首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Du  Y. Si  J. Yu 《Biotechnology letters》2001,23(19):1613-1617
Medium-chain-length fatty acids, such as nonanoic (9:0) and octanoic (8:0) acids, are more toxic to Ralstonia eutropha than volatile fatty acids such as acetic, propionic and butyric acids. Nonanoic acid was degraded to acetic and propionic acids via -oxidation by Ralstonia eutropha for cell growth and synthesis of polyhydroxyalkanoates (PHAs). In a mixture of the fatty acids, utilization of nonanoic acid was depressed by acetic and propionic acids, and vice versa. The PHA accumulation from the volatile fatty acids was decreased from 53% (w/w) of dry cell mass to 23% due to the nonanoic acid. Similar phenomena were also observed with octanoic acid and its metabolic intermediates, acetic and butyric acids.  相似文献   

2.
Volatile fatty acids (VFAs) are the most suitable and biodegradable carbon substrates for many bioprocesses. This study explored a new approach to improve the VFAs production from anaerobic co-digesting waste activated sludge (WAS) with corn straw (CS). The effect of feedstock proportion on the acidification efficiency was investigated. The maximum VFAs yield (corresponding fermentation time) was substantially increased 69% (96 h), 45% (72 h), 13% (120 h) and 12% (120 h) with 50%, 35%, 25% and 20% CS proportion of feedstock, respectively. HAc (acetic acid) was consistently the most abundant, followed by HPr (propionic acid) and n-HBu (butyric acid) in the co-digesting tests. The increase of CS in feedstock led to more production of HAc and HPr. Moreover, the consumption of protein and carbohydrate were also improved remarkably from 2955 and 249 mg COD/L (individual WAS fermentation) to 6575 and 815 mg COD/L (50%WAS:50%CS co-digestion) from 120 onward, respectively. The highest contribution of CS to additional VFAs production was1113 mg VFAs (as COD)/g CS/L in the 65%WAS:35%CS co-digesting test. Our study indicated a valuable method to improve VFAs production from anaerobic co-digesting WAS and CS.  相似文献   

3.
A two step biological process for the conversion of grass biomass to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) was achieved through the use of anaerobic and aerobic microbial processes. Anaerobic digestion (mixed culture) of ensiled grass was achieved with a recirculated leach bed bioreactor resulting in the production of a leachate, containing 15.3 g/l of volatile fatty acids (VFAs) ranging from acetic to valeric acid with butyric acid predominating (12.8 g/l). The VFA mixture was concentrated to 732.5 g/l with a 93.3 % yield of butyric acid (643.9 g/l). Three individual Pseudomonas putida strains, KT2440, CA-3 and GO16 (single pure cultures), differed in their ability to grow and accumulate PHA from VFAs. P. putida CA-3 achieved the highest biomass and PHA on average with individual fatty acids, exhibited the greatest tolerance to higher concentrations of butyric acid (up to 40 mM) compared to the other strains and exhibited a maximum growth rate (μMAX?=?0.45 h?1). Based on these observations P. putida CA-3 was chosen as the test strain with the concentrated VFA mixture derived from the AD leachate. P. putida CA-3 achieved 1.56 g of biomass/l and accumulated 39 % of the cell dry weight as PHA (nitrogen limitation) in shake flasks. The PHA was composed predominantly of 3-hydroxydecanoic acid (>65 mol%).  相似文献   

4.
活性污泥产酸发酵研究进展   总被引:1,自引:0,他引:1  
有机物的厌氧生物处理一般经过三个阶段:水解阶段、产酸发酵阶段和产甲烷阶段;研究证明,产酸相不同发酵类型的形成对产甲烷相乃至整个工艺的稳定运行具有至关重要的作用,此外,污泥厌氧消化过程所产生的大量的挥发性脂肪酸(VFAs),如乙酸、丙酸、丁酸及戊酸等,还可作为化工原料用于发酵工业生产各种高附加值产品.近年来,产酸发酵受到越来越多的关注,该文主要对污泥产酸阶段的产酸发酵类型、产酸发酵细菌的生态学、产酸过程的影响因素和生态因子以及产酸发酵的液相末端产物VFAs的测定方法进行了论述.  相似文献   

