphyton growing on them produces the PUFAs and is thus a nutrient supplement. We hypothesize that with this supplement, zooplankton can be supported by macrophyte carbon. To test this hypothesis, we fed zooplankton with (1) 13C enriched Vallisneria natans detritus, (2) periphyton and (3) a mix of the two. We compared growth and reproduction of zooplankton under these three food treatments and calculated zooplankton assimilation of macrophyte carbon when fed a mixed diet, using a stable isotope-mixing model. The fatty acid profile of the two carbon resources was also analyzed. Our results demonstrate that Daphnia magna can grow and reproduce well, and use V. natans carbon when a supplement of periphyton is available.

  相似文献   

5.
Summary We began this experiment to test specific hypotheses regarding direct and indirect effects of fish predation on the littoral macroinvertebrate community of Bays Mountain Lake, Tennessee. We used 24 m2 enclosures in which we manipulated the presence and absence of large redear sunfish (Lepomis microlophus>150 mm SL), and small sunfish (L. macrochirus and L. microlophus <50 mm SL) over a 16-mo period. Here we report on effects of fish predation on gastropod grazers that appear to cascade to periphyton and macrophytes.Both large redear sunfish and small sunfish maintained low snail biomass, but snails in fish-free controls increased significantly during the first 2-mo of the experiment. By late summer of the first year of the experiment, the difference in biomass between enclosures with and without fish had increased dramatically (>10×). Midway through the second summer of the experiment, we noted apparent differences in the abundance of periphyton between enclosures containing fish and those that did not. We also noted differences in the macrophyte distribution among enclosures. To document these responses, we estimated periphyton cover, biovolume and cell size frequencies as well as macrophyte distributions among enclosures at the end of the experiment. When fish were absent, periphyton percent cover was significantly reduced compared to when fish were present. Periphyton cell-size distributions in enclosures without fish were skewed toward small cells (only 12% were greater than 200 m3), which is consistent with intense snail grazing. The macrophyte Najas flexilis had more than 60 x higher biomass in the fish-free enclosures than in enclosures containing fish; Potamogeton diversifolius was found only in fish-free enclosures. These results suggest a chain of strong interactions (i.e. from fish to snails to periphyton to macrophytes) that may be important in lake littoral systems. This contrasts sharply with earlier predictions based on cascading trophic interactions that propose that fish predation on snails would enhance macrophyte biomass.  相似文献   

6.
Littoral invertebrate communities (meio- and macrobenthos and zooplankton) were studied in seven types of macrophyte associations commonly encountered in Lake Ladoga: in reed (Phragmites) beds on sand, soft and hard bottoms, in associations with the prevalence of Potamogeton spp., Carex spp., and Equisetum fluviatile, and in diverse vegetation stands with e.g. Polygonum amphibium, Cicuta virosa, Typha latifolia and Eleocharis acicularis. Some of the studied habitats were affected by sewage pollution, others were in comparatively undisturbed areas. Statistically significant differences between invertebrate communities in the different macrophyte associations were found. In stepwise multiple linear regression analysis the following factors were identified as determinants of abundance of aquatic invertebrates in macrophyte associations: shoot density, plant dry weight biomass, periphyton biomass, periphyton chlorophyll a, periphyton primary production, and concentrations of Sr, Mg, Ca, P, Mn, Zn, Pb and Cu. Pollution was shown to have a minor effect on the composition of littoral invertebrate communities. It is not possible to determine one single principle factor responsible for the structure and density of invertebrates in macrophyte communities.  相似文献   

7.
Global warming may affect snail–periphyton–macrophyte relationships in lakes with implications also for water clarity. We conducted a 40-day aquaria experiment to elucidate the response of submerged macrophytes and periphyton on real and artificial plants to elevated temperatures (3°C) under eutrophic conditions, with and without snails present. With snails, the biomass and length of Vallisneria spinulosa leaves increased more at the high temperature, and at both temperatures growth was higher than in absence of snails. The biomass of periphyton on V. spinulosa as well as on artificial plants was higher at the highest temperature in the absence but not in the presence of snails. The biomass of Potamogeton crispus (in a decaying state) declined in all treatments and was not affected by temperature or snails. While total snail biomass did not differ between temperatures, lower abundance of adults (size >1 cm) was observed at the high temperatures. We conclude that the effect of elevated temperature on the snail–periphyton–macrophyte relationship in summer differs among macrophyte species in active growth or senescent species in subtropical lakes and that snails, when abundant, improve the chances of maintaining actively growing macrophytes under eutrophic conditions, and more so in a warmer future with potentially denser growth of periphyton.  相似文献   

