首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While ecological causes of sociality (or group living) have been identified, proximate mechanisms remain less clear. Recently, close connections between sociality, glucocorticoid hormones (cort) and fitness have been hypothesized. In particular, cort levels would reflect a balance between fitness benefits and costs of group living, and therefore baseline cort levels would vary with sociality in a way opposite to the covariation between sociality and fitness. However, since reproductive effort may become a major determinant of stress responses (i.e., the cort–adaptation hypothesis), cort levels might also be expected to vary with sociality in a way similar to the covariation between sociality and fitness. We tested these expectations during three years in a natural population of the communally rearing degu, Octodon degus. During each year we quantified group membership, measured fecal cortisol metabolites (a proxy of baseline cort levels under natural conditions), and estimated direct fitness. We recorded that direct fitness decreases with group size in these animals. Secondly, neither group size nor the number of females (two proxies of sociality) influenced mean (or coefficient of variation, CV) baseline cortisol levels of adult females. In contrast, cortisol increased with per capita number of offspring produced and offspring surviving to breeding age during two out of three years examined. Together, our results imply that variation in glucocorticoid hormones is more linked to reproductive challenge than to the costs of group living. Most generally, our study provided independent support to the cort–adaptation hypothesis, according to which reproductive effort is a major determinant, yet temporally variable, influence on cort–fitness covariation.  相似文献   

2.
Theory predicts that temporal variability plays an important role in the evolution of life histories, but empirical studies evaluating this prediction are rare. In constant environments, fitness can be measured by the population growth rate lambda, and the sensitivity of lambda to changes in fitness components estimates selection on these traits. In variable environments, fitness is measured by the stochastic growth rate lambda(S), and stochastic sensitivities estimate selection pressure. Here we examine age-specific schedules for reproduction and survival in a barn owl population (Tyto alba). We estimated how temporal variability affected fitness and selection, accounting for sampling variance. Despite large sample sizes of old individuals, we found no strong evidence for senescence. The most variable fitness components were associated with reproduction. Survival was less variable. Stochastic simulations showed that the observed variation decreased fitness by about 30%, but the sensitivities of lambda and lambda(S) to changes in all fitness components were almost equal, suggesting that temporal variation had negligible effects on selection. We obtained these results despite high observed variability in the fitness components and relatively short generation time of the study organism, a situation in which temporal variability should be particularly important for natural selection and early senescence is expected.  相似文献   

3.
Within-individual consistency and among-individual heterogeneity in fitness are prerequisites for selection to take place. Within-individual variation in productivity between years, however, can vary considerably, especially when organisms become older and more experienced. We examine individual consistency in annual productivity, the covariation between survival and annual productivity, and the sources of variation in annual productivity, while accounting for advancing age, to test the individual-quality and resource-allocation life-history theory hypotheses. We use long-term data from a pedigreed, wild population of house sparrows. Within-individual annual productivity first increased and later decreased with age, but there were no selective mortality due to individual quality and no correlation between lifespan and productivity. Individuals were consistent in their annual productivity (C = 0.49). Narrow-sense heritability was low (h(2) = 0.09), but maternal effects explained much of the variation (M = 0.33). Such effects can influence evolutionary processes and are of major importance for our understanding of how variation in fitness can be maintained.  相似文献   

4.
The canalization hypothesis postulates that the rate at which trait variation generates variation in the average individual fitness in a population determines how buffered traits are against environmental and genetic factors. The ranking of a species on the slow‐fast continuum – the covariation among life‐history traits describing species‐specific life cycles along a gradient going from a long life, slow maturity, and low annual reproductive output, to a short life, fast maturity, and high annual reproductive output – strongly correlates with the relative fitness impact of a given amount of variation in adult survival. Under the canalization hypothesis, long‐lived species are thus expected to display less individual heterogeneity in survival at the onset of adulthood, when reproductive values peak, than short‐lived species. We tested this life‐history prediction by analysing long‐term time series of individual‐based data in nine species of birds and mammals using capture‐recapture models. We found that individual heterogeneity in survival was higher in species with short‐generation time (< 3 years) than in species with long generation time (> 4 years). Our findings provide the first piece of empirical evidence for the canalization hypothesis at the individual level from the wild.  相似文献   