5.
Volatile fatty acids (VFAs) are used as building blocks to synthesize a wide range of commercially-important chemicals. Microbially produced VFAs (acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid) can be considered as a replacement for petroleum-based VFAs due to their renewability, degradability, and sustainability. The main objective of this review is to summarize research and development of VFA production methods via microbial routes, their downstream processes, current applications, and main challenges. Various fermentation processes have been developed to produce of VFAs starting from commercially-available sugars and other raw materials such as lignocellulose, whey, and waste sludge. Only few microbes have been explored for their potential to produce VFAs, and very little genomic information data is available at the present time. There is a need to use metabolic engineering, systematic biology, evolutionary engineering, and bioinformatics to discover VFA biosynthesis routes since the pathways for isobutyric acid and isovaleric acids are still not well understood.  相似文献   

6.
Metabolites arising from the catabolism of lysine by the mixed rumen bacteria were chromatographically examined by using radioactive lysine. After 6 hr incubation, 241 nmole/ ml of lysine was decomposed to give ether-soluble substances and CO2 by the bacteria and 90 nmole/ml of lysine was incorporated unchanged into the bacteria. δ-Aminovalerate, cadaverine or pipecolate did not seem to be produced from lysine even after incubation of the bacteria with addition of those three amino compounds to trap besides lysine and radioactive lysine. Most of the ether-soluble substances produced from radioactive lysine was volatile fatty acids (VFAs). Fractionation of VFAs revealed that the peaks of butyric and acetic acids coincided with the strong radioactive peaks. Small amounts of radioactivities were detected in propionic acid peak and a peak assumed to be caproic acid. The rumen bacteria appeared to decompose much larger amounts of lysine than the rumen ciliate protozoa did.  相似文献   

7.
8.
1. The effects in the cow of intraruminal infusions of acetic acid, propionic acid or butyric acid on the secretion of the component fatty acids of the milk fat, and of these acids and of lactic acid on the composition of the blood plasma of the jugular vein, have been studied. 2. The infusion of acetic acid or butyric acid increased the yield of the C4–C16 acids of milk fat but decreased the yield of C18 acids. The infusion of propionic acid decreased the yields of all major component acids except palmitic acid and possibly lauric acid. 3. The changes in the concentrations in blood plasma of glucose and of ketone bodies were consistent with the glucogenic effect of propionic acid and the ketogenic effects of butyric acid and acetic acid. The effects of lactic acid were not consistent from cow to cow. Only with the infusion of acetic acid was a significant increase in the concentration of total volatile fatty acids in blood plasma found. Infusions of butyric acid and of propionic acid tended to depress the concentration of citric acid in the blood plasma and infusion of acetic acid increased it. No consistent effects of the infused acids on the concentration in blood plasma of esterified cholesterol, free cholesterol, triglyceride or phospholipid were observed. 4. The possibility is discussed that the effects of the infused acids on milk-fat secretion are caused through an alteration of the concentrations of precursors of milk fat in mammary arterial blood.  相似文献   

9.
Fei Q  Chang HN  Shang L  Choi JD  Kim N  Kang J 《Bioresource technology》2011,102(3):2695-2701
The use of volatile fatty acids (VFAs) for microbial lipid accumulation was investigated in flask cultures of Cryptococcus albidus. The optimum culture temperature and pH were 25 °C and pH 6.0, respectively, and the highest lipid content (27.8%) was obtained with ammonia chloride as a nitrogen source. The lipid yield coefficient on VFAs was 0.167 g/g of C. albidus with a VFAs (acetic, propionic, butyric acids) ratio of 8:1:1, which was in good agreement with a theoretically predicted lipid yield coefficient of the VFAs as a carbon source. The major fatty acids of the lipids accumulated by C. albidus were similar to those of soybean oil and jatropha oil. A preliminary cost analysis shows that VFAs-based biodiesel production is competitive with current palm and soybean based biodiesels. Further process development for lower aeration cost and higher lipid yield will make this process more economical.  相似文献   