8.
1. An increase in human population and associated changes in land use have caused an increase in groundwater nitrate concentrations throughout central Florida. Within the region, this nitrate‐laden groundwater returns to the surface via numerous large springs that serve as the origin of flow for many coastal streams and rivers. These rivers can exhibit strong nitrate gradients because of the high nutrient uptake potential of the rivers. 2. We hypothesised that downstream declines in nitrate concentrations would be manifested spatially as increases in the δ15N of the residual pool of nitrate, macrophytes and periphyton as a consequence of isotopic fractionation associated with preferential use of 14NO3. This hypothesis was tested in two spring‐fed river systems, the Chassahowitzka and Homosassa rivers, along Florida's central Gulf of Mexico coast. 3. In general, δ15N values of nitrate, macrophytes and periphyton increased with decreasing fraction of nitrate remaining in each of the two study systems. The fractionation associated with nitrate uptake by macrophytes and associated periphyton was determined from the relationship between δ15N of both constituents of the macrophyte community and the fraction of nitrate removed from the system. Values for fractionation by macrophytes and periphyton ranged from 1.9‰ to 3.6‰ and from 0.7‰ to 2.5‰, respectively.  相似文献   

9.
We collected quantitative data on macrophyte abundance and water quality in 319 mostly shallow, polymictic, Florida lakes to look for relationships between trophic state indicators and the biomasses of plankton algae, periphyton, and macrophytes. The lakes ranged from oligotrophic to hypereutrophic with total algal chlorophylls ranging from 1 to 241 mg m–3. There were strong positive correlations between planktonic chlorophylls and total phosphorus and total nitrogen, but there were weak inverse relationships between the densities of periphyton and the trophic state indicators total phosphorus, total nitrogen and algal chlorophyll and a positive relationship with Secchi depth. There was no predictable relationship between the abundance of emergent, floating-leaved, and submersed aquatic vegetation and the trophic state indicators. It was only at the highest levels of nutrient concentrations that submersed macrophytes were predictably absent and the lakes were algal dominated. Below these levels, macrophyte abundance could be high or low. The phosphorus–chlorophyll and phosphorus–Secchi depth relationships were not influenced by the amounts of aquatic vegetation present indicating that the role of macrophytes in clearing lakes may be primarily to reduce nutrient concentrations for a given level of loading. Rather than nutrient concentrations controlling macrophyte abundance, it seems that macrophytes acted to modify nutrient concentrations.  相似文献   

10.
Submerged macrophytes are a major component of freshwater ecosystems, yet their net effect on water column phosphorus (P), algae, and bacterioplankton is not well understood. A 4-month mass-balance study during the summer quantified the net effect of a large (5.5 ha) undisturbed macrophyte bed on these water-column properties. The bed is located in a slow-flowing (0.05–0.1 cm s–1) channel between two lakes, allowing for the quantification of inputs and outputs. The P budget for the study period showed that, despite considerable short-term variation, the macrophyte bed was a negligible net sink for P (0.06 mg m–2 day–1, range from –0.76 to +0.79 mg m–2 day–1), demonstrating that loading and uptake processes in the weedbed roughly balance over the summer. Chlorophyll a was disproportionately retained relative to particulate organic carbon (POC), indicating that the algal component of the POC was preferentially trapped. However, the principal contribution of the weedbed to the open water was a consistent positive influence on bacterioplankton production over the summer. Conservative extrapolations based on measured August specific exports (m–2 day–1) of P and bacterial production exiting the weedbed applied to five regional lakes varying in lake morphometry and macrophyte cover suggest that even in the most macrophyte dominated of lakes (66% cover), P loading from submerged weedbeds never exceeds 1% day–1 of standing epilimnetic P levels, whereas subsidization of bacterioplankton production can reach upward of 20% day–1. The presence of submerged macrophytes therefore differentially modifies algae and bacteria in the water column, while modestly altering P dynamics over the summer.  相似文献   

11.
Habitat heterogeneity is one of the main factors determining distribution of organisms, and vegetation is of primary importance in shaping the structural environment in aquatic systems. The effect of macrophyte complexity on macroinvertebrates has been well researched; however, much remains to be revealed about the influence of complexity on epiphytic algae. Here, we used fractal dimension to study the effect of complexity at two scales, macrophyte architecture and leaf shape, on several parameters of the epiphytic algal community (number of individuals, biomass, taxon richness and diversity) in a Pampean stream. Four submerged macrophyte species with different complexities and associated algae were sampled in late spring, summer and autumn. Important differences were found in fractal dimension of the whole plant and leaves among macrophyte species. The particulate organic matter and chlorophyll a associated positively to leaf fractal dimension, but not to plant fractal dimension, partially supporting the hypothesis of a positive effect of macrophyte complexity on periphyton biomass. No association was found in fractal dimension with algal abundance, taxon richness or diversity. Complementary, a mesocosm experiment was performed with plastic imitations of different plant fractal dimensions. After four weeks, there were differences in chlorophyll a and autotrophy index between treatments that suggested a positive effect of complexity on autotrophic periphyton biomass. These results indicate that the well-known positive effect of macrophyte complexity on macroinvertebrates might be partially explained by a positive effect of complexity on periphyton biomass.  相似文献   

12.

