首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Karp PD  Paley S  Zhu J 《Bioinformatics (Oxford, England)》2001,17(6):526-32; discussion 533-4
PROBLEM STATEMENT: We have studied the relationships among SWISS-PROT, TrEMBL, and GenBank with two goals. First is to determine whether users can reliably identify those proteins in SWISS-PROT whose functions were determined experimentally, as opposed to proteins whose functions were predicted computationally. If this information was present in reasonable quantities, it would allow researchers to decrease the propagation of incorrect function predictions during sequence annotation, and to assemble training sets for developing the next generation of sequence-analysis algorithms. Second is to assess the consistency between translated GenBank sequences and sequences in SWISS-PROT and TrEMBL. RESULTS: (1) Contrary to claims by the SWISS-PROT authors, we conclude that SWISS-PROT does not identify a significant number of experimentally characterized proteins. (2) SWISS-PROT is more incomplete than we expected in that version 38.0 from July 1999 lacks many proteins from the full genomes of important organisms that were sequenced years earlier. (3) Even if we combine SWISS-PROT and TrEMBL, some sequences from the full genomes are missing from the combined dataset. (4) In many cases, translated GenBank genes do not exactly match the corresponding SWISS-PROT sequences, for reasons that include missing or removed methionines, differing translation start positions, individual amino-acid differences, and inclusion of sequence data from multiple sequencing projects. For example, results show that for Escherichia coli, 80.6% of the proteins in the GenBank entry for the complete genome have identical sequence matches with SWISS-PROT/TrEMBL sequences, 13.4% have exact substring matches, and matches for 4.1% can be found using BLAST search; the remaining 2.0% of E.coli protein sequences (most of which are ORFs) have no clear matches to SWISS-PROT/TrEMBL. Although many of these differences can be explained by the complexity of the DB, and by the curation processes used to create it, the scale of the differences is notable.  相似文献   

2.
3.
4.
5.
GenBank.   总被引:2,自引:0,他引:2       下载免费PDF全文
The GenBank (Registered Trademark symbol) sequence database incorporates DNA sequences from all available public sources, primarily through the direct submission of sequence data from individual laboratories and from large-scale sequencing projects. Most submitters use the BankIt (Web) or Sequin programs to format and send sequence data. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive worldwide coverage. GenBank data is accessible through NCBI's integrated retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome and protein structure information. MEDLINE (Registered Trademark symbol) s from published articles describing the sequences are included as an additional source of biological annotation through the PubMed search system. Sequence similarity searching is offered through the BLAST series of database search programs. In addition to FTP, Email, and server/client versions of Entrez and BLAST, NCBI offers a wide range of World Wide Web retrieval and analysis services based on GenBank data. The GenBank database and related resources are freely accessible via the URL: http://www.ncbi.nlm.nih.gov  相似文献   

6.
The World Wide Web server of the PBIL (P?le Bioinformatique Lyonnais) provides on-line access to sequence databanks and to many tools of nucleic acid and protein sequence analyses. This server allows to query nucleotide sequence banks in the EMBL and GenBank formats and protein sequence banks in the SWISS-PROT and PIR formats. The query engine on which our data bank access is based is the ACNUC system. It allows the possibility to build complex queries to access functional zones of biological interest and to retrieve large sequence sets. Of special interest are the unique features provided by this system to query the data banks of gene families developed at the PBIL. The server also provides access to a wide range of sequence analysis methods: similarity search programs, multiple alignments, protein structure prediction and multivariate statistics. An originality of this server is the integration of these two aspects: sequence retrieval and sequence analysis. Indeed, thanks to the introduction of re-usable lists, it is possible to perform treatments on large sets of data. The PBIL server can be reached at: http://pbil.univ-lyon1.fr.  相似文献   

7.
8.
MOTIVATION: Information about a particular protein or protein family is usually distributed among multiple databases and often in more than one entry in each database. Retrieval and organization of this information can be a laborious task. This task is complicated even further by the existence of alternative terms for the same concept. RESULTS: The PDB, SWISS-PROT, ENZYME, and CATH databases have been imported into a combined relational database, BIOMOLQUEST: A powerful search engine has been built using this database as a back end. The search engine achieves significant improvements in query performance by automatically utilizing cross-references between the legacy databases. The results of the queries are presented in an organized, hierarchical way.  相似文献   

9.
HSSP (http: //www.sander.embl-ebi.ac.uk/hssp/) is a derived database merging structure (3-D) and sequence (1-D) information. For each protein of known 3D structure from the Protein Data Bank (PDB), we provide a multiple sequence alignment of putative homologues and a sequence profile characteristic of the protein family, centered on the known structure. The list of homologues is the result of an iterative database search in SWISS-PROT using a position-weighted dynamic programming method for sequence profile alignment (MaxHom). The database is updated frequently. The listed putative homologues are very likely to have the same 3D structure as the PDB protein to which they have been aligned. As a result, the database not only provides aligned sequence families, but also implies secondary and tertiary structures covering 33% of all sequences in SWISS-PROT.  相似文献   

