首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The coupling of cryo-light microscopy (cryo-LM) and cryo-electron microscopy (cryo-EM) poses a number of advantages for understanding cellular dynamics and ultrastructure. First, cells can be imaged in a near native environment for both techniques. Second, due to the vitrification process, samples are preserved by rapid physical immobilization rather than slow chemical fixation. Third, imaging the same sample with both cryo-LM and cryo-EM provides correlation of data from a single cell, rather than a comparison of "representative samples". While these benefits are well known from prior studies, the widespread use of correlative cryo-LM and cryo-EM remains limited due to the expense and complexity of buying or building a suitable cryogenic light microscopy stage. Here we demonstrate the assembly, and use of an inexpensive cryogenic stage that can be fabricated in any lab for less than $40 with parts found at local hardware and grocery stores. This cryo-LM stage is designed for use with reflected light microscopes that are fitted with long working distance air objectives. For correlative cryo-LM and cryo-EM studies, we adapt the use of carbon coated standard 3-mm cryo-EM grids as specimen supports. After adsorbing the sample to the grid, previously established protocols for vitrifying the sample and transferring/handling the grid are followed to permit multi-technique imaging. As a result, this setup allows any laboratory with a reflected light microscope to have access to direct correlative imaging of frozen hydrated samples.  相似文献   

2.
Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated 1-3. However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated 4-7. However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot 8-10. We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.  相似文献   

3.
Major advances in high-throughput, high-resolution, 3D microscopy techniques have enabled the acquisition of large volumes of neuroanatomical data at submicrometer resolution. One of the first such instruments producing whole-brain-scale data is the Knife-Edge Scanning Microscope (KESM)7, 5, 9, developed and hosted in the authors'' lab. KESM has been used to section and image whole mouse brains at submicrometer resolution, revealing the intricate details of the neuronal networks (Golgi)1, 4, 8, vascular networks (India ink)1, 4, and cell body distribution (Nissl)3. The use of KESM is not restricted to the mouse nor the brain. We have successfully imaged the octopus brain6, mouse lung, and rat brain. We are currently working on whole zebra fish embryos. Data like these can greatly contribute to connectomics research10; to microcirculation and hemodynamic research; and to stereology research by providing an exact ground-truth. In this article, we will describe the pipeline, including specimen preparation (fixing, staining, and embedding), KESM configuration and setup, sectioning and imaging with the KESM, image processing, data preparation, and data visualization and analysis. The emphasis will be on specimen preparation and visualization/analysis of obtained KESM data. We expect the detailed protocol presented in this article to help broaden the access to KESM and increase its utilization.  相似文献   

4.
Drosophila has long been used as model system to study development, mainly due to the ease with which it is genetically tractable. Over the years, a plethora of mutant strains and technical tricks have been developed to allow sophisticated questions to be asked and answered in a reasonable amount of time. Fundamental insight into the interplay of components of all known major signaling pathways has been obtained in forward and reverse genetic Drosophila studies. The fly eye has proven to be exceptionally well suited for mutational analysis, since, under laboratory conditions, flies can survive without functional eyes. Furthermore, the surface of the insect eye is composed of some 800 individual unit eyes (facets or ommatidia) that form a regular, smooth surface when looked at under a dissecting microscope. Thus, it is easy to see whether a mutation might affect eye development or growth by externally looking for the loss of the smooth surface (''rough eye'' phenotype; Fig. 1) or overall eye size, respectively (for examples of screens based on external eye morphology see e.g.1). Subsequent detailed analyses of eye phenotypes require fixation, plastic embedding and thin-sectioning of adult eyes.The Drosophila eye develops from the so-called eye imaginal disc, a bag of epithelial cells that proliferate and differentiate during larval and pupal stages (for review see e.g. 2). Each ommatidium consists of 20 cells, including eight photoreceptors (PR or R-cells; Fig. 2), four lens-secreting cone cells, pigment cells (''hexagon'' around R-cell cluster) and a bristle. The photoreceptors of each ommatidium, most easily identified by their light sensitive organelles, the rhabdomeres, are organized in a trapezoid made up of the six "outer" (R1-6) and two "inner" photoreceptors (R7/8; R8 [Fig. 2] is underneath R7 and thus only seen in sections from deeper areas of the eye). The trapezoid of each facet is precisely aligned with those of its neighbors and the overall anteroposterior and dorsoventral axes of the eye (Fig. 3A). In particular, the ommatidia of the dorsal and ventral (black and red arrows, respectively) halves of the eye are mirror images of each other and correspond to two chiral forms established during planar cell polarity signaling (for review see e.g. 3).The method to generate semi-thin eye sections (such as those presented in Fig. 3) described here is slightly modified from the one originally described by Tomlinson and Ready4. It allows the morphological analysis of all cells except for the transparent cone cells. In addition, the pigment of R-cells (blue arrowheads in Fig. 2 and 3) can be used as a cell-autonomous marker for the genotype of a R-cell, thus genetic requirements of genes in a subset of R-cells can readily be determined5,6.  相似文献   

