首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tissue print followed by a xyloglucan endotransglycosylase assay revealed that XET activity is present at sites of cell elongation in both roots and shoots of the lycopodiophyte Selaginella kraussiana. This paper provides the first report and analysis of a xyloglucan endotransglycosylase/hydrolase (XTH) cDNA sequence, isolated from a club moss. In silico analysis of the deduced amino acid sequence revealed a strong conservation of the XET-domain described in higher plants. The catalytic site (DEIDLEFLG) varies in only one amino acid compared with the consensus sequence and was shown to be functional after recombinant expression of Sk-XTH1 in Pichia pastoris. Sk-XTH1 displays xyloglucan endotransglycosylase activity over a broad pH (4.5-7.5) and temperature range (4-30 degrees C), but it shows no hydrolase activity. The catalytic site is followed by a consensus sequence for N-linked glycosylation. Four terminal cysteines were shown to stabilize a putative XET-C terminal extension region, which includes conserved amino acids, involved in the recognition and binding of the substrates. The N-linked sugar interactions as well as the disulphide bridges were shown to be necessary to perform XET activity. The presence of a highly conserved XTH sequence and function in a microphyllophyte suggests that XTHs were present before the divergence of lycopodiophytes and euphyllophytes. It also points to a possible key role for XTHs in the production of a cell wall that allowed the further evolution of land plants.  相似文献   

2.
Family GH16 glycoside hydrolases can be assigned to five subgroups according to their substrate specificities, including xyloglucan transglucosylases/hydrolases (XTHs), (1,3)-beta-galactanases, (1,4)-beta-galactanases/kappa-carrageenases, "nonspecific" (1,3/1,3;1,4)-beta-D-glucan endohydrolases, and (1,3;1,4)-beta-D-glucan endohydrolases. A structured family GH16 glycoside hydrolase database has been constructed (http://www.ghdb.uni-stuttgart.de) and provides multiple sequence alignments with functionally annotated amino acid residues and phylogenetic trees. The database has been used for homology modeling of seven glycoside hydrolases from the GH16 family with various substrate specificities, based on structural coordinates for (1,3;1,4)-beta-D-glucan endohydrolases and a kappa-carrageenase. In combination with multiple sequence alignments, the models predict the three-dimensional (3D) dispositions of amino acid residues in the substrate-binding and catalytic sites of XTHs and (1,3/1,3;1,4)-beta-d-glucan endohydrolases; there is no structural information available in the databases for the latter group of enzymes. Models of the XTHs, compared with the recently determined structure of a Populus tremulos x tremuloides XTH, reveal similarities with the active sites of family GH11 (1,4)-beta-D-xylan endohydrolases. From a biological viewpoint, the classification, molecular modeling and a new 3D structure of the P. tremulos x tremuloides XTH establish structural and evolutionary connections between XTHs, (1,3;1,4)-beta-D-glucan endohydrolases and xylan endohydrolases. These findings raise the possibility that XTHs from higher plants could be active not only on cell wall xyloglucans, but also on (1,3;1,4)-beta-D-glucans and arabinoxylans, which are major components of walls in grasses. A role for XTHs in (1,3;1,4)-beta-D-glucan and arabinoxylan modification would be consistent with the apparent overrepresentation of XTH sequences in cereal expressed sequence tags databases.  相似文献   

3.
The plant cell wall is the structural basis of cellular form and thus forms a foundation on which morphogenesis builds organs and tissues. Enzymes capable of modifying major wall components are prominent candidates for regulating wall form and function. Xyloglucan endotransglucosylases/hydrolases (XTHs) are predicted to participate in xyloglucan integration and/or restructuring. XTHs are encoded by large gene families in plants; the Arabidopsis genome encodes 33 XTHs. To gain insight into the potential physiological relevance of the distinct members of this family, GUS reporter fusion genes were constructed, and plants expressing these transgenes were characterized to reveal spatial and temporal patterns of expression. In addition, Genevestigator sources were mined for comprehensive and comparative XTH expression regulation analysis. These data reveal that the Arabidopsis XTHs are likely expressed in every developmental stage from seed germination through flowering. All organs show XTH::GUS expression and most, if not all, are found to express multiple XTH::GUS genes. These data suggest that XTHs may contribute to morphogenesis at every developmental stage and in every plant organ. Different XTHs have remarkably diverse and distinct expression patterns indicating that paralogous genes have evolved differential expression regulation perhaps contributing to the maintenance of the large gene family. Extensive overlap in XTH expression patterns is evident; thus, XTHs may act combinatorially in determining wall properties of specific tissues or organs. Knowledge of gene-specific expression among family members yields evidence of where and when gene products may function and provides insights to guide rational approaches to investigate function through reverse genetics. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

