首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the green alga, Chlamydomonas, chloroplast DNA is maternally transmitted to the offspring. We previously hypothesized that the underlying molecular mechanism involves specific methylation of maternal gamete DNA before mating, protecting against degradation. To obtain direct evidence for this, we focused on a DNA methyltransferase, DMT1, which was previously shown to be localized in chloroplasts. The full-length DMT1 protein with a molecular mass of 150 kD was expressed in insect cells, and its catalytic activity was determined. In vitro assays using synthetic DNA indicated methylation of all cytosine residues, with no clear selectivity in terms of the neighboring nucleotides. Subsequently, transgenic paternal cells constitutively expressing DMT1 were constructed and direct methylation mapping assays of their DNA showed a clear nonselective methylation of chloroplast DNA. When transgenic paternal cells were crossed with wild-type maternal cells, the frequency of biparental and paternal offspring of chloroplasts increased up to 23% while between wild-type strains it was approximately 3%. The results indicate that DMT1 is a novel type of DNA methyltransferase with a nonselective cytosine methylation activity, and that chloroplast DNA methylation by DMT1 is one of factors influencing maternal inheritance of chloroplast genes.  相似文献   

2.
3.
This method has been developed to yield highly purified intact chloroplasts from Chlamydomonas reinhardtii. This procedure involves breaking cell-wall-deficient cells by passage through a narrow-bore syringe needle and purifying the intact chloroplasts by differential centrifugation and Percoll gradient centrifugation. This procedure can be completed in less than 3 h and is capable of generating relatively high yields of chloroplasts that should be useful for researchers studying the biochemistry and cell biology of C. reinhardtii chloroplasts.  相似文献   

4.
5.
The mechanism responsible for the enhancement of the thermal stability of the oxygen-evolving machinery of photosystem II during acclimation of Chlamydomonas reinhardtii to high temperatures such as 35 degrees C remains unknown. When cells that had been grown at 20 degrees C were transferred to 35 degrees C, the thermal stability of the oxygen-evolving machinery increased and within 8 h it was equivalent to that in cells grown initially at 35 degrees C. Such enhancement of thermal stability was prevented by cycloheximide and by lincomycin, suggesting that the synthesis de novo of proteins encoded by both the nuclear and the chloroplast genome was required for this process. No increase in thermal stability was observed when cells that had been grown at 35 degrees C were exposed to heat shock at 41 degrees C, optimum conditions for the induction of the synthesis of homologs of three heat shock proteins (Hsps), namely, Hsp60, Hsp70, and Hsp22. Moreover, no synthesis of these homologs of Hsps was induced at 35 degrees C. Thus it appears likely that Hsps are not involved in the enhancement of the thermal stability of the oxygen-evolving machinery.  相似文献   

6.
7.
Reporter genes have been successfully used in chloroplasts of higher plants, and high levels of recombinant protein expression have been reported. Reporter genes have also been used in the chloroplast of Chlamydomonas reinhardtii, but in most cases the amounts of protein produced appeared to be very low. We hypothesized that the inability to achieve high levels of recombinant protein expression in the C. reinhardtii chloroplast was due to the codon bias seen in the C. reinhardtii chloroplast genome. To test this hypothesis, we synthesized a gene encoding green fluorescent protein (GFP) de novo, optimizing its codon usage to reflect that of major C. reinhardtii chloroplast-encoded proteins. We monitored the accumulation of GFP in C. reinhardtii chloroplasts transformed with the codon-optimized GFP cassette (GFPct), under the control of the C. reinhardtii rbcL 5'- and 3'-UTRs. We compared this expression with the accumulation of GFP in C. reinhardtii transformed with a non-optimized GFP cassette (GFPncb), also under the control of the rbcL 5'- and 3'-UTRs. We demonstrate that C. reinhardtii chloroplasts transformed with the GFPct cassette accumulate approximately 80-fold more GFP than GFPncb-transformed strains. We further demonstrate that expression from the GFPct cassette, under control of the rbcL 5'- and 3'-UTRs, is sufficiently robust to report differences in protein synthesis based on subtle changes in environmental conditions, showing the utility of the GFPct gene as a reporter of C. reinhardtii chloroplast gene expression.  相似文献   

8.
Summary We have developed an efficient procedure for the disruption of Chlamydomonas chloroplast genes. Wild-type C. reinhardtii cells were bombarded with microprojectiles coated with a mixture of two plasmids, one encoding selectable, antibiotic-resistance mutations in the 16S ribosomal RNA gene and the other containing either the atpB or rbcL photosynthetic gene inactivated by an insertion of 0.48 kb of yeast DNA in the coding sequence. Antibiotic-resistant transformants were selected under conditions permissive for growth of nonphotosynthetic mutants. Approximately half of these transformants were initially heteroplasmic for copies of the disrupted atpB or rbcL genes integrated into the recipient chloroplast genome but still retained photosynthetic competence. A small fraction of the transformants (1.1% for atpB; 4.3% for rbcL) were nonphotosynthetic and homoplasmic for the disrupted gene at the time they were isolated. Single cell cloning of the initially heteroplasmic transformants also yielded nonphotosynthetic segregants that were homoplasmic for the disrupted gene. Polypeptide products of the disrupted atpB and rbcL genes could not be detected using immunoblotting techniques. We believe that any nonessential Chlamydomonas chloroplast gene, such as those involved in photosynthesis, should be amenable to gene disruption by cotransformation. The method should prove useful for the introduction of site-specific mutations into chloroplast genes and flanking regulatory sequences with a view to elucidating their function.  相似文献   