10.
嗜热子囊菌利用短链有机酸生产角质酶   总被引:1,自引:1,他引:0  
以嗜热子囊菌(Thermobifida fusca WSH03-11)发酵生产角质酶为模型,研究微生物利用市政污泥厌氧酸化所产短链有机酸为碳源发酵生产高附加值产品的可能。发现:(1)以丁酸、丙酸和乙酸为碳源时,有机酸和氮元素浓度分别为8.0 g/L和1.5 g/L有利于角质酶的生产;而以乳酸为碳源时,最适有机酸和氮源浓度分别为3.0 g/L和1.0 g/L;(2)改变诱导物角质的浓度,以丁酸、丙酸、乙酸和乳酸为碳源,分别比优化前提高了31.0%、13.3%、43.8%和73.2%;(3)在四种有机酸中,T. fusca WSH03-11利用乙酸的速率最快,平均比消耗速率是丙酸的1.3倍,丁酸的2.0倍及乳酸的2.2倍;以丁酸为碳源时的酶活(52.4 U/mL)是乳酸的1.7倍、乙酸的2.5倍和丙酸的3.2倍;角质酶对乳酸的得率(12.70 u/mg)分别是丁酸的1.4倍、丙酸的3.0倍和乙酸的3.8倍;(4)以混合酸为碳源生产角质酶,T. fusca WSH03-11优先利用乙酸,而对丁酸的利用受到抑制。进一步研究发现,混合酸中0.5 g/L的乙酸将导致丁酸的消耗量降低66.7%。这是首次利用混合酸作碳源发酵生产角质酶的研究报道。这一研究结果进一步确证了利用市政污泥厌氧酸化所产有机酸为碳源发酵生产高附加值产品的可行性,为以廉价碳源生产角质酶奠定了良好的基础。  相似文献   

11.
以嗜热子囊菌(Thermobifida fusca WSH03-11)发酵生产角质酶为模型,研究微生物利用市政污泥厌氧酸化所产短链有机酸为碳源发酵生产高附加值产品的可能。发现:(1)以丁酸、丙酸和乙酸为碳源时,有机酸和氮元素浓度分别为8.0 g/L和1.5 g/L有利于角质酶的生产;而以乳酸为碳源时,最适有机酸和氮源浓度分别为3.0 g/L和1.0 g/L;(2)改变诱导物角质的浓度,以丁酸、丙酸、乙酸和乳酸为碳源,分别比优化前提高了31.0%、13.3%、43.8%和73.2%;(3)在四种有机酸中,T. fusca WSH03-11利用乙酸的速率最快,平均比消耗速率是丙酸的1.3倍,丁酸的2.0倍及乳酸的2.2倍;以丁酸为碳源时的酶活(52.4 U/mL)是乳酸的1.7倍、乙酸的2.5倍和丙酸的3.2倍;角质酶对乳酸的得率(12.70 u/mg)分别是丁酸的1.4倍、丙酸的3.0倍和乙酸的3.8倍;(4)以混合酸为碳源生产角质酶,T. fusca WSH03-11优先利用乙酸,而对丁酸的利用受到抑制。进一步研究发现,混合酸中0.5 g/L的乙酸将导致丁酸的消耗量降低66.7%。这是首次利用混合酸作碳源发酵生产角质酶的研究报道。这一研究结果进一步确证了利用市政污泥厌氧酸化所产有机酸为碳源发酵生产高附加值产品的可行性,为以廉价碳源生产角质酶奠定了良好的基础。  相似文献   

12.
The fatty acid components of awamori during aging were as follows. The total amount of volatile acids calculated as acetic acid ranged from 20 to 140 mg/l, the main acid was acetic acid, and the proportion of acetic acid to total acids ranged from 35 to 80 per cent. The main acids other than acetic acid were propionic acid and i-butyic acid. Differences were observed in fatty acid constituents between awamori and other alcoholic beverages.Certain components tended to increase during maturation in kame (porous earth-enware pots): acetic acid, i-butyric acid, i-valeric acid, valeric acid, capric acid, lauric acid, myristic acid and total fatty acids. Others, however, showed no distinct changes: propionic acid, butyric acid, caproic acid, caprylic acid, palmitic acid, stearic acid, oleic acid and linoleic acid.During maturation in non-porous containers (stainless-steel or glass-linked tanks), on the other hand, caprylic acid, capric acid, lauric acid and myristic acid components tended to increase, while no distinct changes however were shown by acetic acid, propionic acid, i-butyric, butyric acid, i-valeric acid, valeric acid, caproic acid, palmitic acid, stearic acid, oleic acid, linoleic acid and total fatty acids.  相似文献   