5.
Cryo-electron microscopy (cryoEM) entails flash-freezing a thin layer of sample on a support, and then visualizing the sample in its frozen hydrated state by transmission electron microscopy (TEM). This can be achieved with very low quantity of protein and in the buffer of choice, without the use of any stain, which is very useful to determine structure-function correlations of macromolecules. When combined with single-particle image processing, the technique has found widespread usefulness for 3D structural determination of purified macromolecules. The protocol presented here explains how to perform cryoEM and examines the causes of most commonly encountered problems for rational troubleshooting; following all these steps should lead to acquisition of high quality cryoEM images. The technique requires access to the electron microscope instrument and to a vitrification device. Knowledge of the 3D reconstruction concepts and software is also needed for computerized image processing. Importantly, high quality results depend on finding the right purification conditions leading to a uniform population of structurally intact macromolecules. The ability of cryoEM to visualize macromolecules combined with the versatility of single particle image processing has proven very successful for structural determination of large proteins and macromolecular machines in their near-native state, identification of their multiple components by 3D difference mapping, and creation of pseudo-atomic structures by docking of x-ray structures. The relentless development of cryoEM instrumentation and image processing techniques for the last 30 years has resulted in the possibility to generate de novo 3D reconstructions at atomic resolution level.  相似文献   

6.
The Drosophila eye is a powerful model system for studying areas such as neurogenesis, signal transduction and neurodegeneration. Many of the discoveries made using this system have taken advantage of the spatiotemporal nature of photoreceptor differentiation in the developing eye imaginal disc. To use this system it is first necessary for the researcher to learn to identify and dissect the eye disc. We describe a novel RFP reporter to aid in the identification of the eye disc and the visualization of specific cell types in the developing eye. We detail a methodology for dissection of the eye imaginal disc from third instar larvae and describe how the eye-RFP reporter can aid in this dissection. This eye-RFP reporter is only expressed in the eye and can be visualized using fluorescence microscopy either in live tissue or after fixation without the need for signal amplification. We also show how this reporter can be used to identify specific cells types within the eye disc. This protocol and the use of the eye-RFP reporter will aid researchers using the Drosophila eye to address fundamentally important biological questions.  相似文献   

7.
Delineation of a cell’s ultrastructure is important for understanding its function. This can be a daunting project for rare cell types diffused throughout tissues made of diverse cell types, such as enteroendocrine cells of the intestinal epithelium. These gastrointestinal sensors of food and bacteria have been difficult to study because they are dispersed among other epithelial cells at a ratio of 1:1,000. Recently, transgenic reporter mice have been generated to identify enteroendocrine cells by means of fluorescence. One of those is the peptide YY-GFP mouse. Using this mouse, we developed a method to correlate confocal and serial block-face scanning electron microscopy. We named the method cocem3D and applied it to identify a specific enteroendocrine cell in tissue and unveil the cell’s ultrastructure in 3D. The resolution of cocem3D is sufficient to identify organelles as small as secretory vesicles and to distinguish cell membranes for volume rendering. Cocem3D can be easily adapted to study the 3D ultrastructure of other specific cell types in their native tissue.  相似文献   

8.
The Drosophila melanogaster eye disc is a powerful system that can be used to study many different biological processes. It contains approximately 800 separate eye units, termed ommatidia1. Each ommatidium contains eight neuronal photoreceptors that develop from undifferentiated cells following the passage of the morphogenetic furrow in the third larval instar2. Following the sequential differentiation of the photoreceptors, non-neuronal cells develop, including cone and pigment cells, along with mechanosensory bristle cells3. Final differentiation processes, including the structured arrangement of all the ommatidial cell types, programmed cell death of undifferentiated cell types and rhodopsin expression, occurs through the pupal phase4-7. This technique focuses on manipulating the pupal eye disc, providing insight and instruction on how to dissect the eye disc during the pupal phase, which is inherently more difficult to perform than the commonly dissected third instar eye disc. This technique also provides details on immunostaining to allow the visualization of various proteins and other cell components.  相似文献   