9.
10.
11.
The light-independent pathway of chlorophyll synthesis which occurs in some lower plants and algae is still largely unknown. We have characterized a chloroplast mutant, H13, of Chlamydomonas reinhardtii which is unable to synthesize chlorophyll in the dark and is also photosystem I deficient. The mutant has a 2.8 kb deletion as well as other rearrangements of its chloroplast genome. By performing particle gun mediated chloroplast transformation of H13 with defined wild-type chloroplast DNA fragments, we have identified a new chloroplast gene, chlN, coding for a 545 amino acid protein which is involved in the light-independent accumulation of chlorophyll, probably at the step of reduction of protochlorophyllide to chlorophyllide. The chlN gene is also found in the chloroplast genomes of liverwort and pine, but is absent from the chloroplast genomes of tobacco and rice.  相似文献   

12.
Over half of the chloroplast ribosomes isolated from growing cultures of Chlamydomonas reinhardtii are bound to chloroplast thylakoid membranes if completion of nascent polypeptide chains is prevented by chloramphenicol. The free chloroplast ribosomes are recovered in homogenate supernatants, and presumably originate from the chloroplast stroma. Only about 10% of these free chloroplast ribosomes are polyribosomes, even under conditions when 70% of free cytoplasm ribosomes are recovered as polyribosomes. The nonionic detergent Nonidet P-40 liberates atypical polyribosomes (Type I), from membranes, which require both ribonuclease and proteases for complete conversion to monomeric ribosomes. Thus Type I particles are held together by mRNA but are also held together by peptide bonds. These Type I polyribosomes probably are not bound to intact membrane, but might be bound to some protein-containing sub-membrane particle. The Type I polyribosomes are dissociated to ribosomal subunits by puromycin and high salt, and contained 0.2 to 1 nascent chain per ribosome. If membranes are treated with Nonidet and proteases at the same time, polyribosomes which are digested to monomeric ribosomes by ribonuclease alone (Type II) are obtained. Type II polyribosomes are smaller than Type I, and probably represent the true size distribution of polyribosomes on the membranes. At least 50% of the membrane-bound ribosomes are polyribosomes, since that much membrane bound chloroplast RNA is recovered as Type I or Type II polyribosomes.  相似文献   

13.
The chloroplasts ofChlamydomonas reinhardtii were transformed using a vector (paadAGUS4.1) that contained a spectinomycin-resistance gene (aadA) as a selectable gene, and bacterialuidA (GUS) as a reporter gene, and pea 4.1 kb D-loop containing sequence. The vector was introduced into the alga through particle gun bombardment. The transformed colonies were screened for the presence of foreign genes by Southern hybridization using GUS,aadA and 4.1 pea Ori probes. Expression ofaadA and GUS genes was detected in all colonies that were grown on spectinomycin. A detailed restriction analysis followed by southern hybridization of total genomic DNA using pea 4.1 kb D-loop as probe indicated that the D-loop sequence can serve in site-specific integration of foreign DNA due to high homology. Restriction analysis of different colonies showed that the foreign DNA was probably present in a mixture population of autonomous segment and integrated in the native chloroplast genome.  相似文献   

14.
B B Sears 《Plasmid》1980,3(1):18-34
In the investigations reported here, the length of zygospore incubation or “maturation” prior to the induction of meiosis was found to affect the inheritance pattern of chloroplast genes. The frequency of zygospores transmitting chloroplast alleles from both parents drops with increasing zygospore age following mating, while the frequencies of zygospores homoplasmic for maternal or paternal chloroplast alleles increase correspondingly. Since there is a negligible reduction in viability, zygospores which are initially biparental appear to become pure for the chloroplast genes from one or the other parent prior to the occurrence of cell division. These results are amplified in crosses of mt+ cells which have been irradiated with ultraviolet (uv) light or grown in the presence of the base analog, 5-fluorodeoxyuridine, which also perturbs maternal inheritance. Low doses of uv irradiation, applied to zygospores derived from crosses in which the maternal parent was also irradiated prior to mating, increase the biparental zygospore frequency while reducing the proportion of maternal zygospores. This indicates that at least some maternal zygospore clones are actually derived from zygospores which still contain both parental chloroplast genomes prior to the induction of germination. Thus, a subclass of zygospores must contain paternal chloroplast genomes which are either eliminated upon germination or are not expressed in the resulting zygospore clone. Tetrad analysis of biparental zygospores derived from uv-irradiated mt+ gametes demonstrates that the frequency of maternal chloroplast alleles in biparental zygospores decreases as they age. One result is an increase in the proportion of meiotic products homoplasmic for all paternal markers. The increased segregation of homoplasmic daughter cells during the meiotic divisions may result from a reduction in chloroplast ploidy by elimination of maternal genomes. Alternatively, it may reflect an altered ratio of maternal:paternal genomes due to continuous rounds of pairing and gene conversion between heterologous chloroplast DNAs leading to genetic drift within the DNA population of the organelle.  相似文献   