5.
Abstract. The ability of populations to undergo adaptive evolution depends on the presence of genetic variation for ecologically important traits. The maintenance of genetic variation may be influenced by many variables, particularly long-term effective population size and the strength and form of selection. The roles of these factors are controversial and there is very little information on their impacts for quantitative characters. The aims of this study were to determine the impacts of population size and variable versus constant prior environmental conditions on fitness and the magnitude of response to selection. Outbred and inbred populations of Drosophila melanogaster were maintained under benign, constant stressful, and variably stressful conditions for seven generations, and then forced to adapt to a novel stress for seven generations. Fitness and adaptability were assayed in each replicate population. Our findings are that: (1) populations inbred in a variable environment were more adaptable than those inbred in a constant environment; (2) populations adapted to a prior stressful environment had greater fitness when reared in a novel stress than those less adapted to stress; (3) inbred populations had lower fitness and were less adaptable than the outbred population they were derived from; and (4) strong lineage effects were detectable across environments in the inbred populations.  相似文献   

6.
The amount of effort organisms should put into reproducing at any given time has been a matter of debate for many years. Early models suggested a simple rule of thumb: iteroparity should be favored when juvenile survival is relatively variable and semelparity when adult survival is relatively variable. When more mathematically complex models were developed, these simple conclusions were found to be special cases. Variability can select toward iteroparity or semelparity depending on a number of factors irrespective of relative adult/juvenile survival (e.g, the density-independent models of Orzack and Tuljapurkar). Using new techniques, we estimate the ESS reproductive effort for stage-structured models in density-dependent and stochastic conditions. We find that variability causes significant changes in reproductive effort, these changes are often small (± 10% of determinstic ESS effort, but up to 50% change in some instances), and the amount that effort increases or decreases depends on many factors (e.g., the deterministic population dynamics, the vital rates affected by density, the amount of variation, the correlations between the vital rates, the distribution from which the variation is drawn, and the deterministic ESS effort). In a variable environment, semelparity is the ESS in only 3.5% of cases; iteroparity is the rule.  相似文献   

7.
Early developmental conditions contribute to individual heterogeneity of both phenotypic traits and fitness components, ultimately affecting population dynamics. Although the demographic consequences of ontogenic growth are best quantified using an integrated measure of fitness, most analyses to date have instead studied individual fitness components in isolation. Here, we estimated phenotypic selection on weaning mass in female southern elephant seals Mirounga leonina by analyzing individual‐based data collected between 1986 and 2016 with capture–recapture and matrix projection models. In support of a hypothesis predicting a gradual decrease of weaning mass effects with time since weaning (the replacement hypothesis), we found that the estimated effects of weaning mass on future survival and recruitment probability was of intermediate duration (rather than transient or permanent). Heavier female offspring had improved odds of survival in early life and a higher probability to recruit at an early age. The positive link between weaning mass and recruitment age is noteworthy, considering that pre‐recruitment mortality already imposed a strong selective filter on the population, leaving only the most ‘robust’ individuals to reproduce. The selection gradient on asymptotic population growth rate, a measure of mean absolute fitness, was weaker than selection on first‐year survival and recruitment probabilities. Weaker selection on mean fitness occurs because weaning mass has little impact on adult survival, the fitness component to which the population growth of long‐lived species is most sensitive. These results highlight the need to interpret individual variation in phenotypic traits in a context that considers the demographic pathways between the trait and an inclusive proxy of individual fitness. Although variation in weaning mass do not translate to permanent survival differences among individuals in adulthood, it explains heterogeneity and positive covariation between survival and breeding in early life, which contribute to between‐individual variation in fitness.  相似文献   

