首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ugochukwu NH  Babady NE 《Life sciences》2003,73(15):1925-1938
The present study was designed to investigate the antihyperglycemic effects of aqueous and ethanolic extracts from Gongronema latifolium leaves on glucose and glycogen metabolism in livers of non-diabetic and streptozotocin-induced diabetic rats. To investigate the effects of aqueous or ethanolic leaf extracts of G. latifolium, non-diabetic and STZ diabetic rats were treated twice daily (100 mg/Kg) for two weeks. Diabetic rats showed a significant decrease in the activities of hepatic hexokinase (HK), phosphofructokinase (PFK) and glucose-6-phosphate dehydrogenase (G6PDH) and an increase in glucokinase (GK) activity. The levels of hepatic glycogen and glucose were also increased in diabetic rats. However, there were no significant differences in the activities of glucose-6-phosphatase (G6Pase) in treated and untreated diabetic rats. The ethanolic extract significantly increased the activities of HK (p<0.01), PFK (p<0.001) and G6PDH (p<0.01) in diabetic rats, decreased the activity of GK (p<0.05) and the levels of hepatic glycogen (p<0.01) and both hepatic (p<0.001) and blood glucose (40%). The aqueous extract of G. latifolium was only able to significantly increase the activities of HK and decrease the activities of GK but did not produce any significant change in the hepatic glycogen and both hepatic and blood glucose content of diabetic rats. Our data show that the ethanolic extract from G. latifolium leaves has antihyperglycemic potency, which is thought to be mediated through the activation of HK, PFK, G6PDH and inhibition of GK in the liver. The ethanolic extract is under further investigation to determine the chemical structure of the active compound(s) and its/their mechanism of action.  相似文献   

2.
We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.  相似文献   

3.
4.
1. Solubilization of mitochondrial bound hexokinase (HK), which represents 75-80% of the total enzyme activity in the cells, was investigated in freshly isolated mitochondria from undifferentiated (Glc+) or differentiated (Glc-) HT29 adenocarcinoma cells. In both models, the bound HK is almost completely released in vitro by 100 microM glucose 6-P (G 6-P). 2. Free ATP (5 mM) or palmitate (800 microM) produce a partial solubilization of bound HK, more markedly in the case of Glc- mitochondria. 3. Glucose or glucose 1-P are found unable to solubilize bound HK. Glucose 1,6-P2, 2-deoxyglucose 6-P or glucosamine 6-P can solubilize the enzyme but are less efficient than G 6-P. 4. Mg2+ and Pi are found to counteract the glucose 6-P induced solubilization of HK in both types of mitochondria. Taking into account the intracellular concentrations of these ions, this could in part explain why, in HT29 cells, HK is predominantly bound to the mitochondria.  相似文献   

5.
To investigate the effect of elevation of liver glycogen synthase (GYS2) activity on glucose and glycogen metabolism, we performed adenoviral overexpression of the mutant GYS2 with six serine-to-alanine substitutions in rat primary hepatocytes. Cell-free assays demonstrated that the serine-to-alanine substitutions caused constitutive activity and electrophoretic mobility shift. In rat primary hepatocytes, overexpression of the mutant GYS2 significantly reduced glucose production by 40% and dramatically induced glycogen synthesis via the indirect pathway rather than the direct pathway. Thus, we conclude that elevation of glycogen synthase activity has an inhibitory effect on glucose production in hepatocytes by shunting gluconeogenic precursors into glycogen. In addition, although intracellular compartmentation of glucose-6-phosphate (G6P) remains unclear in hepatocytes, our results imply that there are at least two G6P pools via gluconeogenesis and due to glucose phosphorylation, and that G6P via gluconeogenesis is preferentially used for glycogen synthesis in hepatocytes.  相似文献   