9.
Zebrafish embryo becomes a popular in vivo vertebrate model for studying cardiac development and human heart diseases due to its advantageous embryology and genetics. About 100-200 embryos are readily available every week from a single pair of adult fish. The transparent embryos that develop ex utero make them ideal for assessing cardiac defects. The expression of any gene can be manipulated via morpholino technology or RNA injection. Moreover, forward genetic screens have already generated a list of mutants that affect different perspectives of cardiogenesis. Whole mount immunostaining is an important technique in this animal model to reveal the expression pattern of the targeted protein to a particular tissue. However, high resolution images that can reveal cellular or subcellular structures have been difficult, mainly due to the physical location of the heart and the poor penetration of the antibodies. Here, we present a method to address these bottlenecks by dissecting heart first and then conducting the staining process on the surface of a microscope slide. To prevent the loss of small heart samples and to facilitate solution handling, we restricted the heart samples within a circle on the surface of the microscope slides drawn by an immEdge pen. After the staining, the fluorescence signals can be directly observed by a compound microscope. Our new method significantly improves the penetration for antibodies, since a heart from an embryonic fish only consists of few cell layers. High quality images from intact hearts can be obtained within a much reduced procession time for zebrafish embryos aged from day 2 to day 6. Our method can be potentially extended to stain other organs dissected from either zebrafish or other small animals.  相似文献   

10.
The spindle assembly checkpoint (SAC) mechanism is an active signal, which monitors the interaction between chromosome kinetochores and spindle microtubules to prevent anaphase onset until the chromosomes are properly connected. Cells use this mechanism to prevent aneuploidy or genomic instability, and hence cancers and other human diseases like birth defects and Alzheimer's. A number of the SAC components such as Mad1, Mad2, Bub1, BubR1, Bub3, Mps1, Zw10, Rod and Aurora B kinase have been identified and they are all kinetochore dynamic proteins. Evidence suggests that the kinetochore is where the SAC signal is initiated. The SAC prime regulatory target is Cdc20. Cdc20 is one of the essential APC/C (Anaphase Promoting Complex or Cyclosome) activators and is also a kinetochore dynamic protein. When activated, the SAC inhibits the activity of the APC/C to prevent the destruction of two key substrates, cyclin B and securin, thereby preventing the metaphase to anaphase transition. Exactly how the SAC signal is initiated and assembled on the kinetochores and relayed onto the APC/C to inhibit its function still remains elusive. Drosophila is an extremely tractable experimental system; a much simpler and better-understood organism compared to the human but one that shares fundamental processes in common. It is, perhaps, one of the best organisms to use for bio-imaging studies in living cells, especially for visualization of the mitotic events in space and time, as the early embryo goes through 13 rapid nuclear division cycles synchronously (8-10 minutes for each cycle at 25 °C) and gradually organizes the nuclei in a single monolayer just underneath the cortex. Here, I present a bio-imaging method using transgenic Drosophila expressing GFP (Green Fluorescent Protein) or its variant-targeted proteins of interest and a Leica TCS SP2 confocal laser scanning microscope system to study the SAC function in flies, by showing images of GFP fusion proteins of some of the SAC components, Cdc20 and Mad2, as the example.  相似文献   

11.
Cell shape is critical for cell function. However, despite the importance of cell morphology, little is known about how individual cells generate specific shapes. Drosophila tracheal terminal cells have become a powerful genetic model to identify and elucidate the roles of genes required for generating cellular morphologies. Terminal cells are a component of a branched tubular network, the tracheal system that functions to supply oxygen to internal tissues. Terminal cells are an excellent model for investigating questions of cell shape as they possess two distinct cellular architectures. First, terminal cells have an elaborate branched morphology, similar to complex neurons; second, terminal cell branches are formed as thin tubes and contain a membrane-bound intracellular lumen. Quantitative analysis of terminal cell branch number, branch organization and individual branch shape, can be used to provide information about the role of specific genetic mechanisms in the making of a branched cell. Analysis of tube formation in these cells can reveal conserved mechanisms of tubulogenesis common to other tubular networks, such as the vertebrate vasculature. Here we describe techniques that can be used to rapidly fix, image, and analyze both branching patterns and tube formation in terminal cells within Drosophila larvae. These techniques can be used to analyze terminal cells in wild-type and mutant animals, or genetic mosaics. Because of the high efficiency of this protocol, it is also well suited for genetic, RNAi-based, or drug screens in the Drosophila tracheal system.  相似文献   