Macrophytes and phytoplankton are recognized as having roles in determining alternative stable states in shallow lakes and reservoirs, while the role of periphyton has been poorly investigated. Temporal and spatial variation of phytoplankton, epipelon and epiphyton was examined in a shallow reservoir with high abundance of aquatic macrophytes. The relationships between algae communities and abiotic factors, macrophyte coverage and zooplankton density were also analyzed. Monthly sampling was performed in three zones of the depth gradient of the reservoir. Two phases of algal dominance were found: a phytoplankton phase and epipelon phase. The phase of phytoplankton dominance was characterized by high macrophyte coverage. Rotifera was the dominant zooplankton group in all the zones. Flagellate algae were dominant in phytoplankton, epipelon and epiphyton. Macrophyte coverage was found to be a predictor for algal biomass. Changes in biomass and species composition were associated with macrophyte cover variation, mainly the Nymphaea. In addition to the abiotic factors, the macrophyte coverage was a determining factor for changes to the algal community, contributing to the alternation between dominance phases of phytoplankton and epipelon. The macrophyte–phytoplankton–periphyton relationship needs to be further known in shallow reservoirs, especially the role of epipelon as an alternate stable state.

  相似文献   

13.
14.
15.
沉水植物茎叶微界面特性研究进展   总被引:1,自引:0,他引:1  
董彬  韩睿明  王国祥 《生态学报》2017,37(6):1769-1776
沉水植物茎叶-水界面是浅水湖泊的重要界面之一,对湖泊生物地球化学循环和水环境质量具有重要影响。富营养化水体中,大量的附着物常富集在沉水植物茎叶表面,形成了特殊的生物-水微界面。对该微界面特性进行深入研究,有助于揭示沉水植物在微环境层面对富营养化水体中物质循环的调控过程和机制。沉水植物茎叶微界面具有促进水体养分转化、改变环境因子及可溶性物质的空间分布,增加物质运输的阻力和距离、降低植物光合作用、调控重金属等生态功能;微界面结构及环境因子受水体营养盐浓度、沉水植物种类及生长阶段等因素的影响。对微界面结构功能的主要研究方法进行了分析总结,并对沉水植物茎叶微界面的研究前沿进行了展望。  相似文献   

16.
Summary In the laboratory and field, we examined how periphyton (food of snails) and predatory crayfish influenced snail distribution in Trout Lake, a permanent, northern Wisconsin lake. Laboratory experiments (with no crayfish) tested the importance of periphyton biomass in determining snail preference among rocks, and among rock, sand, and macrophyte substrates. Among rocks with four different amounts of periphyton, periphyton biomass and the number of Lymnaea emarginata, Physa spp., and Amnicola spp. were positively related. A similar, but non-significant, trend occurred for Helisoma anceps. A field experiment at a site in Trout Lake where predation risk was low confirmed the preference by snails for periphyton covered rocks; more snails colonized rocks with periphyton than rocks without. When given a choice of rock, sand, and macrophytes in the laboratory, L. emarginata preferred high periphyton biomass and rock. Laboratory and field results contrasted with the distribution of snails in Trout Lake; no snails occurred in areas with abundant periphyton-covered rocks, but snails were abundant nearby on scattered rocks with little periphyton. However, where snails were absent, crayfish were abundant (14.5 crayfish-trap–1-day–1), and where snails were abundant, crayfish were rare (3.2 crayfish-trap–1-day–1), suggesting that crayfish predation reduced snails. The hypothesis that the negative association between snail and periphyton biomass resulted from snail grazing was supported by the results of a field snail enclosure-exclosure experiment (1 m2 cages; n=3). All experiments and observations therefore suggest that: 1) crayfish predation is more important than a preference for high periphyton biomass in determining snail distribution in Trout Lake; 2) periphyton biomass is negtively related to snail grazing; and 3) crayfish had a positive indirect effect on periphyton by preying on grazing snails.  相似文献   