6.
The chicken erythroblast cell line, HD3, has high glucose transport activity which is lost upon differentiation to the red cell phenotype. HD3 cells, when incubated under conditions where maturation occurs, show substantial loss of GLUT1 and GLUT3 mRNAs. To assess whether cAMP or cellular protein phosphorylation affected GLUT mRNA and protein, the HD3 cells were incubated in the presence of different phosphatase inhibitors. Treatment of HD3 cells with the phosphatase inhibitors okadaic acid, vanadate or with 3-isobutyl-1-methyl-xanthine induced glucose transport and GLUT mRNAs. This suggests that phosphorylation events enhance glucose transport and that their reduction may be involved in the decrease in glucose transport that occurs upon HD3 cells differentiation.  相似文献   

7.
The Indian traditional system of medicine prescribed plant therapies for diseases including diabetes mellitus called madhumeh in Sanskrit. One such plant mentioned in Ayurveda is Pterocarpus marsupium (PM). In the present study, aqueous extract of PM (1 g/kg PO) was assessed for its effect on glycogen levels of insulin dependent (skeletal muscle and liver), insulin-independent tissues (kidneys and brain) and enzymes such as glucokinase (GK), hexokinase (HK), and phosphofructokinase (PFK). Administration of PM led to decrease in blood glucose levels by 38 and 60% on 15th and 30th day of the experiment. Liver and 2-kidney weight expressed as percentage of body-weight was significantly increased in diabetics (p < 0.0005) vs. normal controls and this alteration in the renal weight (p < 0.0005) but not liver weight was normalized by feeding of PM extract. Renal glycogen content increased by over 10 fold while hepatic and skeletal muscle glycogen content decreased by 75 and 68% in diabetic controls vs. controls and these alteration in glycogen content was partly prevented by PM. Activity of HK, GK and PFK in diabetic controls was 35, 50 and 60% of the controls and PM completely corrected this alteration in PFK and only partly in HK and GK.  相似文献   

8.
BackgroundAerobic glycolysis is a unique tumor cell phenotype considered as one of the hallmarks of cancer. Aerobic glycolysis can accelerate tumor development by increasing glucose uptake and lactate production. In the present study, lactate dehydrogenase A (LDHA) is significantly increased within glioma tissue samples and cells, further confirming the oncogenic role of LDHA within glioma.MethodsHematoxylin and eosin (H&E) and immunohistochemical (IHC) staining were applied for histopathological examination. The protein levels of LDHA, transporter isoform 1 (GLUT1), hexokinase 2 (HK2), phosphofructokinase (PFK) in target cells were detected by Immunoblotting. The predicted miR-9 binding to lncRNA Annexin A2 Pseudogene 2 (ANXA2P2) or the 3′ untranslated region (UTR) of LDHA was verified using Luciferase reporter assay. Cell viability or apoptosis were examined by MTT assay or Flow cytometry. Intracellular glucose and Lactate levels were measured using glucose assay kit and lactate colorimetric assay kit.ResultsThe expression of ANXA2P2 showed to be dramatically upregulated within glioma tissue samples and cells. Knocking down ANXA2P2 within glioma cells significantly inhibited cell proliferation and aerobic glycolysis, as manifested as decreased lactate and increased glucose in culture medium, and downregulated protein levels of glycolysis markers, GLUT1, HK2, PFK, as well as LDHA. miR-9 was predicted to target both lncRNA ANXA2P2 and LDHA. The overexpression of miR-9 suppressed the cell proliferation and aerobic glycolysis of glioma cells. Notably, miR-9 could directly bind to LDHA 3′UTR to inhibit LDHA expression and decrease the protein levels of LDHA. ANXA2P2 competitively targeted miR-9, therefore counteracting miR-9-mediated repression on LDHA. Within tissues, miR-9 exhibited a negative correlation with ANXA2P2 and LDHA, respectively, whereas ANXA2P2 and LDHA exhibited a positive correlation with each other.ConclusionsIn conclusion, ANXA2P2/miR-9/LDHA axis modulates the aerobic glycolysis progression in glioma cells, therefore affecting glioma cell proliferation.  相似文献   