13.
Effect of the solid content on anaerobic digestion of meat and bone meal   总被引:1,自引:0,他引:1  
The effect of the solid content on anaerobic digestion of meat and bone meal (MBM) was investigated in batch reactors at MBM solid contents of 1%, 2%, 5% and 10%. There was no significant difference in the specific methane (CH4) production potential with respect to the total volatile MBM solids (TVS) applied at these solid contents, which ranged from 351 to 381 ml CH4/g TVS. However, the highest CH4 yield with respect to the removed volatile MBM solids (RVS) was 482 ml CH4/g RVS at the MBM solid content of 5%; the CH4 yields were 384–448 ml CH4/g RVS at the other MBM solid contents. The lag time of CH4 production rose with the increase in the solid content. The longer lag time at MBM solid contents of 5% and 10% was due to inhibition caused by high concentrations of volatile fatty acids (VFAs) and free ammonia in the reactors, but the inhibition was reversible. The production of VFAs during the digestion varied with solid contents: at the solid content of 1%, only acetic acid was detected; at 2%, both acetic and propionic acids were detected; and at 5% and 10%, acetic, propionic, butyric and valeric acids were detected. After 93-day digestion, the volatile MBM solid reduction was 92%, 91%, 79% and 80% at MBM solid contents of 1%, 2%, 5% and 10%, respectively.  相似文献   

14.
Shrimp farming accounts for more than 40% of the world shrimp production. Luminous vibriosis is a shrimp disease that causes major economic losses in the shrimp industry as a result of massive shrimp kills due to infection. Some farms in the South Asia use antibiotics to control Vibrio harveyi, a responsible pathogen for luminous vibriosis. However, the antibiotic-resistant strain was found recently in many shrimp farms, which makes it necessary to develop alternative pathogen control methods. Short-chain fatty acids are metabolic products of organisms, and they have been used as food preservatives for a long time. Organic acids are also commonly added in feeds in animal husbandry, but not in aquaculture. In this study, growth inhibitory effects of short-chain fatty acids, namely formic acid, acetic acid, propionic acid, and butyric acid, on V. harveyi were investigated. Among four acids, formic acid showed the strongest inhibitory effect followed by acetic acid, propionic acid, and butyric acid. The minimum inhibitory concentration (MIC) of 0.035% formic acid suppressed growth of V. harveyi. The major inhibitory mechanism seems to be the pH effect of organic acids. The effective concentration 50 (EC50) values at 96 h inoculation for all organic acids were determined to be 0.023, 0.041, 0.03, and 0.066% for formic, acetic, propionic, and butyric acid, respectively. The laboratory study results are encouraging to formulate shrimp feeds with organic acids to control vibrio infection in shrimp aquaculture farms.  相似文献   

15.
Bacterial fermentation of lignocellulose has been regarded as a sustainable approach to butyric acid production. However, the yield of butyric acid is hindered by the conversion efficiency of hydrolysate xylose. A mesophilic alkaline-tolerant strain designated as Clostridium butyricum B10 was isolated by xylose fermentation with acetic and butyric acids as the principal liquid products. To enhance butyric acid production, performance of the strain in batch fermentation was evaluated with various temperatures (20–47 °C), initial pH (5.0–10.0), and xylose concentration (6–20 g/L). The results showed that the optimal temperature, initial pH, and xylose concentration for butyric acid production were 37 °C, 9.0, and 8.00 g/L, respectively. Under the optimal condition, the yield and specific yield of butyric acid reached about 2.58 g/L and 0.36 g/g xylose, respectively, with 75.00% butyric acid in the total volatile fatty acids. As renewable energy, hydrogen was also collected from the xylose fermentation with a yield of about 73.86 mmol/L. The kinetics of growth and product formation indicated that the maximal cell growth rate (μ m ) and the specific butyric acid yield were 0.1466 h?1 and 3.6274 g/g cell (dry weight), respectively. The better performance in xylose fermentation showed C. butyricum B10 a potential application in efficient butyric acid production from lignocellulose.  相似文献   

