首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera: Crambidae), is a major insect pest of corn, Zea mays L., in the southern United States. Germplasm lines with resistance to southwestern corn borer have been developed and released by the USDA-ARS. Two single-cross hybrids produced by crossing germplasm lines with resistance to southwestern corn borer and a susceptible single-cross hybrid were infested with southwestern corn borer larvae in a 2-yr field test conducted in Mississippi. The susceptible hybrid sustained significantly more leaf damage and stalk tunneling than either resistant hybrid. The number of tunnels and the length of tunneling were significantly lower on the resistant hybrids. In 2003, up to 15 times more tunneling was observed on the susceptible hybrid. Larvae feeding on the resistant hybrids were delayed in their movement from the whorl to the stalk and larval survival was 50% lower on the resistant hybrids than on the susceptible hybrid. Larvae recovered from the susceptible hybrid 7-14 d after infestation weighed twice as much as those recovered from the resistant hybrids. Similar differences in larval weight were observed in the laboratory when larvae were reared on diets prepared from lyophilized tissue from the three hybrids. These results provide a foundation for other investigations designed to identify and determine the roles of specific genes and gene families associated with southwestern corn borer resistance in corn.  相似文献   

2.
The efficacy of Bacillus thuringiensis-transformed corn (Zea mays L.) hybrids compared with comparable nontransformed corn hybrids for controlling first- and second-generation European corn borer, Ostrinia nubilalis (Hübner), and second-generation southwestern corn borer, Diatraea grandiosella Dyar, was determined. Yield comparisons were obtained from the same plots of corn hybrids. Both generations of European and the second-generation of southwestern corn borer were effectively controlled, but the Bt hybrids varied in degree of control. Hybrids from Ciba Seeds, DEKALB, and Mycogen had more European corn borer tunneling than those from Novartis or Cargill, and this was generally ascribed to different transgenic events. The Bt-transformed hybrids had virtually no leaf-feeding damage and less tunneling than the non-Bt corn hybrids. Some Bt corn hybrids had no tunneling, whereas other Bt hybrids had a small amount of tunneling. All of the non-Bt hybrids had significant leaf-feeding damage and stalk tunneling from both insects. Only three live European corn borer larvae (stunted) were found in the Bt corn hybrids while splitting stalks to assess tunnel length. When insect damage was significant, and in some evaluations where damage was not significant, differences in yields among hybrids were observed. No significant insect population differences were observed for five genera of beneficial insects for Bt versus non-Bt corn hybrids. Corn hybrids that have been transformed with the Bt gene provide an effective means of control for corn borers and efforts to reduce the likelihood of development of borer resistance are warranted.  相似文献   

3.
Plant resistance is a useful component of integrated pest management for several insects that are economically damaging to maize, Zea mays L. In this study, 15 experimental lines of maize derived from a backcross breeding program were evaluated for resistance to corn earworm, Helicoverpa zea (Boddie); fall armyworm, Spodoptera frugiperda (J. E. Smith); southwestern corn borer, Diatraea grandiosella Dyar; and sugarcane borer, Diatraea saccharalis (F.). Experimental line 100-R-3 was resistant in the field to leaf feeding by fall armyworm and line 116-B-10 was resistant in the field to leaf feeding by fall armyworm and leaf and stalk feeding by southwestern corn borer. When corn earworm larvae were fed field harvested silks from experimental line 81-9-B in the laboratory, their pupal weights were significantly lower than the pupal weights of larvae that were fed silks from the resistant control, Zapalote Chico. Maysin levels lower than those commonly associated with corn earworm resistance were present in the resistant experimental line, 107-8-7, indicating a new basis confers resistance to corn earworm in this line. These resistant experimental lines will provide plant breeders with new sources of resistance to lepidopterous insects for the development of improved maize breeding populations.  相似文献   