4.
Xyloglucan endotransglucosylase/hydrolases (XTHs) are cell wall-modifying enzymes that align within three or four distinct phylogenetic subgroups. One explanation for this grouping is association with different enzymic modes of action, as XTHs can have xyloglucan endotransglucosylase (XET) or endohydrolase (XEH) activities. While Group 1 and 2 XTHs predominantly exhibit XET activity, to date the activity of only one member of Group 3 has been reported: nasturtium TmXH1, which has a highly specialized function and hydrolyses seed-storage xyloglucan rather than modifying cell wall structure. Tomato fruit ripening was selected as a model to test the hypothesis that preferential XEH activity might be a defining characteristic of Group 3 XTHs, which would be expressed during processes where net xyloglucan depolymerization occurs. Database searches identified 25 tomato XTHs, and one gene (SlXTH5) was of particular interest as it aligned within Group 3 and was expressed abundantly during ripening. Recombinant SlXTH5 protein acted primarily as a transglucosylase in vitro and depolymerized xyloglucan more rapidly in the presence than in the absence of xyloglucan oligosaccharides (XGOs), indicative of XET activity. Thus, there is no correlation between the XTH phylogenetic grouping and the preferential enzymic activities (XET or XEH) of the proteins in those groups. Similar analyses of SlXTH2, a Group 2 tomato XTH, and nasturtium seed TmXTH1 revealed a spectrum of modes of action, suggesting that all XTHs have the capacity to function in both modes. The biomechanical properties of plant walls were unaffected by incubation with SlXTH5, with or without XGOs, suggesting that XTHs do not represent primary cell wall-loosening agents. The possible roles of SlXTH5 in vivo are discussed.  相似文献   

5.
6.
Using two ecotypes of Stellaria longipes with contrasting responses to shade, we found that plants can differ in their responses to similar light cues, reflecting adaptations to their natural habitat. It was also observed that the plants could distinguish between distinct shade signals. Furthermore, the activity of wall modifying proteins, expansins and xyloglucan endotransglucosylase/hydrolase(s) (XTHs) was regulated during these responses. However, only expansin activity and gene expression profiles correlated with observed growth trends. The differential expression of expansins was light signal specific and ecotype specific and could account for both the trends in growth and their magnitude. We have thus established a potential molecular basis for the observed plasticity in responses to shade.Key words: shade avoidance, cell wall modification, expansins, XTHs, Stellaria longipes, phenotypic plasticity, light quality  相似文献   

7.
8.
9.
Liu YB  Lu SM  Zhang JF  Liu S  Lu YT 《Planta》2007,226(6):1547-1560
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of enzymes that mediate the construction and restructure of the cellulose/xyloglucan framework by splitting and reconnecting xyloglucan molecule cross-linking among cellulose microfibrils. Remodification of cellulose microfibrils within cell-wall matrices is realized to be one of the most critical steps in the regulation of cells expansion in plants. Thirty-three XTH genes have been found in Arabidopsis thaliana but their roles remain unclear. AtXTH21 (At2g18800), an Arabidopsis XTH gene that mainly expresses in root and flower, exhibits different expression profiles from other XTH members under hormone treatment. We examined loss-of-function mutants using T-DNA insertion lines and overexpression lines and found that the AtXTH21 gene played a principal role in the growth of the primary roots by altering the deposition of cellulose and the elongation of cell wall.  相似文献   

10.
The xyloglucan endotransglucosylase/hydrolases (XTHs) are enzymes involved in cell wall assembly and growth regulation, cleaving and re-joining hemicellulose chains in the xyloglucan–cellulose network. Here, in a homologous system, we compare the secretion patterns of XTH11, XTH33 and XTH29, three members of the Arabidopsis thaliana XTH family, selected for the presence (XTH11 and XTH33) or absence (XTH29) of a signal peptide, and the presence of a transmembrane domain (XTH33). We show that XTH11 and XTH33 reached, respectively, the cell wall and plasma membrane through a conventional protein secretion (CPS) pathway, whereas XTH29 moves towards the apoplast following an unconventional protein secretion (UPS) mediated by exocyst-positive organelles (EXPOs). All XTHs share a common C-terminal functional domain (XET-C) that, for XTH29 and a restricted number of other XTHs (27, 28 and 30), continues with an extraterminal region (ETR) of 45 amino acids. We suggest that this region is necessary for the correct cell wall targeting of XTH29, as the ETR-truncated protein never reaches its final destination and is not recruited by EXPOs. Furthermore, quantitative real-time polymerase chain reaction analyses performed on 4-week-old Arabidopsis seedlings exposed to drought and heat stress suggest a different involvement of the three XTHs in cell wall remodeling under abiotic stress, evidencing stress-, organ- and time-dependent variations in the expression levels. Significantly, XTH29, codifying the only XTH that follows a UPS pathway, is highly upregulated with respect to XTH11 and XTH33, which code for CPS-secreted proteins.  相似文献   