10.
MHCBN: a comprehensive database of MHC binding and non-binding peptides   总被引:6,自引:0,他引:6  
MHCBN is a comprehensive database of Major Histocompatibility Complex (MHC) binding and non-binding peptides compiled from published literature and existing databases. The latest version of the database has 19 777 entries including 17 129 MHC binders and 2648 MHC non-binders for more than 400 MHC molecules. The database has sequence and structure data of (a) source proteins of peptides and (b) MHC molecules. MHCBN has a number of web tools that include: (i) mapping of peptide on query sequence; (ii) search on any field; (iii) creation of data sets; and (iv) online data submission. The database also provides hypertext links to major databases like SWISS-PROT, PDB, IMGT/HLA-DB, GenBank and PUBMED.  相似文献   

11.
EcoGene: a genome sequence database for Escherichia coli K-12   总被引:5,自引:1,他引:4       下载免费PDF全文
The EcoGene database provides a set of gene and protein sequences derived from the genome sequence of Escherichia coli K-12. EcoGene is a source of re-annotated sequences for the SWISS-PROT and Colibri databases. EcoGene is used for genetic and physical map compilations in collaboration with the Coli Genetic Stock Center. The EcoGene12 release includes 4293 genes. EcoGene12 differs from the GenBank annotation of the complete genome sequence in several ways, including (i) the revision of 706 predicted or confirmed gene start sites, (ii) the correction or hypothetical reconstruction of 61 frame-shifts caused by either sequence error or mutation, (iii) the reconstruction of 14 protein sequences interrupted by the insertion of IS elements, and (iv) pre-dictions that 92 genes are partially deleted gene fragments. A literature survey identified 717 proteins whose N-terminal amino acids have been verified by sequencing. 12 446 cross-references to 6835 literature citations and s are provided. EcoGene is accessible at a new website: http://bmb.med.miami.edu/EcoGene/EcoWeb. Users can search and retrieve individual EcoGene GenePages or they can download large datasets for incorporation into database management systems, facilitating various genome-scale computational and functional analyses.  相似文献   

12.
Mitochondrial DNA, widely applied in studies of population differentiation in animals, is rarely used in plants because of its slow rate of sequence evolution and its complex genomic organization. We demonstrate the utility of two polymorphic mitochondrial tandem repeats located in the second intron of the nad1 gene of Norway spruce. Most of the size variants showed pronounced population differentiation and a distinct geographical distribution. A GenBank search revealed that mitochondrial tandem repeats occur in a broad range of plant species and may serve as a novel molecular marker for unravelling population processes in plants.  相似文献   

13.
Among the various databases dedicated to the identification of protein families and domains, PROSITE is the first one created and has continuously evolved since. PROSITE currently consists of a large collection of biologically meaningful motifs that are described as patterns or profiles, and linked to documentation briefly describing the protein family or domain they are designed to detect. The close relationship of PROSITE with the SWISS-PROT protein database allows the evaluation of the sensitivity and specificity of the PROSITE motifs and their periodic reviewing. In return, PROSITE is used to help annotate SWISS-PROT entries. The main characteristics and the techniques of family and domain identification used by PROSITE are reviewed in this paper.  相似文献   

14.
The EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/) is maintained at the European Bioinformatics Institute (EBI) in an international collaboration with the DNA Data Bank of Japan (DDBJ) and GenBank at the NCBI (USA). Data is exchanged amongst the collaborating databases on a daily basis. The major contributors to the EMBL database are individual authors and genome project groups. Webin is the preferred web-based submission system for individual submitters, whilst automatic procedures allow incorporation of sequence data from large-scale genome sequencing centres and from the European Patent Office (EPO). Database releases are produced quarterly. Network services allow free access to the most up-to-date data collection via ftp, email and World Wide Web interfaces. EBI's Sequence Retrieval System (SRS), a network browser for databanks in molecular biology, integrates and links the main nucleotide and protein databases plus many specialized databases. For sequence similarity searching a variety of tools (e.g. Blitz, Fasta, BLAST) are available which allow external users to compare their own sequences against the latest data in the EMBL Nucleotide Sequence Database and SWISS-PROT.  相似文献   