4.
In 1997 and 1998, Cry9C susceptibility baselines were established for field-collected populations of European corn borer, Osrinia nubilalis (Hubner), and southwestern corn borer, Diatraea grandiosella Dyar. Bioassay of neonate European corn borer larvae of 16 colonies collected from the midwestern United States indicated LC50 values ranging from 13.2 to 65.1 ng of Cry9C protein per square centimeter. Neonate European corn borer LC50 values ranged from 46.5 to 214 ng/cm2. Neonate larvae of three colonies of southwestern corn borer collected from the southern and southwestern United States exhibited LC50 values from 16.9 to 39.9 ng of Cry9C protein per square centimeter. Southwestern corn borer neonate LC90 confidence limit values ranged from 40.3 to 157 ng of Cry9C protein per centimeter. The most sensitive southwestern corn borer colony was collected from the Mississippi delta exhibiting an LC50 value of 22.6 ng of Cry9C per cm2 and also displayed the widest LC0 confidence limits of 40.3-94.8 ng of Cry9C per cm2. Geographic baseline susceptibility data establishes the natural genetic variation and provides the foundation for future testing of insect populations exposed to increased use of Bacillus thuringiensis-based crops. Insect resistance management and stewardship of Cry9C will rely upon baseline data for the validation of discriminating dose assays for European corn borer and southwestern corn borer.  相似文献   

5.
A novel F2 screening technique was developed for detecting resistance in sugarcane borer, Diatraea saccharalis (F.), to transgenic Bacillus thuringiensis (Bt)-maize expressing the Cry1Ab insecticidal protein. The F2 screening method involved (i) collecting larvae from maize fields; (ii) establishing two-parent families; (iii) screening F2 neonates for survival on Bt-maize leaf tissues; and (iv) confirming resistance on commercial Bt-maize plants. With the F2 screening method, 213 iso-line families of D. saccharalis were established from field collections in northeast Louisiana, USA and were screened for Bt resistance. One family was confirmed to carry a major Bt resistance allele(s). In a laboratory bioassay, larval mortality of the Bt-resistant D. saccharalis on Bt-maize leaf tissues was significantly lower than that of a Bt-susceptible strain. This Bt-resistant D. saccharalis population is the first corn stalk borer species that has completed larval development on commercial Bt-maize. The F2 screening protocol developed in this study could be modified for detecting Bt resistance alleles in other similar corn stalk borers, such as the European corn borer, Ostrinia nubilalis (Hübner), and the southwestern corn borer, D. grandiosella Dyar.  相似文献   

6.
The efficacy of transgenic corn hybrids expressing an insecticidal Bacillus thuringiensis (Bt) delta-endotoxin from different transformation events was evaluated in field corn, Zea mays L., against the southwestern corn borer, Diatraea grandiosella Dyar, and sugarcane borer, Diatraea saccharalis (F.). Susceptibilities of neonates and third instars were determined on Bt and non-Bt corn plants (V6 and R1 stages) in field plots and corn leaf tissue feeding exposure in laboratory bioassays. Bt corn hybrids associated with MON810 and CBH351 transformation events sustained significantly less injury by southwestern corn borer and sugarcane borer during mid-whorl stage infestations compared with their respective non-Bt hybrid equivalents. Southwestern corn borer and sugarcane borer feeding injury to ear leaf-sheath and husk tissues during the silking stage of corn was significantly reduced in MON810 and CBH351 Bt corn compared with their respective non-Bt hybrids. However, resistance levels to feeding injury in Bt hybrids associated with the MON810 event were significantly higher than that in the hybrid associated with the CBH351 event. Southwestern corn borer and sugarcane borer caused more feeding injury to husk tissue than to ear leaf-sheath tissue in both Bt and non-Bt hybrids infested during the silking stage. Laboratory performance of the MON810 event against southwestern corn borer and sugarcane borer varied among hybrids associated with the same event. Third instars of southwestern corn borer were highly susceptible to MON810 Bt corn hybrids in leaf tissue experiments. However, sugarcane borer larvae were susceptible to the MON810 event only in one of the Bt hybrids evaluated. Sugarcane borer mortality was significantly lower after 96 h of feeding exposure on CBH351 Bt corn leaf tissue than on MON810 Bt corn leaf tissue. Plant resistance to southwestern corn borer and sugarcane borer increased as plants matured, independent of the presence of a Bt construct. These results are essential to estimate the importance of Bt transgenic corn in areas of southern United States and other areas where mixed populations of southwestern corn borer and sugarcane borer are predominant and cause severe damage to corn production.  相似文献   