15.
16.
17.
The ricinine content of etiolated seedlings of Ricinus communis increased nearly 12-fold over a 4-day period. In plants quinolinic acid is an intermediate in the de novo pathway for the synthesis of pyridine nucleotides. The only known enzyme in the de novo pathway for pyridine nucleotide biosynthesis, quinolinic acid phosphoribosyltransferase, increased 6-fold in activity over a 4-day period which preceded the onset of ricinine biosynthesis by 1 day. The activity of the remainder of the pyridine nucleotide cycle enzymes in the seedlings, as monitored by the specific activity of nicotinic acid phosphoribosyltransferase and nicotinamide deamidase, was similar to that found in the mature green plant. In the roots of Nicotiana rustica, where the pyridine alkaloid nicotine is synthesized, the level of quinolinic acid phosphoribosyltransferase was 38-fold higher than the level of nicotinic acid phosphoribosyltransferase, whereas in most other plants examined, the specific activity of quinolinic acid phosphoribosyltransferase was similar to the level of activity of enzymes in the pyridine nucleotide cycle itself. A positive correlation therefore exists between the specific activity of a de novo pathway enzyme catalyzing pyridine nucleotide biosynthesis in Ricinus communis and Nicotiana rustica and the biosynthesis of ricinine and nicotine, respectively.  相似文献   

18.
The identity of peaks generated by chloroplast ribosomes of Chlamydomonas reinhardtii were determined by zone velocity sedimentation on sucrose density gradients, and analysis of distribution of ribosomal RNAs in the gradients. The sedimentagion coefficient of the principal peak was 66-70 S (usually 69 S), in good agreement with previously reported values for chloroplast ribosomes of C. reinhardtii, and other organisms. The fast sedimenting side of the 69 S peak contained an excess of chloroplast large subunit. When ribosome dissociation was prevented by sedimentation at low velocity, by aldehyde fixation, or by the presence of nascent polypeptide chains, the principal peak had a sedimentation coefficient of about 75 S. Thus the 69 S peak was an artifact caused by dissociation during centrifugation. Peaks that contained chloroplast ribosomal RNAs were also observed at '60 S' and '45 S' when chloroplast ribosomes were centrifuged unfixed at high velocity. The amounts of '60 S' and '45 S' components were decreased by centrifugation at low speed, or fixation, but sedimentation coefficients remained unchanged. The '60 S', and '45 S' components were identified as large, and small subunits of chloroplast ribosomes, respectively. The artifacts produced by centrifugation of chloroplast ribosomes, are similar to the artifacts produced by centrifuging ribosomes of Escherichia coli. Similar explanations appear to apply to both. We concluded that the 69 S chloroplast ribosome peak occurs because of dissociation of 'tight' couples, and incomplete separation of subunits. Subunit peaks (60 S and 45 S) arise from free subunits, and/or from dissociation of 'loose' couples.  相似文献   

19.
Carbonic anhydrases (CA) are zinc-containing metalloenzymes that catalyze the reversible hydration of CO2. The three evolutionarily unrelated families of CAs are designated alpha-, beta-, and gamma-CA. Aquatic photosynthetic organisms have evolved different forms of CO2 concentrating mechanisms (CCMs) to aid Rubisco in capturing CO2 from the surrounding environment. One aspect of all CCMs is the critical roles played by various specially localized extracellular and intracellular CAs. Five CAs have previously been identified in Chlamydomonas reinhardtii, a green alga with a well-studied CCM. Here we identify a sixth gene encoding a beta-type CA. This new beta-CA, designated Cah6, is distinct from the two mitochondrial beta-CAs in C. reinhardtii. Nucleotide sequence data show that the Cah6 cDNA contains an open reading frame encoding a polypeptide of 264 amino acids with a leader sequence likely targeting the protein to the chloroplast stroma. We have fused the Cah6 open reading frame to the coding sequence of maltose-binding protein in a pMal expression vector. The purified recombinant fusion protein is active and was used to partially characterize the Cah6 protein. The purified recombinant fusion protein was cleaved with protease Factor Xa to separate Cah6 from the maltose-binding protein and the purified Cah6 protein was used to raise an antibody. Western blots, immunolocalization studies, and northern blots collectively indicated that Cah6 is constitutively expressed in the stroma of chloroplasts. A possible role for Cah6 in the CCM of C. reinhardtii is proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号