9.
Metabolic control analysis of tumor glycolysis has indicated that hexokinase (HK) and glucose transporter (GLUT) exert the main flux control (71%). To understand why they are the main controlling steps, the GLUT and HK kinetics and the contents of GLUT1, GLUT2, GLUT3, GLUT4, HKI, and HKII were analyzed in rat hepatocarcinoma AS‐30D and HeLa human cervix cancer. An improved protocol to determine the kinetic parameters of GLUT was developed with D ‐[2‐3H‐glucose] as physiological substrate. Kinetic analysis revealed two components at low‐ and high‐glucose concentrations in both tumor cells. At low glucose and 37°C, the Vmax was 55 ± 20 and 17.2 ± 6 nmol (min × mg protein)?1, whereas the Km was 0.52 ± 0.7 and 9.3 ± 3 mM for hepatoma and HeLa cells, respectively. GLUT activity was partially inhibited by cytochalasin B (IC50 = 0.44 ± 0.1; Ki = 0.3 ± 0.1 µM) and phloretin (IC50 = 8.7 µM) in AS‐30D hepatocarcinoma. At physiological glucose, GLUT1 and GLUT3 were the predominant active isoforms in HeLa cells and AS‐30D cells, respectively. HK activity in HeLa cells was much lower (60 mU/mg protein) than that in AS‐30D cells (700 mU/mg protein), but both HKs were strongly inhibited by G6P. HKII was the predominant isoform in AS‐30D carcinoma and HeLa cells. The much lower GLUT Vmax and catalytic efficiency (Vmax/Km) values in comparison to those of G6P‐sensitive HK suggested the transporter exerts higher control on the glycolytic flux than HK in cancer cells. Thus, GLUT seems a more adequate therapeutic target. J. Cell. Physiol. 221: 552–559, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Daytime restricted feeding (DRF) promotes circadian adaptations in the metabolic processing of nutrients. We explored the hepatic gluconeogenic response in DRF rats by the temporal profiles of the following: (1) the activity of glucose 6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), as well as the periportal and pericentral distribution of PEPCK; (2) conversion of alanine to glucose; (3) glycemia and liver glycogen content; (4) presence of glycogen synthase (GYS) and its phosphorylated form (at Ser641, pGYS); (5) circulating levels of corticosterone, glucagon and insulin; (6) glucose-tolerance test; and (7) sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α). The results showed that DRF promoted: (1) a phase shift in G6Pase activity and an increase in PEPCK activity as well as a change of PEPCK from periportal to pericentral hepatocytes, (2) a net conversion of alanine to circulating glucose, (3) a decrease in glycemic values and a phase shift in the liver glycogen content, (4) a phase shift in GYS and an increase of pGYS, (5) an increase in the daily levels of corticosterone and glucagon, but a reduction in the levels of insulin, (6) normal glucose homeostasis in all groups and (7) an enhanced presence of SIRT1 and PGC-1α. It is proposed that the increased gluconeogenic in DRF group promotes synthesis of hepatic glycogen and the production of glucose. These results could be a modulation of the gluconeogenic process due to rheostatic adaptations in the endocrine, metabolic and timing regulation of liver and could be associated with the physiology of the food entrained oscillator.  相似文献   

11.
Summary Enzyme histochemical profiles of spinal motoneurons in the zebrafish were determined. Five enzymes of glucose metabolism were chosen: glucose-6-phosphate dehydrogenase (G6PDH), hexokinase (HK), phosphofructokinase (PFK), succinate dehydrogenase (SDH) and NADH tetrazolium reductase (NADH-TR). Motoneurons were traced with Fluorogold and classified as those that innervate white muscle fibres (W-MNs) and those that innervate red and intermediate muscle fibres (R/ I-MNs). The average enzyme activities per volume of tissue in the somata of both populations differed at most by 25%. Both the average soma volume and the average number of muscle fibres innervated are three times larger for the W-MNs than for the a/I-MNs. This suggests that the total amount of enzyme activity within a neuron soma matches target size.In the R/I-MNs, the activities of SDH and NADH-TR were closely correlated (correlation coefficient, r=0.99;p<0.05) and HK activity correlated well with G6PDH activity (r=0.94;p<0.05), butnot with PFK (r=0.64;p>0.05). In the W-MNs, there was no correlation between SDH and NADH-TR (r=–0.59;p>0.05) or between HK and G6PDH (r=0.50;p>0.05) and the correlation coefficient between HK and PFK activity was close to zero (r=0.04;p>0.05).It was concluded that in the R/I-MNs gwhich are continuously ctive, firing activity is fuelled by oxidative metabolsm. We suggest that in the W-MNs glucose is stored in the form of glycogen and that, despite high levels of NADH-TR present, the energy for intermittent firing activity is provided by glycolysis.  相似文献   