12.
While much is already known about the basic metabolism of bacterial cells, many fundamental questions are still surprisingly unanswered, including for instance how they generate and maintain specific cell shapes, establish polarity, segregate their genomes, and divide. In order to understand these phenomena, imaging technologies are needed that bridge the resolution gap between fluorescence light microscopy and higher-resolution methods such as X-ray crystallography and NMR spectroscopy.Electron cryotomography (ECT) is an emerging technology that does just this, allowing the ultrastructure of cells to be visualized in a near-native state, in three dimensions (3D), with "macromolecular" resolution (~4nm).1, 2 In ECT, cells are imaged in a vitreous, "frozen-hydrated" state in a cryo transmission electron microscope (cryoTEM) at low temperature (< -180°C). For slender cells (up to ~500 nm in thickness3), intact cells are plunge-frozen within media across EM grids in cryogens such as ethane or ethane/propane mixtures. Thicker cells and biofilms can also be imaged in a vitreous state by first "high-pressure freezing" and then, "cryo-sectioning" them. A series of two-dimensional projection images are then collected through the sample as it is incrementally tilted along one or two axes. A three-dimensional reconstruction, or "tomogram" can then be calculated from the images. While ECT requires expensive instrumentation, in recent years, it has been used in a few labs to reveal the structures of various external appendages, the structures of different cell envelopes, the positions and structures of cytoskeletal filaments, and the locations and architectures of large macromolecular assemblies such as flagellar motors, internal compartments and chemoreceptor arrays.1, 2In this video article we illustrate how to image cells with ECT, including the processes of sample preparation, data collection, tomogram reconstruction, and interpretation of the results through segmentation and in some cases correlation with light microscopy.  相似文献   

13.
Differentiation of embryonic stem cell (ESC)-derived embryoid bodies (EBs) is a heterogeneous process. ESCs can differentiate in vitro into different cell types including beating cardiomyocytes. The main aim of the present study was to develop an improved preparation method for scanning electron microscopic study of ESC-derived cardiac bundles and to investigate the fine structural characteristics of mouse ESCs-derived cardiomyocytes using electron microscopy. The mouse ESCs differentiation was induced by EBs’ development through hanging drop, suspension and plating stages. Cardiomyocytes appeared in the EBs’ outgrowth as beating clusters that grew in size and formed thick branching bundles gradually. Cardiac bundles showed cross striation even when they were observed under an inverted microscope. They showed a positive immunostaining for cardiac troponin I and α-actinin. Transmission and scanning electron microscopy (TEM & SEM) were used to study the structural characteristics of ESC-derived cardiomyocytes. Three weeks after plating, differentiated EBs showed a superficial layer of compact fibrous ECM that made detailed observation of cardiac bundles impossible. We tried several preparation methods to remove unwanted cells and fibers, and finally we revealed the branching bundles of cardiomyocytes. In TEM study, most cardiomyocytes showed parallel arrays of myofibrils with a mature sarcomeric organization marked by H-bands, M-lines and numerous T-tubules. Cardiomyocytes were connected to each other by intercalated discs composed of numerous gap junctions and fascia adherences.  相似文献   

14.
The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from protocols optimized for the culture of rat NC. The advantages of this protocol compared to previous methods are that 1) the cells are not grown on a feeder layer, 2) FACS is not required to obtain a relatively pure NC population, 3) premigratory NC cells are isolated and 4) results are easily quantified. Furthermore, this protocol can be used for isolation of NC from any mutant mouse model, facilitating the study of NC characteristics with different genetic manipulations. The limitation of this approach is that the NC is removed from the context of the embryo, which is known to influence the survival, migration and differentiation of the NC.  相似文献   

15.
Chlorosomes are the light harvesting structures of green photosynthetic bacteria. Each chlorosome from green sulfur bacteria houses hundreds of thousands of bacteriochlorophyll molecules in addition to smaller amounts of chlorobiumquinone and carotenoids. In electron microscopy studies, chlorosomes exhibit different appearances depending on the fixation method used. Fixation with osmium tetroxide results in electron-transparent chlorosomes. Fixation with potassium permanganate results in clearly delineated electron-dense chlorosomes. This fixation method features an electron-transparent area in the interior of the chlorosome. In addition to electron density patterns that can be considered compositions of rod-shaped elements, chlorosomes exhibit a striation pattern that is oriented parallel to the longitudinal axis. Treatment with osmium tetroxide followed by potassium permanganate treatment results in a more diffused density distribution that outlines connecting elements between the chlorosome and the cytoplasmic membrane, and connecting elements between the cytoplasmic membrane and the outer membrane, which act as a diffusion barrier for electron density.  相似文献   

16.
Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective.  相似文献   

17.
Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but this protocol is reliable and produces samples of the highest quality.  相似文献   