15.
EpoDB is a database of genes expressed in vertebrate red blood cells. It is also a prototype for the creation of cell and tissue-specific databases from multiple external sources. The information in EpoDB obtained from GenBank, SWISS-PROT, Transfac, TRRD and GERD is curated to provide high quality data for sequence analysis aimed at understanding gene regulation during erythropoiesis. New protocols have been developed for data integration and updating entries. Using a BLAST-based algorithm, we have grouped GenBank entries representing the same gene together. This sequence similarity protocol was also used to identify new entries to be included in EpoDB. We have recently implemented our database in Sybase (relational tables) in addition to SICStus Prolog to provide us with greater flexibility in asking complex queries that utilize information from multiple sources. New additions to the public web site (http://www.cbil.upenn.edu/epodb) for accessing EpoDB are the ability to retrieve groups of entries representing different variants of the same gene and to retrieve gene expression data. The BLAST query has been enhanced by incorporating BLASTView, an interactive and graphical display of BLAST results. We have also enhanced the queries for retrieving sequence from specified genes by the addition of MEME, a motif discovery tool, to the integrated analysis tools which include CLUSTALW and TESS.  相似文献   

16.
TMCompare is an alignment and visualization tool for comparison of sequence information for membrane proteins contained in SWISS-PROT entries, with structural information contained in PDB files. The program can be used for: detection of breaks in alpha helical structure of transmembrane regions; examination of differences in coverage between PDB and SWISS-PROT files; examination of annotation differences between PDB files and associated SWISS-PROT files; examination and comparison of assigned PDB alpha helix regions and assigned SWISS-PROT transmembrane regions in linear sequence (one letter code) format; examination of these differences in 3D using the CHIME plugin, allowing; analysis of the alpha and non-alpha content of transmembrane regions. AVAILABILITY: TMCompare is available for use through selection of a query protein via the internet (http://www.membraneproteins.org/TMCompare) CONTACT: tmcompare@membraneproteins.org  相似文献   

17.
The ProtoNet site provides an automatic hierarchical clustering of the SWISS-PROT protein database. The clustering is based on an all-against-all BLAST similarity search. The similarities' E-score is used to perform a continuous bottom-up clustering process by applying alternative rules for merging clusters. The outcome of this clustering process is a classification of the input proteins into a hierarchy of clusters of varying degrees of granularity. ProtoNet (version 1.3) is accessible in the form of an interactive web site at http://www.protonet.cs.huji.ac.il. ProtoNet provides navigation tools for monitoring the clustering process with a vertical and horizontal view. Each cluster at any level of the hierarchy is assigned with a statistical index, indicating the level of purity based on biological keywords such as those provided by SWISS-PROT and InterPro. ProtoNet can be used for function prediction, for defining superfamilies and subfamilies and for large-scale protein annotation purposes.  相似文献   

18.
SUMMARY: One of the distinguishing criteria of the SWISS-PROT protein sequence data bank is minimal redundancy. The introduction of TrEMBL as a supplementary database ensured the comprehensiveness of SWISS-PROT and TrEMBL but introduced some degree of redundancy. We developed a strategy to identify the redundancy present within and between SWISS-PROT and TrEMBL and its subsequent removal. AVAILABILITY: The tools mentioned in this paper are available on request.  相似文献   

19.
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003   总被引:56,自引:4,他引:52  
The SWISS-PROT protein knowledgebase (http://www.expasy.org/sprot/ and http://www.ebi.ac.uk/swissprot/) connects amino acid sequences with the current knowledge in the Life Sciences. Each protein entry provides an interdisciplinary overview of relevant information by bringing together experimental results, computed features and sometimes even contradictory conclusions. Detailed expertise that goes beyond the scope of SWISS-PROT is made available via direct links to specialised databases. SWISS-PROT provides annotated entries for all species, but concentrates on the annotation of entries from human (the HPI project) and other model organisms to ensure the presence of high quality annotation for representative members of all protein families. Part of the annotation can be transferred to other family members, as is already done for microbes by the High-quality Automated and Manual Annotation of microbial Proteomes (HAMAP) project. Protein families and groups of proteins are regularly reviewed to keep up with current scientific findings. Complementarily, TrEMBL strives to comprise all protein sequences that are not yet represented in SWISS-PROT, by incorporating a perpetually increasing level of mostly automated annotation. Researchers are welcome to contribute their knowledge to the scientific community by submitting relevant findings to SWISS-PROT at swiss-prot@expasy.org.  相似文献   

20.
PPMdb is a proteome database dedicated to proteins from plant plasma membranes. It provides comprehensive two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) maps, partial amino acid sequences and expression data. All this information is gathered and structured in a relational database, after being analyzed and annotated. PPMdb includes active links to related biological databases (EMBL, GenBank, GenPep, and SWISS-PROT and TrEMBL) as well as to MEDLINE abstracts. Information on specific protein spots can be displayed by clicking on the 2-D maps. In addition, users can query the database by accession number, protein name, pI and MW, and cellular location. Access to PPMdb is available at the following URL: http://sphinx.rug. ac.be:8080.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号