7.
One field strain each of the European corn borer, Ostrinia nubilalis (Hübner); southwestern corn borer, Diatraea grandiosella Dyar; and sugarcane borer, Diatraea saccharalis (F.); were collected from cornfields in northeastern Louisiana. Susceptibilities of the field strain and a corresponding laboratory strain of the three borer species to Cry1Ab protein in DK69-70 Bacillus thuringiensis (Bt) corn hybrid were determined by exposing neonates to intact leaf tissues from whorl stage plants or by feeding neonates or third instars on a meridic diet treated with different concentrations of Cry1lAb protein extracted from Bt corn leaves. Mortality and growth of larvae were evaluated after 2 and 4 d posttreatment in the bioassays by using intact leaf tissues or after 7 d in the bioassays by using diet incorporating Cry1Ab protein. D. saccharalis was the least susceptible species to Cry1Ab protein among the three species, followed by D. grandiosella, whereas O. nubilalis was most susceptible. The 2-d mortality of D. saccharalis neonates on intact Bt leaf tissues was lower than that of O. nubilalis and D. grandiosella. All neonates of O. nubilalis were killed on the diet treated with Cry1Ab protein at 0.5 and 1 mg/kg. The mortality of D. grandiosella was > 75% at 1 mg/kg, but it was < 6% for D. saccharalis at 1 mg/kg. The LC50 values of D. saccharalis were 3- and 11-fold higher than those of D. grandiosella and O. nubilalis, respectively. The LC90 values of D. saccharalis were 8- and 32-fold higher than those of D. grandiosella and O. nubilalis, respectively. Larval growth of the three species on Cry1Ab-treated diet was inhibited, but the inhibition was greater for O. nubilalis and D. grandiosella than for D. saccharalis. The lower susceptibility of D. saccharalis to Cry1Ab protein suggests that it is necessary to verify if a high-dose Bt corn for O. nubilalis and D. grandiosella is also a high dose for D. saccharalis.  相似文献   

8.
We simulated the population dynamics and population genetics of two bivoltine species of corn borers, the European corn borer, Ostrinia nubilalis (Hübner), and the southwestern corn borer, Diatraea grandiosella Dyar, in a hypothetical region of irrigated transgenic and nontransgenic corn where insecticide was applied only to the nontransgenic refuge crop. Over the 100-yr time horizon, resistance developed quickly in both species and to both transgenic corn and the insecticide when the allele for resistance to the respective toxin was dominant. When the allele for transgenic resistance was not dominant and the refuge location was constant over the time horizon, spraying the refuge to control southwestern corn borer had no effect on how quickly resistance to the transgenic corn developed. In contrast, the European corn borer developed resistance to transgenic corn much sooner when the refuge was sprayed once per year, and the time to 3% resistance allele frequency decreased as efficacy of the insecticide increased. Only when the refuge was treated less than once every 5 yr (10 generations) did the frequency of application decline enough to permit resistance management for the European corn borer to approximate the effectiveness of an unsprayed refuge. A consistently sprayed refuge <40% of the corn acreage was an inadequate resistance management strategy for the European corn borer even when a low efficacy insecticide (70% mortality) was used. When assumptions about European corn borer adult behavior were changed and the adults behaved similarly to adult southwestern corn borer, the development of resistance to the transgenic crop was slowed significantly.  相似文献   

9.
The southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera: Crambidae), is a serious pest of corn, Zea mays L., in the southern United States. Corn germplasm lines with conventional genetic leaf-feeding resistance to this pest, the fall armyworm, Spodoptera frugiperda (J.E. Smith), and other lepidopterans have been released to the public by USDA-ARS scientists located in Mississippi. Recent studies suggest the insect resistant lines disrupt the integrity of the peritrophic membrane of the fall armyworm. The objectives of this study were to investigate any morphological differences in the structure of the peritrophic membrane of southwestern corn borer larvae feeding on resistant and susceptible corn hybrids and to quantify the damage. Larvae were reared under field and laboratory conditions on three corn hybrids (two resistant and one susceptible). Scanning electron microscopy was used to examine the peritrophic membrane for abnormalities such as holes or tears and to count the holes or tears in the membrane. Differences in the degree of damage to peritrophic membrane of larvae fed on resistant and susceptible plants were not detected. Up to five distinct layers of the membrane were observed in each larva. Variation in the amounts of damage to the peritrophic membrane observed from larvae feeding on all plant material was high. Plant resistance adversely affects growth and development of southwestern corn borer larvae, and further investigations are needed to explain the role of plant resistance and its relation to peritrophic membrane in southwestern corn borer larvae.  相似文献   