17.
Macrophytes play a keystone role in shallow aquatic ecosystems. In lakes, macrophytes stabilize clear‐water conditions with high biodiversity and their decline can cause a shift to a turbid state with lower biodiversity. Various mechanisms have been suggested as triggers of macrophyte collapse. Herbivory by waterfowl and fish seems to be one of the obvious factors, but the response of macrophytes to herbivory is ambiguous. We hypothesized that herbivory alone does not typically cause macrophyte collapse, but that shading from periphyton can enhance the effect of herbivores. Shading of macrophytes is supposed to increase with eutrophication due to changes in the top–down control cascading from fish via macroinvertebrates to periphyton. We elaborated on this idea by fitting a macrophyte growth model with different herbivore grazing and periphyton shading scenarios. In addition, we performed a meta‐analysis on existing experimental herbivore exclosure studies with respect to periphyton growth. The model supported our proposed hypothesis and the reviewed field studies appeared to point in the same direction. We suggest that a significant herbivore impact may indicate a reduced resilience of vegetation to eutrophication, making it an early warning signal for an imminent macrophyte collapse leading to a sudden shift of the system to turbid conditions.  相似文献   

18.
This study aimed to elucidate the effects of periphyton on the microprofiles of oxygen (O2), pH, and oxidation-reduction potential around the stems and leaves of a submerged macrophyte Potamogeton malaianus and on the plant growth in the eutrophic shallow Taihu Lake, China. The microprofiles were measured using a motorized microprofiling system equipped with microsensors. The leaf age of the macrophyte and periphyton exerted significant effects on the microprofiles of O2, pH, and oxidation-reduction potential. O2 concentration and pH increased whereas the oxidation-reduction potential decreased with decreasing distance to the stem/leaf surface. The fluctuation amplitudes of O2, pH, and oxidation-reduction potential were the largest in the microprofiles of mature leaves and the lowest in senescent leaves. The periphyton increased the thickness of the broad diffusive boundary layer and fluctuation amplitudes of O2, pH, and oxidation-reduction potential. When the periphyton was removed, the thickness of the broad diffusive boundary layer in the microprofiles of stems, senescent leaves, and mature leaves reduced by 29.0%, 49.72%, and 70.34%, and the O2, pH, and oxidation-reduction potential fluctuation amplitudes also declined accordingly. Our results suggest that a thick periphyton exerted negative effects on the growth of macrophytes by providing extensive shading and creating a barrier that hindered the transport of dissolved substances such as O2, and led to premature decline in macrophytes in the eutrophic Taihu Lake. The consequent implications can help to elucidate the control mechanism of the broad diffusive boundary layer around macrophytes on nutrient cycling in eutrophic waters and to better understand the role of this layer in the Taihu Lake and other similar eutrophic waters.  相似文献   

19.
Change in the abundance of benthic macroinvertebrates and the stable isotope composition (C, N) of benthic invertebrates and zooplankton in Lake Vaeng, Denmark, was investigated over an 18-year period following biomanipulation (removal of cyprinids). During the first nine years after biomanipulation, the lake was clear and submerged macrophytes were abundant; after this period, a shift occurred to low plant abundance and high turbidity. Two years after the biomanipulation, total density of benthic macroinvertebrates reached a maximum of 17042 (±2335 SE) individuals m−2 and the density was overall higher when the lake was in a clear state. Redundancy analysis (RDA) suggested macrophyte abundance and total nitrogen (TN) concentration were the dominant structuring forces on the benthic macroinvertebrate assemblage. Stable isotope analysis revealed that δ13C of macroinvertebrates and zooplankton was markedly higher in years with high submerged macrophyte abundance than in years without macrophytes, most likely reflecting elevated δ13C of phytoplankton and periphyton mediated by a macrophyte-induced lowering of lake water CO2 concentrations. We conclude that the strong relationship between macrophyte coverage and δ13C of macroinvertebrates and cladocerans may be useful in paleoecological studies of past changes in the dynamics of shallow lakes, as change in macrophyte abundance may be tracked by the δ13C of invertebrate remains in the sediment.  相似文献   

20.
Periphyton production in an Appalachian river   总被引:3,自引:3,他引:0  
Periphyton primary production was measured by 14C uptake on natural substrates in two sections of the New River, Virginia, U.S.A. Production ranged from 6.71 ± 0.43 mg C g–1 h–1 in summer to 1.47 ± 0.22 mg C g–1 h–1 in late autumn in the hardwater reach and from l.90 ± 0.10 mg C g–1 h–1 to 0.12 ± 0.08 mg C g–1 h–1 in the softwater reach. Production in the hardwater reach was 3–5 times greater than in the softwater reach and significantly correlated with dissolved inorganic carbon (DIC) concentration (r2 = 0.506). No significant correlation was found between periphyton production and photosynthetically active radiation (PhAR). Extrapolation of periphyton production to a 135 km reach of the New River yielded an estimated annual input of 2 252 T AFDW from this source. Estimates of allochthonous (excluding upstream contributions) and aquatic macrophyte inputs to this same reach were 64 T AFDW and 2 001 T AFDW, respectively. While periphyton is not a large source of organic matter, its high food quality and digestibility make it an important component of the New River energy dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号