8.
Evidence that the social environment at critical stages of life-history shapes individual trajectories is accumulating. Previous studies have identified either current or delayed effects of social environments on fitness components, but no study has yet analysed fitness consequences of social environments at different life stages simultaneously. To fill the gap, we use an extensive dataset collected during a 24-year intensive monitoring of a population of Alpine marmots (Marmota marmota), a long-lived social rodent. We test whether the number of helpers in early life and over the dominance tenure length has an impact on litter size at weaning, juvenile survival, longevity and lifetime reproductive success (LRS) of dominant females. Dominant females, who were born into a group containing many helpers and experiencing a high number of accumulated helpers over dominance tenure length showed an increased LRS through an increased longevity. We provide evidence that in a wild vertebrate, both early and adult social environments influence individual fitness, acting additionally and independently. These findings demonstrate that helpers have both short- and long-term effects on dominant female Alpine marmots and that the social environment at the time of birth can play a key role in shaping individual fitness in social vertebrates.  相似文献   

9.
In a variable yet predictable world, organisms may use environmental cues to make adaptive adjustments to their phenotype. Such phenotypic flexibility is expected commonly to evolve in life history traits, which are closely tied to Darwinian fitness. Yet adaptive life history flexibility remains poorly documented. Here we introduce the collembolan Folsomia candida, a soil-dweller, parthenogenetic (all-female) microarthropod, as a model organism to study the phenotypic expression, genetic variation, fitness consequences and long-term evolution of life history flexibility. We demonstrate that collembola have a remarkable adaptive ability for adjusting their reproductive phenotype: when transferred from harsh to good conditions (in terms of food ration and crowding), a mother can fine-tune the number and the size of her eggs from one clutch to the next. The comparative analysis of eleven clonal populations of worldwide origins reveals (i) genetic variation in mean egg size under both good and bad conditions; (ii) no genetic variation in egg size flexibility, consistent with convergent evolution to a common physiological limit; (iii) genetic variation of both mean reproductive investment and reproductive investment flexibility, associated with a reversal of the genetic correlation between egg size and clutch size between environmental conditions ; (iv) a negative genetic correlation between reproductive investment flexibility and adult lifespan. Phylogenetic reconstruction shows that two life history strategies, called HIFLEX and LOFLEX, evolved early in evolutionary history. HIFLEX includes six of our 11 clones, and is characterized by large mean egg size and reproductive investment, high reproductive investment flexibility, and low adult survival. LOFLEX (the other five clones) has small mean egg size and low reproductive investment, low reproductive investment flexibility, and high adult survival. The divergence of HIFLEX and LOFLEX could represent different adaptations to environments differing in mean quality and variability, or indicate that a genetic polymorphism of reproductive investment reaction norms has evolved under a physiological tradeoff between reproductive investment flexibility and adult lifespan.  相似文献   

10.
R Zas  L Sampedro 《Heredity》2015,114(1):116-124
Quantitative seed provisioning is an important life-history trait with strong effects on offspring phenotype and fitness. As for any other trait, heritability estimates are vital for understanding its evolutionary dynamics. However, being a trait in between two generations, estimating additive genetic variation of seed provisioning requires complex quantitative genetic approaches for distinguishing between true genetic and environmental maternal effects. Here, using Maritime pine as a long-lived plant model, we quantified additive genetic variation of cone and seed weight (SW) mean and SW within-individual variation. We used a powerful approach combining both half-sib analysis and parent–offspring regression using several common garden tests established in contrasting environments to separate G, E and G × E effects. Both cone weight and SW mean showed significant genetic variation but were also influenced by the maternal environment. Most of the large variation in SW mean was attributable to additive genetic effects (h2=0.55–0.74). SW showed no apparent G × E interaction, particularly when accounting for cone weight covariation, suggesting that the maternal genotypes actively control the SW mean irrespective of the amount of resources allocated to cones. Within-individual variation in SW was low (12%) relative to between-individual variation (88%), and showed no genetic variation but was largely affected by the maternal environment, with greater variation in the less favourable sites for pine growth. In summary, results were very consistent between the parental and the offspring common garden tests, and clearly indicated heritable genetic variation for SW mean but not for within-individual variation in SW.  相似文献   