18.
Conventional methods of chemical fixation are often inadequate for preserving yeast ultrastructure. The thick cell wall severely limits penetration of fixatives rendering poor detail of the cell wall, membranes, and overall anatomy. Dimethylsulfoxide (DMSO) enhances penetration of chemicals and has been added to fixatives to improve cell preservation. At high concentrations (5 to 50%), however, it affects ultrastructure unpredictably. We found that adding 0.1% DMSO to fixatives greatly improved retention of yeast ultrastructure. Candida albicans, C. glabrata and Aspergillusfumigatus were fixed for 3 hr in 3% paraformaldehyde, 1% glutaraldehyde, 1 mil MgCl2, 1 mM CaCl2, 0.1% DMSO in 0.1 M sodium cacodylate buffer followed by 1% OsO4, 1% K2Cr2O7, 0.85% NaCl. 0.1% DMSO in the same buffer. Thin epoxy sections were post-stained in uranyl acetate and lead citrate. The multilayered character of the cell wall was distinct and well structured. Addition of ruthenium red or alcian blue to the fixatives further enhanced the outer fibrillar layer. The plasma membrane was contiguous and tightly adjacent to the inner manno-protein layer of the cell wall. The cytoplasm was well preserved and the overall preservation of the yeast ultrastructure was significantly improved.  相似文献   

19.
Short generation times and facile genetic techniques make the fruit fly Drosophila melanogaster an excellent genetic model in fundamental neuroscience research. Ion channels are the basis of all behavior since they mediate neuronal excitability. The first voltage gated ion channel cloned was the Drosophila voltage gated potassium channel Shaker1,2. Toward understanding the role of ion channels and membrane excitability for nervous system function it is useful to combine powerful genetic tools available in Drosophila with in situ patch clamp recordings. For many years such recordings have been hampered by the small size of the Drosophila CNS. Furthermore, a robust sheath made of glia and collagen constituted obstacles for patch pipette access to central neurons. Removal of this sheath is a necessary precondition for patch clamp recordings from any neuron in the adult Drosophila CNS. In recent years scientists have been able to conduct in situ patch clamp recordings from neurons in the adult brain3,4 and ventral nerve cord of embryonic5,6, larval7,8,9,10, and adult Drosophila11,12,13,14. A stable giga-seal is the main precondition for a good patch and depends on clean contact of the patch pipette with the cell membrane to avoid leak currents. Therefore, for whole cell in situ patch clamp recordings from adult Drosophila neurons must be cleaned thoroughly. In the first step, the ganglionic sheath has to be treated enzymatically and mechanically removed to make the target cells accessible. In the second step, the cell membrane has to be polished so that no layer of glia, collagen or other material may disturb giga-seal formation. This article describes how to prepare an identified central neuron in the Drosophila ventral nerve cord, the flight motoneuron 5 (MN515), for somatic whole cell patch clamp recordings. Identification and visibility of the neuron is achieved by targeted expression of GFP in MN5. We do not aim to explain the patch clamp technique itself.  相似文献   

20.
Aging is a phenomenon that results in steady physiological deterioration in nearly all organisms in which it has been examined, leading to reduced physical performance and increased risk of disease. Individual aging is manifest at the population level as an increase in age-dependent mortality, which is often measured in the laboratory by observing lifespan in large cohorts of age-matched individuals. Experiments that seek to quantify the extent to which genetic or environmental manipulations impact lifespan in simple model organisms have been remarkably successful for understanding the aspects of aging that are conserved across taxa and for inspiring new strategies for extending lifespan and preventing age-associated disease in mammals.The vinegar fly, Drosophila melanogaster, is an attractive model organism for studying the mechanisms of aging due to its relatively short lifespan, convenient husbandry, and facile genetics. However, demographic measures of aging, including age-specific survival and mortality, are extraordinarily susceptible to even minor variations in experimental design and environment, and the maintenance of strict laboratory practices for the duration of aging experiments is required. These considerations, together with the need to practice careful control of genetic background, are essential for generating robust measurements. Indeed, there are many notable controversies surrounding inference from longevity experiments in yeast, worms, flies and mice that have been traced to environmental or genetic artifacts1-4. In this protocol, we describe a set of procedures that have been optimized over many years of measuring longevity in Drosophila using laboratory vials. We also describe the use of the dLife software, which was developed by our laboratory and is available for download (http://sitemaker.umich.edu/pletcherlab/software). dLife accelerates throughput and promotes good practices by incorporating optimal experimental design, simplifying fly handling and data collection, and standardizing data analysis. We will also discuss the many potential pitfalls in the design, collection, and interpretation of lifespan data, and we provide steps to avoid these dangers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号