首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yakovlev G  Hirst J 《Biochemistry》2007,46(49):14250-14258
NADH-ubiquinone oxidoreductase (complex I) is the first enzyme of the respiratory electron transport chain in mitochondria. It conserves the energy from NADH oxidation, coupled to ubiquinone reduction, as a proton motive force across the inner membrane. Complex I catalyzes NADPH oxidation, NAD+ reduction, and hydride transfers from reduced to oxidized nicotinamide nucleotides also. Here, we investigate the transhydrogenation reactions of complex I, using four different nucleotide pairs to encompass a range of reaction rates. Our experimental data are described accurately by a ping-pong mechanism with double substrate inhibition. Thus, we contend that complex I contains only one functional nucleotide binding site, in agreement with recent structural information, but in disagreement with previous mechanistic models which have suggested that two different binding sites are employed to catalyze the two half reactions. We apply the Michaelis-Menten equation to describe the productive states formed when the nucleotide and the active-site flavin mononucleotide have complementary oxidation states, and dissociation constants to describe the nonproductive states formed when they have the same oxidation state. Consequently, we derive kinetic and thermodynamic information about nucleotide binding and interconversion in complex I, relevant to understanding the mechanisms of coupled NADH oxidation and NAD+ reduction, and to understanding how superoxide formation by the reduced flavin is controlled. Finally, we discuss whether NADPH oxidation and/or transhydrogenation by complex I are physiologically relevant processes.  相似文献   

2.

Background  

Arsenic (As) is a natural metalloid, widely used in anthropogenic activities, that can exist in different oxidation states. Throughout the world, there are several environments contaminated with high amounts of arsenic where many organisms can survive. The most stable arsenical species are arsenate and arsenite that can be subject to chemically and microbiologically oxidation, reduction and methylation reactions. Organisms surviving in arsenic contaminated environments can have a diversity of mechanisms to resist to the harmful effects of arsenical compounds.  相似文献   

3.
Redox processes consisting of disproportionation and syn-proportionation are reviewed with special attention to metal complexes containing carbon-based ligands, i.e. carbon monoxide or unsaturated hydrocarbons. An introduction and a survey of reactions aimed to show the large applicability of syn-proportionation reactions in the field of coordination chemistry, is followed by examples of the use of these redox processes for the preparation of catalytic precursors. The latter studies derive from the idea that if a syn-proportionation reaction can be carried out between two complexes containing different metals in different oxidation states, inter-metallic systems could be formed which may act as active catalysts, e.g. for polymerization reactions.  相似文献   

4.
Several topics are dealt with in discussing the reactions of molecular oxygen, but a common goal is pursued in each: to try to understand the reactions in terms of the fundamental properties of the oxygen molecule, and of the other reactants. The paper first describes the electronic structure of oxygen and of two low-lying electronically excited states. Concern with the low-lying electronically excited states is no longer the sole property of spectroscopists; recently, evidence has been presented for the participation of such activated molecules in chemical reactions. The chemistry of oxygen is dominated by the fact that the molecule in the ground state has two unpaired electrons, whereas the products of oxidation in many important reactions have zero spin. In its reactions with transition metal ions the restrictions imposed by the spin state of the oxygen molecule are easily circumvented. A number of reactions of oxygen with metal ions have been studied in considerable detail; conclusions on basic aspects of the reaction mechanism are outlined. Among the most interesting reactions of oxygen are those in which it is reversibly absorbed by reducing agents. Reversible absorption to form a peroxide in the bound state is possible; some of the conditions which must be fulfilled by a reducing system to qualify as storing oxygen in this way are reasonably well understood and are here enunciated. Little has been done on the formation of oxygen from water; some factors involved in this process are discussed.  相似文献   

5.
The microscopic probabilistic model has been introduced to explain the kinetics of very slow oxidation of low-density lipoprotein (LDL) from human plasma. The LDL oxidation, carried out in very unfavorable conditions, is assumed to be initiated by the traces of the transition-metal ions associated with the lipoprotein. The substrates for the metal-ion attack are alpha-tocopherol and the pre-formed lipid hydroperoxide. The theory assumes oscillation of the metal ions and alpha-tocopherol from the oxidized to the reduced states. In this model alpha-tocopherol acts as a pro-oxidant. The entire oxidation process consists of rare bursts of events in individual LDL particles. The reactions within the particles are treated in terms of probabilities of individual active species to participate in a specified reaction. The circular flow of the radical reactions could be visualized as circular flow of microscopic probabilities. The empirical, macroscopic quantities are quantitatively related with the microscopic probabilities, determined by a set of five adjustable parameters. The differential equations describing the initial radical generation rate and the rates of change of concentration of oxygen, hydroperoxide, co-antioxidant and trapped radicals in an LDL system are numerically solved in a finite difference approach.  相似文献   