11.
Understanding adaptive phenotypic variation is one of the most fundamental problems in evolutionary biology. Genes involved in adaptation are most likely those that affect traits most intimately connected to fitness: life-history traits. The genetics of quantitative trait variation (including life histories) is still poorly understood, but several studies suggest that (1) quantitative variation might be the result of variation in gene expression, rather than protein evolution, and (2) natural variation in gene expression underlies adaptation. The next step in studying the genetics of adaptive phenotypic variation is therefore an analysis of naturally occuring covariation of global gene expression and a life-history trait. Here, we report a microarray study addressing the covariation in larval gene expression and adult body weight, a life-history trait involved in adaptation. Natural populations of Drosophila melanogaster show adaptive geographic variation in adult body size, with larger animals at higher latitudes. Conditions during larval development also affect adult size with larger flies emerging at lower temperatures. We found statistically significant differences in normalized larval gene expression between geographic populations at one temperature (genetic variation) and within geographic populations between temperatures (developmental plasticity). Moreover, larval gene expression correlated highly with adult weight, explaining 81% of its natural variation. Of the genes that show a correlation of gene expression with adult weight, most are involved in cell growth or cell maintenance or are associated with growth pathways.  相似文献   

12.
Parental care is of fundamental importance to understanding reproductive strategies and allocation decisions. Here, we explore how parental care strategies evolve in variable environments. Using a set of life-history trait trade-offs, we explore the relative costs and benefits of parental care in stochastic environments. Specifically, we consider the cases in which environmental variability results in varying adult death rates, egg death rates, reproductive rate and carrying capacity. Using a measure of fitness appropriate for stochastic environments, we find that parental care has the potential to evolve over a wide range of life-history characteristics when the environment is variable. A variable environment that affects adult or egg death rates can either increase or decrease the fitness of care relative to that in a constant environment, depending on the specific costs of care. Variability that affects carrying capacity or adult reproductive rate has negligible effects on the fitness associated with care. Increasing parental care across different life-history stages can increase fitness gains in variable environments. Costly investment in care is expected to affect the overall fitness benefits, the fitness optimum and rate of evolution of parental care. In general, we find that environmental variability, the life-history traits affected by such variability and the specific costs of care interact to determine whether care will be favoured in a variable environment and what levels of care will be selected.  相似文献   

13.
Individuals of the same species differ consistently in risky actions. Such ‘animal personality’ variation is intriguing because behavioural flexibility is often assumed to be the norm. Recent theory predicts that between-individual differences in propensity to take risks should evolve if individuals differ in future fitness expectations: individuals with high long-term fitness expectations (i.e. that have much to lose) should behave consistently more cautious than individuals with lower expectations. Consequently, any manipulation of future fitness expectations should result in within-individual changes in risky behaviour in the direction predicted by this adaptive theory. We tested this prediction and confirmed experimentally that individuals indeed adjust their ‘exploration behaviour’, a proxy for risk-taking behaviour, to their future fitness expectations. We show for wild great tits (Parus major) that individuals with experimentally decreased survival probability become faster explorers (i.e. increase risk-taking behaviour) compared to individuals with increased survival probability. We also show, using quantitative genetics approaches, that non-genetic effects (i.e. permanent environment effects) underpin adaptive personality variation in this species. This study thereby confirms a key prediction of adaptive personality theory based on life-history trade-offs, and implies that selection may indeed favour the evolution of personalities in situations where individuals differ in future fitness expectations.  相似文献   

14.
Survival is a key fitness component and the evolution of age- and stage-specific patterns in survival is a central question in evolutionary biology. In variable environments, favouring chances of survival at the expense of other fitness components could increase fitness by spreading risk across uncertain conditions, especially if environmental conditions improve in the future. Both the magnitude of environmental variation and temporal autocorrelation in the environment might therefore affect the evolution of survival patterns. Despite this, the influence of temporal autocorrelation on the evolution of survival patterns has not been addressed. Here, we use a trade-off structure which reflects the empirically inspired paradigm of acquisition and allocation of resources to investigate how the evolutionarily stable survival probability is shaped in variable, density-dependent environments. We show that temporal autocorrelation is likely to be an important aspect of environmental variability that contributes to shaping age- and stage-specific patterns of survival probabilities in nature.  相似文献   