12.
13.
Abstract— The loss of at least two different cell types in the basal ganglia of the choreic brain led us to examine the activity of enzymes involved in the metabolism of glucose. Cellular ATPase, HK, G6-PDH, PFK., LDH, GDH were measured. Post mortem stability studies indicated that these enzymes were more unstable in human brain than mouse brain. The most stable enzyme was GDH. HK activity appeared to increase after freezing, suggesting release from another compartment. PFK and G6-PDH activity decreased by 70% over the usual time and temperature period for autopsy. In the autopsied brain tissue we were still able to measure significant activities that allowed us to determine the distribution of these enzymes and the similar post mortem handling of control and choreic brain allowed us to compare these two groups.
The activity of HK and G6-PDH was higher in the frontal cortex than in the basal ganglia. Ouabain insensitive ATPase and PFK were higher in the basal ganglia than the frontal cortex.
GDH activity, an enzyme that is very active in glial cells, was increased in the choreic globus pallidus, an area with a very high glial to neuronal cell ratio.
Although there was a wide variation in PFK activity that appeared to be related to the pre-mortem clinical state there was a significant decrease in PFK activity in the putamen of choreic post mortem brain when compared to controls.
These findings do not indicate an absolute defect in any of the enzymes studied in choreic brain but further studies might prove worthwhile.  相似文献   

14.
Tang X  Zhang C  Jin Y  Ge C  Wu Y 《Cell biology international》2007,31(9):1016-1021
Many studies demonstrated that chicken primordial germ cells (PGCs) could maintain undifferentiated state on mouse embryonic fibroblast feeders supplemented with growth factors and cytokines. However, the xenosupport systems may run risk of cross-transfer of animal pathogens from the other animal feeder, matrix to the PGCs, then influencing later transgenic technology. In this study, chicken PGCs were identified by alkaline phosphatase, stage-specific embryonic antigen-1 and Oct-4 immunocytochemical stainings. Three different homologous somatic cell feeder layers (chicken embryonic fibroblast feeder layer, CEF; embryonic skeletal myoblast feeder layer; follicular granulosa cell feeder layer) were used to support growth and proliferation of PGCs to find a better supporting culture system. In addition, the effects of fetal calf serum (FCS), leukemia inhibitory factor (LIF) and the combination of insulin, transferring and selenite (ITS) on PGC proliferation were compared. Results showed that CEF was the best supporter for PGC growth and proliferation, which was verified by 5-bromo-2'-deoxyuridine incorporation stain. FCS alone or in combination with LIF could significantly promote PGC proliferation in the presence of CEF in ITS medium. This study will contribute to providing a safer supporting system for chicken PGC amplification in vitro, and may be applied in transgenic chicken production and transplantation therapy.  相似文献   

15.
Double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful reverse genetic tool to silence gene expression in multiple organisms. RNAi based on DNA vector is not sufficiently established in chicken species. The present study was performed to evaluate RNAi induced by shRNA transcribed from mammalian Pol III promoter H1 in the chicken cells by using a dual fluorescence reporter assay, a plasmid encoding GFP and a plasmid encoding RFP. The evaluation of RNAi efficiency was performed in two kinds of chicken cell type: primary CEF cells and chicken DT-40 cells by lipofection. GFP- and RFP-expressing cells were observed under fluorescent microscopy, and their mRNAs content were analyzed by quantitative RT-PCR. The intensity of the green fluorescence generated by GFP was greatly suppressed by human H1 promoter transcribed GFP-shRNA. Quantitative RT-PCR analysis showed that normalized GFP mRNA expression was reduced to 37 and 32 in primary CEF and DT-40 cells, respectively. In contrast to GFP, the intensity of the red fluorescence generated by RFP protein and the RFP mRNA levels remained unchanged. Consequently, it was concluded that the RNAi induced by shRNA transcribed from mammalian Pol III promoter H1 is applicable to suppress the gene expression specifically and efficiently in chicken cells. Jing Yuan and Xiaobo Wang - These authors contributed equally to this work.  相似文献   