6.
It is proposed that abiotic synthesis of organic compounds occurs in metastable states. These states are permitted by kinetic barriers which inhibit the approach to stable equilibrium in the C-H-O-N system. Evidence for metastable equilibrium among organic compounds in sedimentary basins is reviewed, and further evidence is elucidated from hydrous pyrolysis experiments reported in the literature. This analysis shows that at hydrothermal conditions, organic compounds are formed or destroyed primarily through oxidation/reduction reactions, and that the role of temperature is to lower the kinetic barriers to these reactions. These lines of evidence allow the development of a scenario in which abiotic synthesis can occur at hydrothermal conditions through the reduction of CO2 and N2. This scenario can be tested quantitatively with distribution of species calculations as functions of temperature, pressure, hydrogen fugacity (fH2) and initial composition. One example of such a test is given for an early, sudden outgassing of the Earth, in which CO2, H2O, and N2 are transported from the mantle to the atmosphere by hydrothermal solutions. Activities of metastable aqueous organic species which form as a consequence of this process are evaluated at conditions appropriate for seafloor hydrothermal systems, and are found to maximize at about 200 °C and between the oxidation states set by two mineral assemblages common in the oceanic crust.  相似文献   

7.
The di-iron carboxylate proteins constitute a diverse class of non-heme iron enzymes performing a multitude of redox reactions. These reactions usually involve high-valent Fe-oxo species and are thought to be controlled by carboxylate shifts. Owing to their short lifetime, the intermediate structures have so far escaped structural characterization by X-ray crystallography. In an attempt to map the carboxylate conformations available to the protein during different redox states and different ligand environments, we have studied metal-substituted forms of the R2 protein of ribonucleotide reductase from Escherichia coli. In the present work we have solved the crystal structures of Mn-substituted R2 oxidized in two different ways. Oxidation was performed using either nitric oxide or a combination of hydrogen peroxide and hydroxylamine. The two structures are virtually identical, indicating that the oxidation states are the same, most likely a mixed-valent MnII-MnIII centre. One of the carboxylate ligands (D84) adopts a new, so far unseen, conformation, which could participate in the mechanism for radical generation in R2. E238 adopts a bridging-chelating conformation proposed to be important for proper O2 activation but not previously observed in the wild-type enzyme. Probable catalase activity was also observed during the oxidation with H2O2, indicating mechanistic similarities to the di-Mn catalases.  相似文献   

8.
Various unstable intermediate oxidation states have been postulated in the metabolic activation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl pyridinium ion. We now report the first direct observation of these free radical intermediates by pulse radiolysis and flash photolysis. Studies are described of various reactions of such species, in particular with dopamine whose autoxidation to dopamine quinone is reported to be potentiated by 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine.  相似文献   

9.
The lignin peroxidase (ligninase) of Phanerochaete chrysosporium catalyzes the oxidation of a variety of lignin-related compounds. Here we report that this enzyme also catalyzes the oxidation of certain aromatic pollutants and compounds related to them, including polycyclic aromatic hydrocarbons with ionization potentials less than or equal to approximately 7.55 eV. This result demonstrates that the H2O2-oxidized states of lignin peroxidase are more oxidizing than the analogous states of classical peroxidases. Experiments with pyrene as the substrate showed that pyrene-1,6-dione and pyrene-1,8-dione are the major oxidation products (84% of total as determined by high performance liquid chromatography), and gas chromatography/mass spectrometry analysis of ligninase-catalyzed pyrene oxidations done in the presence of H2(18)O showed that the quinone oxygens come from water. We found that whole cultures of P. chrysosporium also transiently oxidize pyrene to these quinones. Experiments with dibenzo[p]dioxin and 2-chlorodibenzo[p]dioxin showed that they are also substrates for ligninase. The immediate product of dibenzo[p]dioxin oxidation is the dibenzo[p]dioxin cation radical, which was observed in enzymatic reactions by its electron spin resonance and visible absorption spectra. The cation radical mechanism of ligninase thus applies not only to lignin, but also to other environmentally significant aromatics.  相似文献   