10.
Fall armyworm, Spodoptera frugiperda (J.E. Smith), and corn earworm, Helicoverpa zea (Boddie), perennially cause leaf and ear damage to corn, Zea mays L., in the southeastern United States. Transgenic Bacillus thuringiensis (Bt) hybrids with the Bt11, MON810, or 176 events expressing the Cry1Ab insecticidal endotoxin from were evaluated for control fall armyworm and corn earworm at seven locations in Georgia during 1999 and 2000. Corn was planted at the recommended time for each location and 1 and 2 mo later in the southern locations. All Bt events consistently reduced whorl infestation and damage, although event 176 did not prevent whorl damage in the later plantings in the southern locations in both years. All events also reduced seedling damage by the lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), in one trial and stalk infestations and tunnel length by southwestern corn borers, Diatraea grandiosella Dyar, in another trial. Hybrids containing Bt11 and MON810 events reduced ear infestations in all trials, although reductions were small in later plantings. Nevertheless, both events reduced grain damage from earworms and armyworms by an average +/- SE of 52.5 +/- 5.1% in all trials. The hybrid containing event 176 did not reduce ear infestations and damage. Total grain aflatoxin concentrations were not significantly affected by Bt resistance in any trial (N = 17). Yield responses were variable with the prevention of yield loss being proportional to the severity of insect damage. Although plantings made after the recommended time did not consistently benefit from Bt resistance, Bt11 and MON810 events were effective in reducing damage to field corn when large infestations occurred. The Bt11 and MON810 events mitigated the risk of severe lepidopteran damage to corn, thereby making later plantings of corn feasible in double-cropping systems.  相似文献   

11.
A study was undertaken to elucidate the impact of an undescribed Nosema sp. on the southwestern corn borer (SWCB; Diatraea grandiosella Dyar). The Nosema sp. (isolate 506) included in the study was isolated from an overwintering SWCB larva in Mississippi. It was highly infectious per os, with a median infective dose of 2.0 x 10(3) spores per larva. Even at the highest dosage tested (10(7) spores per larva), minimal mortality (< or = 3%) was observed in infected larvae, pupae, and adults reared in the laboratory on an artificial diet. However, infected pupae (0- and 7-d-old) were smaller, and the time to adult eclosion from pupation was slightly increased. Furthermore, the number of eggs produced by infected SWCB female moths substantially decreased (32%), and this effect was most pronounced on day 2, when the greatest number of eggs were oviposited by infected and noninfected moths. For eggs produced by infected females mated with infected males, hatch was slightly decreased by 16 and 15% for eggs laid on days 2 and 3, respectively. In addition, egg hatch was reduced in eggs oviposited by noninfected females mated with infected males on day 3. A low prevalence of infection (< 6%) was observed in the F1 generation originating from infected females mating with noninfected males, from noninfected females mating with infected males, and from infected females mating with infected males. Nosema 506 spores were observed in the proximity of reproductive tissues of infected female and male moths. Spores also were detected on the chorion surface and within eggs laid by infected females. Furthermore, 1-11% of larvae hatching from surface-sterilized eggs were infected by Nosema 506 indicating a transovarial mechanism of transmission.  相似文献   

12.
Mark-release-recapture experiments to study insect dispersal require the release of marked insects that can be easily identified among feral conspecifics. Oil-soluble dyes have been used successfully to mark various insect species. Two oil-soluble dyes, Sudan Red 7B (C.I. 26050) and Sudan Blue 670 (C.I. 61554), were added to diet of the southwestern corn borer, Diatraea grandiosella Dyar, and evaluated against an untreated control diet. Survival, diet consumption, larval and pupal weight, development time, fecundity, longevity, and dry weight of the adults were measured. Adults reared on the three diets were also tested for mating success. Some minor effects were observed for southwestern corn borers reared on the marked diets. Eggs, larvae, pupae, and adults were all reliably marked and readily identifiable. Adults retained color for their entire life span. Adults from each diet mated successfully with adults from the other diets. F1 progeny from the different mating combinations survived to the second instar but tended to lose the marker after 3-4 d on untreated diet. Both Sudan Red 7B and Sudan Blue 670 can be used to mark southwestern corn borer adults and thus should be useful for mark-release-recapture dispersal studies. The dyes will also be useful for short-term studies with marked larvae and oviposition behavior.  相似文献   