11.
12.
13.
Shin YK  Yum H  Kim ES  Cho H  Gothandam KM  Hyun J  Chung YY 《Planta》2006,224(1):32-41
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a group of the enzymes that are responsible for reorganization of the cellulose–xyloglucan framework by catalyzing cleavage and religation of the xyloglucan chains in the plant cell wall. In this study, we report the isolation and characterization of a XTH gene from a pistil cDNA library of Brassica campestris. Sequence analysis of the gene, designated BcXTH1, revealed that it is homologous to the XTH9 gene of Arabidopsis. The highly conserved domain (DEIDFEFLG) found among all XTHs was also present in BcXTH1 but with the two amino acid substitutions (NEFDFEFLG) also found in Arabidopsis XTH9. These results suggest that BcXTH1 is the B. campestris homologue of XTH9. Expression analysis of BcXTH1 revealed that it was expressed in most of the plant organs. In situ hybridization showed that the gene is highly expressed in the floral primodia, especially in the epidermal cell layer. Southern blot analysis indicated that the BcXTH1 gene exists as a multi-copy gene in the B. campestris genome. The function of the BcXTH1 gene was deduced from using an overexpression strategy in Arabidopsis. Interestingly, the transgenic plants showed a pronounced cell expansion phenotype. Immunoelectron microscopy shows that BcXTH1 is localized almost exclusively to the cell wall, supporting our conclusion that it participates in the regulation of cell expansion in B. campestris.  相似文献   

14.
The polygalacturonase (PG) gene family is one of the largest gene families in plants. PGs are involved in various plant development steps. The evolutionary processes accounting for the functional divergence and the specialized functions of PGs in land plants are unclear. Whole sets of PG genes were retrieved from the genome web sites of model organisms in algae and land plants. The number of PG genes was expanded by lineage-specific manner with the biological complexity of the organism. Differentiation of PGs was related with phylogenetic hierarchy such as presence of rhamno-PGs from algae to plants, endo- and exo-PGs in land plants, exo-PGs in flowering plants. Gene structure analysis revealed that land plant PG genes resulted from differential intron gain and loss, with the latter event predominating. Differential intron losses partitioned the PGs into separate clades to be expressed differentially during plant development. Intron position and phase were not conserved between PGs of algae and land plants but conserved among PG genes of land plants from moss to vascular plants, indicating that the current introns in the PGs in land plants appeared after the split between unicellular algae and multicelluar land plants. The results demonstrate that the functional divergence and differentiation of PGs in land plants is attributable to intron losses.  相似文献   

15.
本研究从陆地棉TM-1基因组中鉴定出72个XTH家族基因,编码木葡聚糖内转糖苷酶/水解酶(XTH,xyloglucan endotransglycosylase/hydrolase),分别命名为Gh XTH01~Gh XTH72,分析了其基因结构、保守基序、系统进化、理化性质、亚细胞定位,并探究其在棉纤维发育不同时期的表达规律。结果表明,XTH家族基因分布在除At 07、Dt 07以外的24条棉花染色体上,根据系统发育树,将XTH家族基因分为3个亚组;XTH氨基酸序列有3个保守基序,保守性较强;多数XTH蛋白定位在细胞外。根据XTHs在纤维发育不同时期的表达量变化,将其分为4类。通过构建陆地棉与拟南芥XTH氨基酸序列进化树,推测Gh XTH15、Gh XTH28、Gh XTH36、Gh XTH49、Gh XTH59、Gh XTH62、Gh XTH63等基因在棉纤维发育过程中发挥重要作用。通过比较XTH家族基因在不同纤维品质陆地棉品种中的表达差异,推测在优质棉花品种中优势表达基因Gh XTH03、Gh XTH12、Gh XTH17、Gh XTH22、Gh XTH23、Gh XTH28、Gh XTH33、Gh XTH44、Gh XTH46、Gh XTH59等在纤维发育伸长过程中可能发挥着重要作用。上述结果为研究陆地棉XTH基因家族在棉纤维发育中的功能提供了参考依据。  相似文献   