10.
Proteins comprise approximately 68% of the dry weight of cells and tissues and are therefore potentially major targets for oxidative damage. Two major types of processes can occur during the exposure of proteins to UV or visible light. The first of these involves direct photo-oxidation arising from the absorption of UV radiation by the protein, or bound chromophore groups, thereby generating excited states (singlet or triplets) or radicals via photo-ionisation. The second major process involves indirect oxidation of the protein via the formation and subsequent reactions of singlet oxygen generated by the transfer of energy to ground state (triplet) molecular oxygen by either protein-bound, or other, chromophores. Singlet oxygen can also be generated by a range of other enzymatic and non-enzymatic reactions including processes mediated by heme proteins, lipoxygenases, and activated leukocytes, as well as radical termination reactions. This paper reviews the data available on singlet oxygen-mediated protein oxidation and concentrates primarily on the mechanisms by which this excited state species brings about changes to both the side-chains and backbone of amino acids, peptides, and proteins. Recent work on the identification of reactive peroxide intermediates formed on Tyr, His, and Trp residues is discussed. These peroxides may be important propagating species in protein oxidation as they can initiate further oxidation via both radical and non-radical reactions. Such processes can result in the transmittal of damage to other biological targets, and may play a significant role in bystander damage, or dark reactions, in systems where proteins are subjected to oxidation.  相似文献   

11.
Success with artificial photosynthesis requires control of the photoinduced electron transfer reactions leading to charge-separated states. In this review, some new ideas to optimize such charge-separated states in ruthenium(II) polypyridyl based three-component systems with respect to: (1) long lifetimes and (2) ability to store sufficient energy for catalytic water splitting, are presented. To form long-lived charge-separated states, a manganese complex as electron donor and potential catalyst for water oxidation has been used. The recombination reaction is unusually slow because it occurs deep down in the Marcus normal region as a consequence of the large bond reorganization following the manganese oxidation. For the creation of high energy charge-separated states, a strategy using bichromophoric systems is presented. By consecutive excitations of the two chromophores, the formation of charge-separated states that lie higher in energy than either of the two excited states could in theory be achieved, the first results of which will be discussed in this review.  相似文献   

12.
The iron (IV), (V) and (VI) oxidation states are of great interest because of their role in catalytic oxidation/ hydroxylation reactions. This report summarizes the information currently available on the kinetic and chemical properties of the water-soluble ions of FeO24-, FeO3-4 and FeO4-4, their prorogated forms. and/or simple complex derivatives. The discussion includes their radiation-induced formation, decay kinetics, reactivity with other compounds, determination of their respective pKa, values as well as spectral properties.  相似文献   

13.
Photosystem II (PSII) is a pigment-protein complex of thylakoid membrane of higher plants, algae, and cyanobacteria where light energy is used for oxidation of water and reduction of plastoquinone. Light-dependent reactions (generation of excited states of pigments, electron transfer, water oxidation) taking place in PSII can lead to the formation of reactive oxygen species. In this review attention is focused on the problem of interaction of molecular oxygen with the donor site of PSII, where after the removal of manganese from the water-oxidizing complex illumination induces formation of long-lived states (P680 and TyrZ·) capable of oxidizing surrounding organic molecules to form radicals.  相似文献   

14.
Excited triplet states of organic chromophores, in particular aromatic ketones, are capable of inducing oxidation of a variety of organic compounds. These reactions probably play an important role in the degradation of organic contaminants in sunlit natural waters. The effect of dissolved natural organic matter (DOM) on the oxidation rate of twenty-two aquatic organic contaminants, including phenols, anilines, phenylurea and s-triazine herbicides, and some pharmaceuticals, was investigated using photoexcited benzophenone-4-carboxylate (CBBP) as the oxidant. For about half of the studied compounds, a decrease in depletion rate was observed in the presence of Suwannee River fulvic acid, used as a reference DOM. Also, depletion rates decreased with increasing DOM concentration, as verified for five selected compounds. Such an inhibitory effect of DOM on oxidation is attributed to its antioxidant properties, whereby oxidation intermediates of the contaminants are supposed to be reduced back to their parent compounds. The presented screening study shows that DOM may be a relevant factor for inhibiting the oxidation of many organic contaminants in surface waters and possibly in engineered water treatment systems.  相似文献   

15.
The mechanism by which Ant2p [2-(3-chloro-4-trifluoromethyl)anilino-3, 5-dinitrothiophene] inhibits the oxygen evolution capacity of chloroplasts is thought to be due to a rapid reduction of the S2 and S3 oxidation states of the oxygen-evolving complex mediated by the oxidation of endogenous donors such as cytochrome b559. The results presented in this paper show that the degree of inhibition by Ant2p of the photosystem 2-supported electron transfer reactions, registered by the light-dependent rate of dichlorophenolindophenol reduction, varies according to the actinic light intensity. Moreover, a similar intensity-dependence can be detected in the extent of the Ant2p-induced cytochrome b559HP photo-oxidation. We show, however, that the dependence of the cytochrome oxidation is not due to the oxidation per se, but reflects changes in the high light-driven re-reduction reaction. The close correlation between the two Ant2p reactions is interpreted as indicating that the effect of Ant2p might be due to an inhibition of the S-state turnovers and not necessarily due to a deactivation process.  相似文献   