16.
Batch experiments were carried out on anaerobic digestion of swine manure under 10 % of total solids and 60 g/L of zeolite addition at 35 °C. Four distinctive volatile fatty acid (VFAs) evolution stages were observed during the anaerobic process, i.e., VFA accumulation, acetic acid (HAc) and butyric acid (HBu) utilization, propionic acid (HPr) and valeric acid (HVa) degradation, and VFA depletion. Large decreases in HAc/HBu and HPr/HVa occurred respectively at the first and second biogas peaks. Biogas yield increased by 20 % after zeolite addition, about 356 mL/g VSadded with accelerated soluble chemical oxygen demand degradation and VFA (especially HPr and HBu) consumption in addition to a shortened lag phase between the two biogas peaks. Compared with Ca2+ and Mg2+ (100–300 mg/L) released from zeolite, simultaneous K+ and NH4 + (580–600 mg/L) adsorptions onto zeolite particles contributed more to the enhanced biogasification, resulting in alleviated inhibition effects of ammonium on acidogenesis and methanogenesis, respectively. All the identified anaerobes could be grouped into Bacteroidetes and Firmicutes, and zeolite addition had no significant influence on the microbial biodiversity in this study.  相似文献   

17.
Volatile fatty acids (VFAs) are key intermediates in anaerobic digestion. Enriched acetogenic and methanogenic cultures were used for syntrophic anaerobic digestion of VFAs in a high-load continuous reactor fed with acetic (HAc), propionic (HPr) and butyric (HBu) acids at maximum concentrations of 5, 3 and 4 g/L, respectively. Interactive effects of HPr, HBu and HAc were analyzed. Furthermore, hydraulic retention time (HRT) and methanogen to acetogen population ratio (M/A) were investigated as key microbiological and operating variables of VFA anaerobic degradations. Optimum conditions were found to be HPr = 1125.0 mg/L, HBu = 1833.4 mg/L, HAc = 1727.4 mg/L, HRT = 21 h and M/A = 2.5 (corresponding to maximum VFA removal and biogas production rate (BPR)). Results of verification experiments and predicted values from fitted correlations were in close agreement at 95% confidence interval. HRT and M/A had positive effects on VFA removal and BPR. M/A was the most important factor that affected BPR. All VFAs inhibited VFA removals.  相似文献   

18.
The mixed cultures which were used were isolated from municipal sludge digesters, and the production of organic acids (acetic, propionic, butyric, etc.) from carbohydrates was tested. The behavior of the reference population (culture R) obtained directly from the sewage treatment plant, is compared to that obtained after three months in a plug-flow reactor (Gradostat fermentor) without pH control (culture A) and after six months with pH control (culture B). For culture B, the specific rate of acid production is related to the cell growth rate by (1/X)rp= 17 µ + 1.6 with a maximal acid concentration of 40 g/liter. The batch culture yields are improved from 0.36g/g for the initial culture (R) to 0.72 g/g for culture B after six months in continuous culture, and 0.8 g/g in plug-flow continuous culture. The productivity of organic acids reaches 1.7 g/liter·hr. It is suggested that the acidogenic fermentation, the first step of methanogenesis, is a potential process to produce acetic, propionic, and butyric acids.  相似文献   

19.
Summary Acidogenesis and solventogenesis byClostridium beijerinckii NRRL B-593 has been studied in batch growth, and in sucrose-limited chemostat and recycling fermentor growth. Cells grown in batch culture without pH control primarily produced either butyric and acetic acids, or these acids plus butanol, ethanol and isopropanol in ratios depending on the medium's content of reducing agent, calcium and iron. Cells in chemostat-culture at a mass doubling time (td) of 5.8 h produced primarily butyric and acetic acids at pH 6.8 and these acids plus butanol, ethanol and isopropanol at pH 4.8. Cells grown in a recycling fermentor (in which the td continuously increases) at pH 6.8 entered solventogenesis at a td of 43 h, producing primarily propanol, ethanol and butanol, along with butyric acid, but with greatly decreased production of acetic acid. Although clostridial form morphology, succeeded by sporulation, usually accompanied solventogenesis, the association was not invariant so that solventogenesis and sporogenesis can occur separately in this species.  相似文献   

20.
The degradation of dehydrodiisoeugenol (DDIE) by cow rumen bacteria was studied under strictly anaerobic conditions. After two days of cultivation, about 23% of DDIE (1.2 mM) was degraded to volatile fatty acids (VFA) such as acetic acid, propionic acid and butyric acid. The aromatic intermediates were vanillic acid, 5-methylvanillin and 3-methyl-4-hydroxybenzaldehyde, which suggested that the coumaran ring in DDIE was cleaved during degradation. These results indicate that the rumen anaerobes can degrade this lignin-related dimer to monoaromatic compounds and VFA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号