15.
A basic premise of conservation geneticists is that low levels of genetic variation are associated with fitness costs in terms of reduced survival and fecundity. These fitness costs may frequently vary with environmental factors and should increase under more stressful conditions. However, there is no consensus on how fitness costs associated with low genetic variation change under natural conditions in relation to the stressfulness of the environment. On the Swedish west coast, natterjack toad Bufo calamita populations show a strong population genetic structure and large variation in the amount of within-population genetic variation. We experimentally examined the survival of natterjack larvae from six populations with different genetic variation in three thermal environments corresponding to (a) the mean temperature of natural ponds (stable, laboratory), (b) a high temperature environment occurring in desiccating ponds (stable, laboratory) and (c) an outdoor treatment mimicking the natural, variable thermal conditions (fluctuating, semi-natural). We found that larvae in the outdoor treatment had poorer survival than larvae in the stable environments suggesting that the outdoor treatment was more stressful. Overall, populations with higher genetic variation had higher larval survival. However, a significant interaction between treatments and genetic variation indicated that fitness costs associated with low genetic variation were less severe in the outdoor treatment. Thus, we found no support for the hypothesis that fitness costs associated with low genetic variation increase under more stressful conditions. Our results suggest that natural thermal stress may mask fitness losses associated with low genetic variation in these populations.  相似文献   

16.
Individual animal fitness can be strongly influenced by the ability to recognize habitat features which may be beneficial. Many studies focus on the effects of habitat on annual reproductive rate, even though adult survival is typically a greater influence on fitness and population growth in vertebrate species with intermediate to long lifespans. Understanding the effects of preferred habitat on individuals over the annual cycle is therefore necessary to predict its influences on individual fitness. This is particularly true in species that are resident and territorial year‐round in the temperate zone, which may face potential trade‐offs between habitat that maximizes reproduction and that which maximizes non‐breeding season (‘over‐winter’) survival. We used a 37‐year study of Song Sparrows Melospiza melodia residing territorially year‐round on a small island to examine what habitat features influenced adult over‐winter survival, how site‐specific variation in adult survival vs. annual reproductive rate influenced long‐term habitat preference, and if preferred sites on average conferred higher individual fitness. Habitat features such as area of shrub cover and exposure to intertidal coastline predicted adult over‐winter survival independent of individual age or sex, population size, or winter weather. Long‐term habitat preference (measured as occupation rate) was better predicted by site‐specific annual reproductive rate than by expected over‐winter survival, but preferred sites maximized fitness on average over the entire annual cycle,. Although adult over‐winter survival had a greater influence on population growth (λ) than did reproductive rate, the influence of reproductive rate on λ increased in preferred sites because site‐specific variation in reproductive rate was higher than variation in expected over‐winter survival. Because preferred habitats tended to have higher mean site‐specific reproductive and adult survival rates, territorial birds in this population do not appear to experience seasonal trade‐offs in preferred habitat but are predicted to incur substantial fitness costs of settling in less‐preferred sites.  相似文献   