16.
Surprising cofactors in metalloenzymes   总被引:2,自引:0,他引:2  
Transition metal complexes are located at the active sites of a number of enzymes involved in intriguing biochemical reactions. These complexes can exhibit a wide variety of chemical reactivity due to the ease at which transition metals can adopt different coordination environments and oxidation states. Crystallography has been a powerful technique for examining the structure and conformational variability of complex biological metallocenters. In particular, the past ten years have provided a wealth of structural information and several surprises concerning the metallocenters at the active sites of nitrogenase, hydrogenase and carbon monoxide dehydrogenase/acetyl-coenzyme A synthase.  相似文献   

17.
The reactions of glutathione (GSH) and glutathione radicals with a series of methyl-substituted 1,4-benzoquinones and 1,4-benzoquinone have been studied. It was found that by mixing excess benzoquinone with glutathione at pH above 6.5, the products formed were complex and unstable. All of the other experiments were carried out at pH 6.0, where the main product was stable for several hours. Stopped-flow analysis allowed the measurement of the rates of the rapid reactions between GSH and the quinones, and the products were monitored by High Performance Liquid Chromatography (HPLC). The rates of the reactions vary by five orders of magnitude and must be influenced by steric factors as well as changes in the redox states. It was observed that simple hydroquinones were not formed when the different benzoquinones were mixed with excess GSH and suggests that the initial reaction is addition/reduction rather than electron transfer. In the presence of excess quinone, the hydroquinone of the glutathione conjugate is oxidized back to its quinone. The rates of the reaction were measured. By using the technique of pulse radiolysis, it was possible to measure the reduction of the quinones by GSSG.- and the oxidation of hydroquinones by GS(.). It is proposed that the appearance of GSSG in reactions of quinones with glutathione could be due to oxidation of the hydroquinone by oxygen and the subsequent superoxide or H2O2 promoting the oxidation of GSH to GSSG.  相似文献   

18.
Oxidase and oxygenase enzymes allow the use of relatively unreactive O2 in biochemical reactions. Many of the mechanistic strategies used in nature for this key reaction are represented within the 2-histidine-1-carboxylate facial triad family of non-heme Fe(II)-containing enzymes. The open face of the metal coordination sphere opposite the three endogenous ligands participates directly in the reaction chemistry. Here, data from several studies are presented showing that reductive O2 activation within this family is initiated by substrate (and in some cases cosubstrate or cofactor) binding, which then allows coordination of O2 to the metal. From this starting point, the O2 activation process and the reactions with substrates diverge broadly. The reactive species formed in these reactions have been proposed to encompass four oxidation states of iron and all forms of reduced O2 as well as several of the reactive oxygen species that derive from O-O bond cleavage.  相似文献   

19.
The reactions between hydrogen peroxide and hemeproteins have been coupled to the oxidation of dihydroriboflavin so as to provide a simple method for measuring the rate constant of hemeprotein peroxidation. Dihydroriboflavin rapidly reduces the higher oxidation states of iron and the hydroxy radicals which are the products of the hemeprotein/hydrogen peroxide reaction. The rapid reduction of these highly reactive compounds prevents the hemeproteins from undergoing irreversible chemical modifications and thus allows the kinetics of peroxidation to be studied. The rate constants at pH 7.2 and 23 degrees C for the peroxidation of horseradish peroxidase, myoglobin, and ferrocytochrome c are found to be 6.2 x 10(6), 7.5 x 10(4), and 8 x 10(3)M-1s-1, respectively. These studies suggest that reduced riboflavin might efficiently protect cells from oxidative damage such as that occurring in inflammation and reperfusion injury.  相似文献   

20.
Glow discharge was applied to the aqueous solution containing ammonia and aliphatic carboxylic acids. Several amino acids were synthesized by the direct amination reaction. Simultaneously stepwise oxidation reactions of the substrates and the products were also took place. The time courses of the amination reactions and also the oxidation reactions were studied. These results indicate that the amination and oxidation reactions induced by the electric discharge are initiated by hydroxyl radicals which are produced by the electric discharge through the decomposition of water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号