16.
The paper describes a sensitive and rapid zymogram technique for detection of transglycosylating activity (XET) of xyloglucan endotransglycosylase/hydrolase (XTH; EC 2.4.1.207) in polyacrylamide isoelectric focusing gels. After the electrophoresis, the separating gel was overlaid and incubated with an agarose detection gel containing XET substrates: tamarind-seed xyloglucan as the glycosyl donor and sulphorhodamine-labeled xyloglucan-derived oligosaccharides (XGO-SRs) as the glycosyl acceptors. The transglycosylation catalyzed by XTH caused incorporation of the fluorescent label into the high-M(r) polysaccharide. Selective removal of unreacted XGO-SRs from the agarose replicas by washing with organic solvents revealed the zones corresponding to XET activity as bright pink fluorescent spots under UV-light. The method appears suitable for a number of purposes such as analysis of the isoenzyme composition of XTHs with XET activity in crude extracts from various plants and plant organs, monitoring the enzyme expression at various stages of plant development and/or for checking enzyme purity in the course of its isolation procedure.  相似文献   

17.
18.
19.
XTH acts at the microfibril-matrix interface during cell elongation   总被引:2,自引:0,他引:2  
Sulphorhodamine-labelled oligosaccharides of xyloglucan are incorporated into the cell wall of Arabidopsis and tobacco roots, and of cultured Nicotiana tabacum cells by the transglucosylase (XET) action of XTHs. In the cell wall of diffusely growing cells, the subcellular pattern of XET action revealed a 'fibrillar' pattern, different from the xyloglucan localization. The fibrillar fluorescence pattern had no net orientation in spherical cultured cells. It changed to transverse to the long axis when the cells started to elongate, a feature mirroring the rearrangements of cortical microtubules and the accompanying cellulose deposition. Interference with the polymerization of microtubules and with cellulose deposition inhibited this strong and 'fibrillar'-organized XET-action, whereas interference with actin-polymerization only decreased the intensity of enzyme action. Epidermal cells of a mutant with reduced cellulose synthesis also had low XET action. Root hairs (tip-growing cells) exhibited high XET-action over all their length, but lacked the specific parallel pattern. In both diffuse- and tip-growing cell types extraction of the incorporated fluorescent xyloglucans by a xyloglucan-specific endoglucanase reduced the fluorescence, but the 'fibrillar' appearance in diffuse growing cells was not eliminated. These results show that XTHs act on the xyloglucans attached to cellulose microfibrils. After incorporation of the fluorescent oligosaccharides, the xyloglucans decorate the cellulose microfibrils and become inaccessible to hydrolytic enzymes.  相似文献   

20.

Background and Aims

Although xyloglucans are ubiquitous in land plants, they are less abundant in Poales species than in eudicotyledons. Poales cell walls contain higher levels of β-1,3/1,4 mixed-linked glucans and arabinoxylans than xyloglucans. Despite the relatively low level of xyloglucans in Poales, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family in rice (Oryza sativa) is comparable in size to that of the eudicotyledon Arabidopsis thaliana. This raises the question of whether xyloglucan is a substrate for rice XTH gene products, whose enzyme activity remains largely uncharacterized.

Methods

This study focused on OsXTH19 (which belongs to Group IIIA of the XTH family and is specifically expressed in growing tissues of rice shoots), and two other XTHs, OsXTH11 (Group I/II) and OsXTH20 (Group IIIA), for reference, and measurements were made of the enzymatic activities of three recombinant rice XTHs, i.e. OsXTH11, OsXTH20 and OsXTH19.

Key Results

All three OsXTH gene products have xyloglucan endohydrolase (XEH, EC 3·2·1·151) activity, and OsXTH11 has both XEH and xyloglucan endotransglycosylase (XET, EC 2·4·1207) activities. However, these proteins had neither hydrolase nor transglucosylase activity when glucuronoarabinoxylan or mixed-linkage glucan was used as the substrate. These results are consistent with histological observations demonstrating that pOsXTH19::GUS is expressed specifically in the vicinity of tissues where xyloglucan immunoreactivity is present. Transgenic rice lines over-expressing OsXTH19 (harbouring a Cauliflower Mosaic Virus 35S promoter::OsXTH19 cDNA construct) or with suppressed OsXTH19 expression (harbouring a pOsXTH19 RNAi construct) did not show dramatic phenotypic changes, suggesting functional redundancy and collaboration among XTH family members, as was observed in A. thaliana.

Conclusions

OsXTH20 and OsXTH19 act as hydrolases exclusively on xyloglucan, while OsXTH11 exhibits both hydrolase and XET activities exclusively on xyloglucans. Phenotypic analysis of transgenic lines with altered expression of OsXTH19 suggests that OsXTH19 and related XTH(s) play redundant roles in rice growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号