13.
Leaf-feeding damage by first generation larvae of fall armyworm, Spodopter frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), and southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera: Crambidae), cause major economic losses each year in maize, Zea mays L. A previous study identified quantitative trait loci (QTL) contributing to reduced leaf-feeding damage by these insects in the maize line Mp704. This study was initiated to identify QTL and their interactions associated with first generation leaf-feeding damage by fall armyworm and southwestern corn borer. QTL associated with fall armyworm and southwestern corn borer resistance in resistant line Mp708 were identified and compared with Mp704. Multiple trait analysis (MTA) of both data sets was then used to identify the most important genetic regions affecting resistance to fall armyworm and southwestern corn borer leaf-feeding damage. Genetic models containing four and seven QTL explained southwestern corn borer and fall armyworm resistance, respectively, in Mp708. Key genomic regions on chromosomes 1, 5, 7, and 9 were identified by MTA in Mp704 and Mp708 that confer resistance to both fall armyworm and southwestern corn borer. QTL regions on chromosomes 1, 5, 7, and 9 contained resistance to both insects and were present in both resistant lines. These regions correspond with previously identified QTL related to resistance to other lepidopteran insects, suggesting that broad-spectrum resistance to leaf feeding is primarily controlled by only a few genetic regions in this germplasm.  相似文献   

14.
The organization of the retrocerebral gland system in larvae of six species of Lepidoptera belonging to the family Pyralidae was compared using light and electron microscopy. We have demonstrated for the first time the presence of separate corpora cardiaca and corpora allata in the following economically important borers: the southwestern corn borer, Diatraea grandiosella, the sugar cane borer, Diatraea saccharalis, the European corn borer, Ostrinia nubilalis, and the rice stalk borer, Chilo plejadellus. In these species a long nervus corporis allati (ca. 300 μm) runs from the corpus cardiacum to the corpus allatum which is attached to the duct of the mandibular gland.The identity of the corpora allata of D. grandiosella was confirmed by transplantation. Corpora allata removed from pre-diapausing larvae and implanted into the haemocoele of early last stage non-diapausing larvae led to a high incidence of supernumerary larval rather than pupal ecdyses.  相似文献   

15.
Epizootiological studies of Nosema pyrausta in natural European corn borer populations show that while vertical transmission is the primary way in which N. pyrausta is transferred from one host generation to the next, it is horizontal transmission that is responsible for the annual build-up of infection in each nonoverlapping generation. During the first generation, larval corn borer migration to adjacent corn stalks is minimal and increases in the prevalence of N. pyrausta within the population result from horizontal transmission of infection among borers that inhabit the same stalk. During the second generation, corn borer larvae actively disperse to other corn plants and this results in an increased level of infection. Factors which facilitate pathogen dispersal in this generation include (1) higher host densities, (2) longer periods of larval development, (3) lower mortality among young larvae, and (4) possible mechanical transmission by the braconid parasitoid, Macrocentrus grandii.  相似文献   

16.
European and Mediterranean corn borers are two of the most economically important insect pests of maize (Zea mays L.) in North America and southern Europe, respectively. Cell wall structure and composition were evaluated in pith and rind tissues of resistant and susceptible inbred lines as possible corn borer resistance traits. Composition of cell wall polysaccharides, lignin concentration and composition, and cell wall bound forms of hydroxycinnamic acids were measured. As expected, most of the cell wall components were found at higher concentrations in the rind than in the pith tissues, with the exception of galactose and total diferulate esters. Pith of resistant inbred lines had significantly higher concentrations of total cell wall material than susceptible inbred lines, indicating that the thickness of cell walls could be the initial barrier against corn borer larvae attack. Higher concentrations of cell wall xylose and 8-O-4-coupled diferulate were found in resistant inbreds. Stem tunneling by corn borers was negatively correlated with concentrations of total diferulates, 8-5-diferulate and p-coumarate esters. Higher total cell wall, xylose, and 8-coupled diferulates concentrations appear to be possible mechanisms of corn borer resistance.  相似文献   

17.
亚洲玉米螟与欧洲玉米螟混生区的研究   总被引:2,自引:0,他引:2  
生殖隔离试验、形态鉴定、网室内性信息素活性反应和食性试验的结果表明 :张家口苍耳中的玉米螟与新疆伊宁的欧洲玉米螟同种 ,而为害玉米的优势种与广东阳山的亚洲玉米螟同种。张家口为害玉米的种群中 ,有部分雄蛾对欧洲玉米螟性信息素及苍耳中的雌处女蛾具有反应。苍耳和玉米中的种群在玉米、谷子、高梁、苍耳、草和大马蓼等 6种寄主上均可产卵和取食为害 ,并能正常完成生活史。研究结果证实张家口为亚洲玉米螟和欧洲玉米螟混生区 ,而且在玉米中很可能有少量欧洲玉米螟与亚洲玉米螟混生。  相似文献   