17.
Whether contemporary human populations are still evolving as a result of natural selection has been hotly debated. For natural selection to cause evolutionary change in a trait, variation in the trait must be correlated with fitness and be genetically heritable and there must be no genetic constraints to evolution. These conditions have rarely been tested in human populations. In this study, data from a large twin cohort were used to assess whether selection will cause a change among women in a contemporary Western population for three life-history traits: age at menarche, age at first reproduction, and age at menopause. We control for temporal variation in fecundity (the "baby boom" phenomenon) and differences between women in educational background and religious affiliation. University-educated women have 35% lower fitness than those with less than seven years education, and Roman Catholic women have about 20% higher fitness than those of other religions. Although these differences were significant, education and religion only accounted for 2% and 1% of variance in fitness, respectively. Using structural equation modeling, we reveal significant genetic influences for all three life-history traits, with heritability estimates of 0.50, 0.23, and 0.45, respectively. However, strong genetic covariation with reproductive fitness could only be demonstrated for age at first reproduction, with much weaker covariation for age at menopause and no significant covariation for age at menarche. Selection may, therefore, lead to the evolution of earlier age at first reproduction in this population. We also estimate substantial heritable variation in fitness itself, with approximately 39% of the variance attributable to additive genetic effects, the remainder consisting of unique environmental effects and small effects from education and religion. We discuss mechanisms that could be maintaining such a high heritability for fitness. Most likely is that selection is now acting on different traits from which it did in pre-industrial human populations.  相似文献   

18.
The impact of nutritional deficiencies early in life in determining life-history variation in organisms is well recognized. The negative effects of inbreeding on fitness are also well known. Contrary to studies on vertebrates, studies on invertebrates are not consistent with the observation that inbreeding compromises resistance to parasites and pathogens. In this study, we investigated the effect of early nutrition on the magnitude of inbreeding depression in development time, adult body size and adult resistance to the bacterium Serratia marcescens in Drosophila melanogaster. We found that early nutritional environment had no effect on the magnitude of inbreeding depression in development time or adult body size but may have played a small role in adult resistance to the bacterial infection. Estimates of heritabilities for development time under the poor nutritional environment were larger than those measured under the standard nutritional conditions.  相似文献   

19.
1.  Many organisms inhabit strongly fluctuating environments but their demography and population dynamics are often analysed using deterministic models and elasticity analysis, where elasticity is defined as the proportional change in population growth rate caused by a proportional change in a vital rate. Deterministic analyses may not necessarily be informative because large variation in a vital rate with a small deterministic elasticity may affect the population growth rate more than a small change in a less variable vital rate having high deterministic elasticity.
2.  We analyse a stochastic environment model of the red kangaroo ( Macropus rufus ), a species inhabiting an environment characterized by unpredictable and highly variable rainfall, and calculate the elasticity of the stochastic growth rate with respect to the mean and variability in vital rates.
3.  Juvenile survival is the most variable vital rate but a proportional change in the mean adult survival rate has a much stronger effect on the stochastic growth rate.
4.  Even if changes in average rainfall have a larger impact on population growth rate, increased variability in rainfall may still be important also in long-lived species. The elasticity with respect to the standard deviation of rainfall is comparable to the mean elasticities of all vital rates but the survival in age class 3 because increased variation in rainfall affects both the mean and variability of vital rates.
5.  Red kangaroos are harvested and, under the current rainfall pattern, an annual harvest fraction of c . 20% would yield a stochastic growth rate about unity. However, if average rainfall drops by more than c . 10%, any level of harvesting may be unsustainable, emphasizing the need for integrating climate change predictions in population management and increase our understanding of how environmental stochasticity translates into population growth rate.  相似文献   

20.
Life-history theory predicts vital rates that on average make large contributions to the annual multiplication rate of a lineage should be highly buffered against environmental variability. This prediction has been tested by looking for a negative correlation between the sensitivities (or elasticities) of the elements in a projection matrix and their variances (or coefficients of variation). Here, we show by constructing random matrices that a spurious negative correlation exists between the sensitivities and variances, and between the elasticities and coefficients of variation, of matrix elements. This spurious correlation arises in part because size transition probabilities, which are bounded by 0 and 1, have a limit to their variability that often does not apply to matrix elements representing reproduction. We advocate an alternative analysis based on the underlying vital rates (not the matrix elements) that accounts for the inherent limit to the variability of zero-to-one vital rates, corrects for sampling variation, and tests for a declining upper limit to variability as a vital rate's fitness contribution increases. Applying this analysis to demographic data from five populations of the alpine cushion plant Silene acaulis, we provide evidence of stronger buffering in the vital rates that most influence fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号