16.
Glycogen serves as a repository of glucose in many mammalian tissues. Mice lacking this glucose reserve in muscle, heart, and several other tissues were generated by disruption of the GYS1 gene, which encodes an isoform of glycogen synthase. Crossing mice heterozygous for the GYS1 disruption resulted in a significant underrepresentation of GYS1-null mice in the offspring. Timed matings established that Mendelian inheritance was followed for up to 18.5 days postcoitum (dpc) and that approximately 90% of GYS1-null animals died soon after birth due to impaired cardiac function. Defects in cardiac development began between 11.5 and 14.5 dpc. At 18.5 dpc, the hearts were significantly smaller, with reduced ventricular chamber size and enlarged atria. Consistent with impaired cardiac function, edema, pooling of blood, and hemorrhagic liver were seen. Glycogen synthase and glycogen were undetectable in cardiac muscle and skeletal muscle from the surviving null mice, and the hearts showed normal morphology and function. Congenital heart disease is one of the most common birth defects in humans, at up to 1 in 50 live births. The results provide the first direct evidence that the ability to synthesize glycogen in cardiac muscle is critical for normal heart development and hence that its impairment could be a significant contributor to congenital heart defects.  相似文献   

17.
Most cancer cells exhibit an accelerated glycolysis rate compared to normal cells. This metabolic change is associated with the over-expression of all the pathway enzymes and transporters (as induced by HIF-1α and other oncogenes), and with the expression of hexokinase (HK) and phosphofructokinase type 1 (PFK-1) isoenzymes with different regulatory properties. Hence, a control distribution of tumor glycolysis, modified from that observed in normal cells, can be expected. To define the control distribution and to understand the underlying control mechanisms, kinetic models of glycolysis of rodent AS-30D hepatoma and human cervix HeLa cells were constructed with experimental data obtained here for each pathway step (enzyme kinetics; steady-state pathway metabolite concentrations and fluxes). The models predicted with high accuracy the fluxes and metabolite concentrations found in living cancer cells under physiological O(2) and glucose concentrations as well as under hypoxic and hypoglycemic conditions prevailing during tumor progression. The results indicated that HK≥HPI>GLUT in AS-30D whereas glycogen degradation≥GLUT>HK in HeLa were the main flux- and ATP concentration-control steps. Modeling also revealed that, in order to diminish the glycolytic flux or the ATP concentration by 50%, it was required to decrease GLUT or HK or HPI by 76% (AS-30D), and GLUT or glycogen degradation by 87-99% (HeLa), or decreasing simultaneously the mentioned steps by 47%. Thus, these proteins are proposed to be the foremost therapeutic targets because their simultaneous inhibition will have greater antagonistic effects on tumor energy metabolism than inhibition of all other glycolytic, non-controlling, enzymes.  相似文献   