18.
Transgenic maize [Zea mays L. (Poaceae)] expressing Bacillus thuringiensis proteins (Bt maize) has become the most important tool for managing stalk borers in maize in the USA. The current strategy for delaying the evolution of resistance in target insects for Bt maize is referred to as high dose/refuge strategy. A key requirement of the strategy is that initial resistance allele frequencies in field insect populations are low (e.g., <0.001). More than 200 iso‐line families of the southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera: Crambidae), a major target stalk borer pest of Bt maize, were developed from Louisiana populations and evaluated for Bt resistance using a modified F2 screening method during 2005. No major resistance alleles were detected in these populations. The results showed that the expected Bt resistance allele frequency in the Louisiana populations was <0.0035 with 95% probability and a detection power of 83.9 ± 0.6%. The F2 screen indicates that Bt resistance allele frequencies in D. grandiosella are low among the Louisiana populations and should meet the rare resistance allele requirement of the ‘high dose/refuge’ strategy.  相似文献   

19.
Aflatoxin, a potent carcinogen, is produced by the fungus Aspergillus flavus Link: Fr. Drought, high temperatures, and insect damage contribute to increased levels of aflatoxin contamination in corn, Zea mays L. Plant resistance is widely considered a desirable method of reducing aflatoxin contamination. Germplasm lines with aflatoxin resistance have been developed. This investigation was undertaken to determine whether crosses among these lines exhibited resistance to southwestern corn borer, Diatraea grandiosella Dyar, and to assess the effects of southwestern corn borer feeding on aflatoxin accumulation. Differences in ear damage among southwestern corn borer infested hybrids were significant. Estimates of general combining ability effects indicated that the lines Mp80:04, Mp420, and Mp488 contributed to reduced ear damage, and SC213 and T165 contributed to greater damage when used in hybrids. Mean aflatoxin levels were 254 ng/g for hybrids infested with southwestern corn borer larvae and 164 ng/g for noninfested hybrids in 2000 when environmental conditions were conducive to aflatoxin production. In contrast, the overall mean aflatoxin level for southwestern corn borer infested hybrids was only 5 ng/g in 1999 when environmental conditions did not favor aflatoxin accumulation. Crosses that included lines selected for aflatoxin resistance as parents (Mp80:04 and Mp313E) exhibited lower levels of aflatoxin contamination both with and without southwestern corn borer infestation in 2000. Only the experimental line Mp80:04 contributed significantly to both reduced southwestern corn borer damage and reduced aflatoxin contamination.  相似文献   

20.
The proteins of the fat body of non-diapausing, pre-diapausing, and newly-diapaused larvae of the southwestern corn borer, Diatraea grandiosella, were examined. Since a low titre of juvenile hormone (JH) is present in the haemolymph throughout the final instar of non-diapausing larvae, the hormone does not appear to stimulate the pre-metamorphic synthesis of proteins. In contrast, the high titre of JH in the haemolymph during the final instar of pre-diapausing larvae appears to stimulate the synthesis of selected proteins. For example, pre-diapausing larvae store in their fat body a low molecular weight protein which has been named the ‘diapause-associated protein’. When non-diapausing larvae were treated topically with C17-JH or a JH mimic, from 50 to 70% entered a diapause-like state as fully grown larvae. These hormone-treated larvae accumulated the diapause-associated protein and a high molecular weight protein in their fat bodies. Both of these proteins were shown to be released from the fat body of newly-diapaused larvae in vitro, and may function in the haemolymph during diapause. The high molecular weight protein, isolated from the haemolymph, was shown to contain neutral and polar lipids, including biochromes. Its storage in the fat body and release into the haemolymph may be essential for the transport of lipids during diapause. The fat body proteins of newly-diapaused larvae of the southern cornstalk borer, Diatraea crambidiodes, were also examined electrophoretically. They were found to contain a similar protein pattern to that of D. grandiosella, including the presence of a diapause-associated protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号