18.
Previous work suggests that normal GLUT4 content is sufficient for increases in muscle glucose uptake (MGU) during exercise because GLUT4 overexpression does not increase exercise-stimulated MGU. Instead of glucose transport, glucose phosphorylation is a primary limitation of exercise-stimulated MGU. It was hypothesized that a partial ablation of GLUT4 would not impair exercise-stimulated MGU when glucose phosphorylation capacity is normal but would do so when glucose phosphorylation capacity was increased. Thus, C57BL/6J mice with hexokinase II (HKII) overexpression (HK(Tg)), a GLUT4 partial knock-out (G4(+/-)), or both (HK(Tg) + G4(+/-)) and wild-type (WT) littermates were implanted with carotid artery and jugular vein catheters for sampling and infusions at 4 months of age. After a 7-day recovery, 5-h fasted mice remained sedentary or ran on a treadmill at 0.6 mph for 30 min (n = 9-12 per group) and received a bolus of 2-deoxy[3H]glucose to provide an index of MGU (Rg). Arterial blood glucose and plasma insulin concentrations were similar in WT, G4(+/-), HKTg, and HKTg + G4(+/-) mice. Sedentary Rg values were the same in all genotypes in all muscles studied, confirming that glucose transport is a significant barrier to basal glucose uptake. Gastrocnemius and soleus Rg were greater in exercising compared with sedentary mice in all genotypes. During exercise, G4(+/-) mice had a marked increase in blood glucose that was corrected by the addition of HK II overexpression. Exercise Rg (micromol/100g/min) was not different between WT and G4(+/-) mice in the gastrocnemius (24 +/- 5 versus 21 +/- 2) or the soleus (54 +/- 6 versus 70 +/- 7). In contrast, the enhanced exercise Rg observed in HKTg mice compared with that in WT mice was absent in HKTg + G4(+/-) mice in both the gastrocnemius (39 +/- 7 versus 22 +/- 6) and the soleus (98 +/- 13 versus 65 +/- 13). Thus, glucose transport is not a significant barrier to exercise-stimulated MGU despite a 50% reduction in GLUT4 content when glucose phosphorylation capacity is normal. However, when glucose phosphorylation capacity is increased by HK II overexpression, GLUT4 availability becomes a marked limitation to exercise-stimulated MGU.  相似文献   

19.
Primary bovine mammary epithelial cells (BMEC) were cultured in media containing varying concentrations of glucose, to determine the effects of glucose availability on glucose transport and its mechanism in bovine mammary gland. The BMEC incubated with 10 and 20 mM glucose had twofold greater glucose uptake than that with 2.5 mM glucose (P < 0.05). Increased glucose availability enhanced the cell proliferation (P < 0.05). As the glucose uptake is mediated by facilitative glucose transporters (GLUTs), the expression of GLUT mRNA was investigated. Compared with the control (2.5 mM), 5 and 10 mM glucose did not influence the abundance of GLUT1 mRNA (P < 0.05), whereas 20 mM glucose decreased the GLUT1 mRNA expression in the BMEC (P < 0.05). The expression of GLUT8 mRNA was not affected by any concentration of glucose (P > 0.05). As GLUTs are coupled with hexokinases (HKs) in regulating glucose uptake, the expression of HKs and their activities were also studied. The HK activity was greater in 5, 10 and 20 mM glucose than that in 2.5 mM glucose (P < 0.05). The expression of HK2 mRNA rather than HK1 mRNA was detected in the BMEC; however, the abundance of HK2 mRNA was not elevated by any concentrations of glucose compared with control (P > 0.05). Furthermore, addition of 3-bromopyruvate (30, 50 or 70 μM), an inhibitor of HK2, resulted in the decrease of glucose uptake and cell proliferation at both 2.5 and 10 mM glucose (P < 0.05). Therefore, the glucose concentrations may affect glucose uptake partly by altering the activity of HKs, and HK2 may play an important role in the regulation of glucose uptake in the BMEC.  相似文献   

20.
Ribosomes exist as a heterogenous pool of macromolecular complexes composed of ribosomal RNA molecules, ribosomal proteins, and numerous associated “nonribosomal” proteins. To identify nonribosomal proteins that may modulate ribosome activity, we examined the composition of translationally active and inactive ribosomes using a proteomic multidimensional protein identification technology. Notably, the phosphorylated isoform of glycogen synthase, glycogen synthase 1 (GYS1), was preferentially associated with elongating ribosomes. Depletion of GYS1 affected the translation of a subset of cellular mRNAs, some of which encode proteins that modulate protein biosynthesis. These findings argue that GYS1 abundance, by virtue of its ribosomal association, provides a feedback loop between the energy state of the cells and the translation machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号